PDE I — Problem Set 2. Distributed Wed 9/10/2014, due Tues 9/23/2014.

(1)

The last part of the Lecture 1 notes states and proves a “maximum principle” for the heat
equation in a bounded domain with a Dirichlet boundary condition. This problem asks you to
do something similar for a Neumann boundary condition. Suppose u; —Au =0 on Q x (0,7
with Ou/On = 0 at 9. Show that u achieves its maximum and minimum values at the initial
time ¢ = 0. [Hint: consider u,;(z) = v — d0¢(z) — et, with a suitable choices of ¢(z),d, and e.
You may assume that J is as smooth as you like.]

Let’s look at how the maximum principle changes when the PDE has a zeroth order term.
Throughout this problem, we work in a bounded domain 2 C R", with Dirichlet boundary
condition u = 0 at 9 and initial condition u(z,0) = ug(z).

(a) Suppose the PDE is
ur — Au+c(z, t)hu=0

with ¢(z,t) > 0. Show that

max u < max uar and minwu > minu,

where uar and v, are respectively the positive and negative parts of uy.
(b) Consider the same PDE, but assume now that c(z,t) > « where ~ is a positive constant.
Show that |u(z,t)| < Ce . [Hint: apply part (a) to ue’.]

(c) Consider the same PDE, but let ¢(z,t) be any smooth function (bounded, but possibly
negative). Show that if ug > 0 then u(x,t) > 0 for all x € Q and ¢ > 0. [Hint: consider
v(x,t) = eMu(x,t) for a suitable choice of \.]

Consider two solutions w1 and us of the semilinear parabolic equation
u — Au = f(u)

in a bounded domain 2, with the same Dirichlet boundary data but different initial conditions.
Show that if initially u;(x,0) < ug(z,0) for all z € €2, then this property holds for all time:
ui(x,t) < wug(z,t) for all z € Q and all t > 0. [Hint: show that w = ua —u; solves an equation
of the form wy — Aw = ¢(z, t)w.]

Let u solve the semilinear equation
uy — Au = f(u)

in a bounded domain €2, with a Dirichlet boundary condition u = 0 at 9€). Suppose u; > 0
initially (in other words, suppose Aug + f(ug) > 0, where ug is the initial condition). Show
that uy > 0 for all z € Q and all ¢ > 0. [Hint: start by differentiating the equation in time,
to get a PDE satisfied by w.]

We briefly discussed in class how our proof of the maximum principle extends to equations of
the form w; — > a;5(z, t)%a“xj + > bi(, t)(%fi = 0, provided that for every (z,t) the matrix
a;j(x,t) is symmetric and nonnegative. A key step is the observation that if u has a local
minimum at an interior point (zg,tg) €  x (0,7) then Zaij% > 0 at (zg,to). Explain
why this is true.



(6)

(7)

Show that if @ C R™ is bounded and wug is given, there can be at most one solution of the
nonlinear boundary value problem u; — Au + [Vu|? = 1 in Q x (0,7T) with u = ug at t = 0
and u = wug at 9. (Hint: if there are two solutions, let w be the difference. Show that it
solves an equation of the form w; — Aw + > b;(z, t)g—;‘; =0.)

We briefly discussed in class a version of the maximum principle for a parabolic PDE in all
R™. This problem asks you to work out the details.

(a) Suppose uy — Au < 0 for x € R" and ¢t € (0,7), and assume furthermore that w is
globally bounded: |u(z,t)| < C for all =, t, where C' is a constant. Show that u achieves
its maximum at the initial time ¢t = 0. (Hint: consider u. 5 = u — e|z|? — &t.)

(b) Would the same argument work if instead of uniform boundedness we assume the weaker
condition |u| < C(1 + |z|)? What about if we replace the hypothesis uy — Au < 0 by

2
ut — Zaz‘j(%t)% + b, t) o < 07

The remaining problems are concerned with the solution of u; — uz, = 0 on the interval (0, 7) with
the homogeneous Dirichlet boundary condition u(0,¢) = w(m,¢t) = 0 and initial condition ug(x).
The advantage of working in 1D is that we know the eigenvalues and eigenfunctions of the Laplacian
explicitly. When specialized to this setting, our solution formula becomes

u(zx,t) = Z ane "t p, () (1)
n=1

with ¢n(z) = /2/msin(nz) and a, = [§ uo(z)dn(z) dz.

(8)

(9)

(10)

(11)

Suppose the coefficients a,, in (1) are uniformly bounded, in other words |a,| < C for all
n. (Note that this does not imply convergence of Y a,¢,.) Show that the function u(z,t)
defined by (1) is C* in z for each ¢ > 0.

Assume now that ug(z) has two derivatives, with |uj(x)| < M for some constant M. Assume
further that wug satisfies the boundary condition, i.e. up(0) = up(7) = 0.
(a) Prove an inequality of the form |a,| < C/n?.
(b) Show that as ¢ decreases to 0, the function u(x,t) defined by (1) converges uniformly to
uo(z).

Suppose now that ug(z) has four bounded derivatives (|ug”(x)| < M), and uj(0) = uj(7) = 0.

(a) Show that as t decreases to 0, ugz,(2,t) converges uniformly to ug(z).
(b) If up is smooth but ug(0) # 0 or ug(w) # 0, is it possible that the conclusion of part (a)
still holds?

The solution formula (1) makes sense even when uy doesn’t vanish at the endpoints — for
example when ug(z) = 1.

(a) Does u(z,t) satisfy the boundary conditions u(0,t) = u(w,t) = 0 for t > 07

(b) Discuss the sense in which u(x,t) approaches uy as ¢t | 0 in this case.



