PDE I — Problem Set 1. Distributed Wed 9/3/2014, due Tues 9/16/2014.

(1) Recall from Lecture 1 that for a 1D random walk with spatial step Az, time step At, and

probability 1/2 of going left or right, the evolution of the probability density is a finite-

2
difference discretization of u; = u,, when (gzi =1.

(a) Consider the biased random walk in which a walker at jAz moves to (j + 1)Az with
probability % + aAz and moves to (j — 1)Az with probability % — aAz? Assuming as
before that (ﬁgf = 1, and taking a to be constant, what PDE does the probability

density solve in the continuum limit Az — 07

(b) Now suppose the bias is position-dependent; in other words, using the notation of part
(a), suppose a = «a(jAz) is a smooth but non-constant function of position. Extend
what you found in part (a) to this case. [Warning: note that when «(z) is not constant,

auy # (au)y.]

(2) In the Lecture 1 notes, the discussion of convection and diffusion (“motivation 17) is quite
different from the discussion of probability (“motivation 2”), and there is no discussion about
how population dynamics leads to a reaction-diffusion equation. This two-part question
provides some amplification.

(a) Use an argument similar to that of “motivation 1” to show that if the population density
is u(zx,t), the birth rate is fi(u), the death rate is fa(u), and diffusion is governed by
Fick’s law, then u; = DAu + f(u) with f = f1 — fo.

(b) Reconcile the apparently different treatments of “motivation 1”7 and “motivation 2”7 by
showing that if u] = u(jAz, nAt) satisfies
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Why is this analogous to the conservation law considered in “motivation 1”7

(3) The Lecture 1 notes use an “energy-type” argument to show that if 2 is a bounded domain
in R™, then the evolution problem

u— Au = fin Qfort >0, with u = ¢ at 92 and u =ug at t =0

has at most one solution. They also show that if f and ¢ are independent of time, and
accepting the existence of a steady-state solution @ (solving —Aw = f in 2, with @ = ¢ at

09), we have
d/]u—u|2daz§—0/|u—u|2dz (1)
dt Ja Q

with C' > 0, so that u — @ — 0 exponentially fast (in L?) as t — 0. Let’s examine what

happens when the boundary condition is of Neumann rather than Dirichlet type.



(a) Use an “energy-type” argument to show that if Q2 is a bounded domain in R", then the
evolution problem

ut—Au:fianort>0,With%zﬂ)&ﬂ:@@andu:uoatt:() (2)

has at most one solution. In the special case f =1, ug = 0, ¥» = 0, can you write down
the solution explicitly?

(b) Now suppose f and v are independent of time. Observe that for the steady-state problem
(=Aw = f in Q with % = 1 at 9Q) to have a solution, f and 1 must satisfy the
consistency condition [yo 10 ds + [ fdr = 0. Also that if the steady-state problem has
a solution at all, then it is non-unique since for any constant c, @+ c is another solution.
Assuming the existence of a steady-state solution (something we’ll prove later on; we
are assuming here of course that f and ¢ are consistent), show that when u solves (2)
it satisfies an estimate of the form (1), with @ chosen so that [, uwdz = [ uodz. [Note:
you’ll need to use the mean-value-zero analogue of Poincaré’s inequality. It asserts the
existence of a constant Mg such that [, g> dz < Mg [, |Vg|? dz for any function g such
that [, gdx = 0. You may use this result without proving it. Incidentially: the best
choice of Mg is 1/A, where X is the first nonzero eigenvalue of the Laplacian with a
Neumann boundary condition at 9§2.]

(c) Finally, suppose f and % are independent of time but inconsistent in the sense that
Joq ¥ ds + [ fdx # 0. What is the large-time behavior of the solution of (2)?

(4) In the Lecture 1 notes, “motivation 4” was the modeling of heat transfer. In that setting,
a physically natural assumption is that the heat flux at the boundary is proportional to the
difference between the temperature u(z,t) and some fixed constant U. Known as “Newton’s
law of cooling”, this models loss of heat by radiation, if the far-field temperature is U. So
let’s consider the heat equation u; = Aw in a bounded domain 2 C R™, with initial condition
u = up(x) at ¢ = 0 and boundary condition

9u — —k(u—U) at 0.
where k and U are constants.

(a) Assuming that k > 0, use an “energy-type argument” to show that this evolution problem
has at most one solution.

(b) When k£ < 0 the same conclusion is valid, but you’ll have to work harder to prove it.
Give a proof based on the assertion that for any € > 0 there exists C. > 0 such that

/ v?ds < CE/ vzdaz—f—a/ |Vo|? d. (3)
oN Q Q

(c) Prove the estimate (3) for a domain with a sufficiently smooth boundary. [Hint: one argu-
ment begins by choosing a smooth vector field ¢ on €2 such that ¢ = outward unit normal
at 9. Then [5ov?ds = [4ov%0 -nds = [ div(ov?)dz = -]

(5) Consider the semilinear equation
ur — Au = u’,

in a bounded domain @ C R™, with Dirichlet boundary condition v = 0 at 9 and initial
condition u(x,0) = up(x). Show that if
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then the solution “blows up,” i.e. a classical solution ceases to exist in finite time. [Hint:
start by noting that %E[u(t)] < 0. Then derive a relation linking % Jo u? dz with Elu(t)].]



