
PDE I – Problem Set 2. Distributed Wed 9/10/2014, due Tues 9/23/2014.

(1) The last part of the Lecture 1 notes states and proves a “maximum principle” for the heat
equation in a bounded domain with a Dirichlet boundary condition. This problem asks you to
do something similar for a Neumann boundary condition. Suppose ut−∆u = 0 on Ω× (0, T )
with ∂u/∂n = 0 at ∂Ω. Show that u achieves its maximum and minimum values at the initial
time t = 0. [Hint: consider uε,δ(x) = u− δφ(x)− εt, with a suitable choices of φ(x), δ, and ε.
You may assume that ∂Ω is as smooth as you like.]

(2) Let’s look at how the maximum principle changes when the PDE has a zeroth order term.
Throughout this problem, we work in a bounded domain Ω ⊂ Rn, with Dirichlet boundary
condition u = 0 at ∂Ω and initial condition u(x, 0) = u0(x).

(a) Suppose the PDE is
ut −∆u+ c(x, t)u = 0

with c(x, t) ≥ 0. Show that

maxu ≤ maxu+
0 and minu ≥ minu−0

where u+
0 and u−0 are respectively the positive and negative parts of u0.

(b) Consider the same PDE, but assume now that c(x, t) ≥ γ where γ is a positive constant.
Show that |u(x, t)| ≤ Ce−γt. [Hint: apply part (a) to ueγt.]

(c) Consider the same PDE, but let c(x, t) be any smooth function (bounded, but possibly
negative). Show that if u0 ≥ 0 then u(x, t) ≥ 0 for all x ∈ Ω and t > 0. [Hint: consider
v(x, t) = eλtu(x, t) for a suitable choice of λ.]

(3) Consider two solutions u1 and u2 of the semilinear parabolic equation

ut −∆u = f(u)

in a bounded domain Ω, with the same Dirichlet boundary data but different initial conditions.
Show that if initially u1(x, 0) ≤ u2(x, 0) for all x ∈ Ω, then this property holds for all time:
u1(x, t) ≤ u2(x, t) for all x ∈ Ω and all t > 0. [Hint: show that w = u2−u1 solves an equation
of the form wt −∆w = c(x, t)w.]

(4) Let u solve the semilinear equation

ut −∆u = f(u)

in a bounded domain Ω, with a Dirichlet boundary condition u = 0 at ∂Ω. Suppose ut ≥ 0
initially (in other words, suppose ∆u0 + f(u0) ≥ 0, where u0 is the initial condition). Show
that ut ≥ 0 for all x ∈ Ω and all t > 0. [Hint: start by differentiating the equation in time,
to get a PDE satisfied by ut.]

(5) We briefly discussed in class how our proof of the maximum principle extends to equations of
the form ut −

∑
aij(x, t) ∂2u

∂xi∂xj
+

∑
bi(x, t) ∂u∂xi

= 0, provided that for every (x, t) the matrix
aij(x, t) is symmetric and nonnegative. A key step is the observation that if u has a local
minimum at an interior point (x0, t0) ∈ Ω × (0, T ) then

∑
aij

∂2u
∂xi∂xj

≥ 0 at (x0, t0). Explain
why this is true.
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(6) Show that if Ω ⊂ Rn is bounded and u0 is given, there can be at most one solution of the
nonlinear boundary value problem ut −∆u + |∇u|2 = 1 in Ω × (0, T ) with u = u0 at t = 0
and u = u0 at ∂Ω. (Hint: if there are two solutions, let w be the difference. Show that it
solves an equation of the form wt −∆w +

∑
bi(x, t) ∂w∂xi

= 0.)

(7) We briefly discussed in class a version of the maximum principle for a parabolic PDE in all
Rn. This problem asks you to work out the details.

(a) Suppose ut − ∆u ≤ 0 for x ∈ Rn and t ∈ (0, T ), and assume furthermore that u is
globally bounded: |u(x, t)| ≤ C for all x, t, where C is a constant. Show that u achieves
its maximum at the initial time t = 0. (Hint: consider uε,δ = u− ε|x|2 − δt.)

(b) Would the same argument work if instead of uniform boundedness we assume the weaker
condition |u| ≤ C(1 + |x|)? What about if we replace the hypothesis ut − ∆u ≤ 0 by
ut −

∑
aij(x, t) ∂2u

∂xi∂xj
+

∑
bi(x, t) ∂u∂xi

≤ 0?

The remaining problems are concerned with the solution of ut−uxx = 0 on the interval (0, π) with
the homogeneous Dirichlet boundary condition u(0, t) = u(π, t) = 0 and initial condition u0(x).
The advantage of working in 1D is that we know the eigenvalues and eigenfunctions of the Laplacian
explicitly. When specialized to this setting, our solution formula becomes

u(x, t) =
∞∑
n=1

ane
−λntφn(x) (1)

with φn(x) =
√

2/π sin(nx) and an =
∫ π
0 u0(x)φn(x) dx.

(8) Suppose the coefficients an in (1) are uniformly bounded, in other words |an| ≤ C for all
n. (Note that this does not imply convergence of

∑
anφn.) Show that the function u(x, t)

defined by (1) is C∞ in x for each t > 0.

(9) Assume now that u0(x) has two derivatives, with |u′′0(x)| ≤M for some constant M . Assume
further that u0 satisfies the boundary condition, i.e. u0(0) = u0(π) = 0.

(a) Prove an inequality of the form |an| ≤ C/n2.

(b) Show that as t decreases to 0, the function u(x, t) defined by (1) converges uniformly to
u0(x).

(10) Suppose now that u0(x) has four bounded derivatives (|u′′′′0 (x)| ≤M), and u′′0(0) = u′′0(π) = 0.

(a) Show that as t decreases to 0, uxx(x, t) converges uniformly to u′′0(x).

(b) If u0 is smooth but u′′0(0) 6= 0 or u′′0(π) 6= 0, is it possible that the conclusion of part (a)
still holds?

(11) The solution formula (1) makes sense even when u0 doesn’t vanish at the endpoints – for
example when u0(x) ≡ 1.

(a) Does u(x, t) satisfy the boundary conditions u(0, t) = u(π, t) = 0 for t > 0?

(b) Discuss the sense in which u(x, t) approaches u0 as t ↓ 0 in this case.
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