PDE I - Problem Set 2. Distributed Wed 9/10/2014, due Tues 9/23/2014.
(1) The last part of the Lecture 1 notes states and proves a "maximum principle" for the heat equation in a bounded domain with a Dirichlet boundary condition. This problem asks you to do something similar for a Neumann boundary condition. Suppose $u_{t}-\Delta u=0$ on $\Omega \times(0, T)$ with $\partial u / \partial n=0$ at $\partial \Omega$. Show that u achieves its maximum and minimum values at the initial time $t=0$. [Hint: consider $u_{\epsilon, \delta}(x)=u-\delta \phi(x)-\epsilon t$, with a suitable choices of $\phi(x), \delta$, and ϵ. You may assume that $\partial \Omega$ is as smooth as you like.]
(2) Let's look at how the maximum principle changes when the PDE has a zeroth order term. Throughout this problem, we work in a bounded domain $\Omega \subset R^{n}$, with Dirichlet boundary condition $u=0$ at $\partial \Omega$ and initial condition $u(x, 0)=u_{0}(x)$.
(a) Suppose the PDE is

$$
u_{t}-\Delta u+c(x, t) u=0
$$

with $c(x, t) \geq 0$. Show that

$$
\max u \leq \max u_{0}^{+} \quad \text { and } \quad \min u \geq \min u_{0}^{-}
$$

where u_{0}^{+}and u_{0}^{-}are respectively the positive and negative parts of u_{0}.
(b) Consider the same PDE, but assume now that $c(x, t) \geq \gamma$ where γ is a positive constant. Show that $|u(x, t)| \leq C e^{-\gamma t}$. [Hint: apply part (a) to $u e^{\gamma t}$.]
(c) Consider the same PDE, but let $c(x, t)$ be any smooth function (bounded, but possibly negative). Show that if $u_{0} \geq 0$ then $u(x, t) \geq 0$ for all $x \in \Omega$ and $t>0$. [Hint: consider $v(x, t)=e^{\lambda t} u(x, t)$ for a suitable choice of λ.]
(3) Consider two solutions u_{1} and u_{2} of the semilinear parabolic equation

$$
u_{t}-\Delta u=f(u)
$$

in a bounded domain Ω, with the same Dirichlet boundary data but different initial conditions. Show that if initially $u_{1}(x, 0) \leq u_{2}(x, 0)$ for all $x \in \Omega$, then this property holds for all time: $u_{1}(x, t) \leq u_{2}(x, t)$ for all $x \in \Omega$ and all $t>0$. [Hint: show that $w=u_{2}-u_{1}$ solves an equation of the form $w_{t}-\Delta w=c(x, t) w$.]
(4) Let u solve the semilinear equation

$$
u_{t}-\Delta u=f(u)
$$

in a bounded domain Ω, with a Dirichlet boundary condition $u=0$ at $\partial \Omega$. Suppose $u_{t} \geq 0$ initially (in other words, suppose $\Delta u_{0}+f\left(u_{0}\right) \geq 0$, where u_{0} is the initial condition). Show that $u_{t} \geq 0$ for all $x \in \Omega$ and all $t>0$. [Hint: start by differentiating the equation in time, to get a PDE satisfied by u_{t}.]
(5) We briefly discussed in class how our proof of the maximum principle extends to equations of the form $u_{t}-\sum a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum b_{i}(x, t) \frac{\partial u}{\partial x_{i}}=0$, provided that for every (x, t) the matrix $a_{i j}(x, t)$ is symmetric and nonnegative. A key step is the observation that if u has a local minimum at an interior point $\left(x_{0}, t_{0}\right) \in \Omega \times(0, T)$ then $\sum a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \geq 0$ at $\left(x_{0}, t_{0}\right)$. Explain why this is true.
(6) Show that if $\Omega \subset R^{n}$ is bounded and u_{0} is given, there can be at most one solution of the nonlinear boundary value problem $u_{t}-\Delta u+|\nabla u|^{2}=1$ in $\Omega \times(0, T)$ with $u=u_{0}$ at $t=0$ and $u=u_{0}$ at $\partial \Omega$. (Hint: if there are two solutions, let w be the difference. Show that it solves an equation of the form $w_{t}-\Delta w+\sum b_{i}(x, t) \frac{\partial w}{\partial x_{i}}=0$.)
(7) We briefly discussed in class a version of the maximum principle for a parabolic PDE in all R^{n}. This problem asks you to work out the details.
(a) Suppose $u_{t}-\Delta u \leq 0$ for $x \in R^{n}$ and $t \in(0, T)$, and assume furthermore that u is globally bounded: $|u(x, t)| \leq C$ for all x, t, where C is a constant. Show that u achieves its maximum at the initial time $t=0$. (Hint: consider $u_{\varepsilon, \delta}=u-\varepsilon|x|^{2}-\delta t$.)
(b) Would the same argument work if instead of uniform boundedness we assume the weaker condition $|u| \leq C(1+|x|)$? What about if we replace the hypothesis $u_{t}-\Delta u \leq 0$ by $u_{t}-\sum a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum b_{i}(x, t) \frac{\partial u}{\partial x_{i}} \leq 0 ?$

The remaining problems are concerned with the solution of $u_{t}-u_{x x}=0$ on the interval $(0, \pi)$ with the homogeneous Dirichlet boundary condition $u(0, t)=u(\pi, t)=0$ and initial condition $u_{0}(x)$. The advantage of working in 1D is that we know the eigenvalues and eigenfunctions of the Laplacian explicitly. When specialized to this setting, our solution formula becomes

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n} t} \phi_{n}(x) \tag{1}
\end{equation*}
$$

with $\phi_{n}(x)=\sqrt{2 / \pi} \sin (n x)$ and $a_{n}=\int_{0}^{\pi} u_{0}(x) \phi_{n}(x) d x$.
(8) Suppose the coefficients a_{n} in (1) are uniformly bounded, in other words $\left|a_{n}\right| \leq C$ for all n. (Note that this does not imply convergence of $\sum a_{n} \phi_{n}$.) Show that the function $u(x, t)$ defined by (1) is C^{∞} in x for each $t>0$.
(9) Assume now that $u_{0}(x)$ has two derivatives, with $\left|u_{0}^{\prime \prime}(x)\right| \leq M$ for some constant M. Assume further that u_{0} satisfies the boundary condition, i.e. $u_{0}(0)=u_{0}(\pi)=0$.
(a) Prove an inequality of the form $\left|a_{n}\right| \leq C / n^{2}$.
(b) Show that as t decreases to 0 , the function $u(x, t)$ defined by (1) converges uniformly to $u_{0}(x)$.
(10) Suppose now that $u_{0}(x)$ has four bounded derivatives $\left(\left|u_{0}^{\prime \prime \prime \prime}(x)\right| \leq M\right)$, and $u_{0}^{\prime \prime}(0)=u_{0}^{\prime \prime}(\pi)=0$.
(a) Show that as t decreases to $0, u_{x x}(x, t)$ converges uniformly to $u_{0}^{\prime \prime}(x)$.
(b) If u_{0} is smooth but $u_{0}^{\prime \prime}(0) \neq 0$ or $u_{0}^{\prime \prime}(\pi) \neq 0$, is it possible that the conclusion of part (a) still holds?
(11) The solution formula (1) makes sense even when u_{0} doesn't vanish at the endpoints - for example when $u_{0}(x) \equiv 1$.
(a) Does $u(x, t)$ satisfy the boundary conditions $u(0, t)=u(\pi, t)=0$ for $t>0$?
(b) Discuss the sense in which $u(x, t)$ approaches u_{0} as $t \downarrow 0$ in this case.

