
PDE I – Problem Set 1. Distributed Wed 9/3/2014, due Tues 9/16/2014.

(1) Recall from Lecture 1 that for a 1D random walk with spatial step ∆x, time step ∆t, and
probability 1/2 of going left or right, the evolution of the probability density is a finite-
difference discretization of ut = uxx when (∆x)2

2∆t = 1.

(a) Consider the biased random walk in which a walker at j∆x moves to (j + 1)∆x with
probability 1

2 + α∆x and moves to (j − 1)∆x with probability 1
2 − α∆x? Assuming as

before that (∆x)2

2∆t = 1, and taking α to be constant, what PDE does the probability
density solve in the continuum limit ∆x→ 0?

(b) Now suppose the bias is position-dependent; in other words, using the notation of part
(a), suppose α = α(j∆x) is a smooth but non-constant function of position. Extend
what you found in part (a) to this case. [Warning: note that when α(x) is not constant,
αux 6= (αu)x.]

(2) In the Lecture 1 notes, the discussion of convection and diffusion (“motivation 1”) is quite
different from the discussion of probability (“motivation 2”), and there is no discussion about
how population dynamics leads to a reaction-diffusion equation. This two-part question
provides some amplification.

(a) Use an argument similar to that of “motivation 1” to show that if the population density
is u(x, t), the birth rate is f1(u), the death rate is f2(u), and diffusion is governed by
Fick’s law, then ut = D∆u+ f(u) with f = f1 − f2.

(b) Reconcile the apparently different treatments of “motivation 1” and “motivation 2” by
showing that if un

j = u(j∆x, n∆t) satisfies

un+1
j − un

j

∆t
=

(∆x)2

2∆t
un

j+1 + un
j−1 − 2un

j

(∆x)2

then for any j < k and any n,

[
u(j∆x, t) + u((j + 1)∆x, t) + · · ·+ u(k∆x, t)

]t=(n+1)∆t

t=n∆t
=
un

k+1 − un
k

2
−
un

j − un
j−1

2
.

Why is this analogous to the conservation law considered in “motivation 1”?

(3) The Lecture 1 notes use an “energy-type” argument to show that if Ω is a bounded domain
in Rn, then the evolution problem

ut −∆u = f in Ω for t > 0, with u = φ at ∂Ω and u = u0 at t = 0

has at most one solution. They also show that if f and φ are independent of time, and
accepting the existence of a steady-state solution u (solving −∆u = f in Ω, with u = φ at
∂Ω), we have

d

dt

∫
Ω
|u− u|2 dx ≤ −C

∫
Ω
|u− u|2 dx (1)

with C > 0, so that u − u → 0 exponentially fast (in L2) as t → 0. Let’s examine what
happens when the boundary condition is of Neumann rather than Dirichlet type.
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(a) Use an “energy-type” argument to show that if Ω is a bounded domain in Rn, then the
evolution problem

ut −∆u = f in Ω for t > 0, with ∂u
∂n = ψ at ∂Ω and u = u0 at t = 0 (2)

has at most one solution. In the special case f = 1, u0 = 0, ψ = 0, can you write down
the solution explicitly?

(b) Now suppose f and ψ are independent of time. Observe that for the steady-state problem
(−∆u = f in Ω with ∂u

∂n = ψ at ∂Ω) to have a solution, f and ψ must satisfy the
consistency condition

∫
∂Ω ψ ds +

∫
Ω f dx = 0. Also that if the steady-state problem has

a solution at all, then it is non-unique since for any constant c, u+ c is another solution.
Assuming the existence of a steady-state solution (something we’ll prove later on; we
are assuming here of course that f and ψ are consistent), show that when u solves (2)
it satisfies an estimate of the form (1), with u chosen so that

∫
Ω u dx =

∫
Ω u0 dx. [Note:

you’ll need to use the mean-value-zero analogue of Poincaré’s inequality. It asserts the
existence of a constant MΩ such that

∫
Ω g

2 dx ≤MΩ
∫

Ω |∇g|2 dx for any function g such
that

∫
Ω g dx = 0. You may use this result without proving it. Incidentially: the best

choice of MΩ is 1/λ, where λ is the first nonzero eigenvalue of the Laplacian with a
Neumann boundary condition at ∂Ω.]

(c) Finally, suppose f and ψ are independent of time but inconsistent in the sense that∫
∂Ω ψ ds+

∫
Ω f dx 6= 0. What is the large-time behavior of the solution of (2)?

(4) In the Lecture 1 notes, “motivation 4” was the modeling of heat transfer. In that setting,
a physically natural assumption is that the heat flux at the boundary is proportional to the
difference between the temperature u(x, t) and some fixed constant U . Known as “Newton’s
law of cooling”, this models loss of heat by radiation, if the far-field temperature is U . So
let’s consider the heat equation ut = ∆u in a bounded domain Ω ⊂ Rn, with initial condition
u = u0(x) at t = 0 and boundary condition

∂u
∂n = −k(u− U) at ∂Ω.

where k and U are constants.

(a) Assuming that k > 0, use an “energy-type argument” to show that this evolution problem
has at most one solution.

(b) When k < 0 the same conclusion is valid, but you’ll have to work harder to prove it.
Give a proof based on the assertion that for any ε > 0 there exists Cε > 0 such that∫

∂Ω
v2 ds ≤ Cε

∫
Ω
v2 dx+ ε

∫
Ω
|∇v|2 dx. (3)

(c) Prove the estimate (3) for a domain with a sufficiently smooth boundary. [Hint: one argu-
ment begins by choosing a smooth vector field σ on Ω such that σ = outward unit normal
at ∂Ω. Then

∫
∂Ω v

2 ds =
∫
∂Ω v

2σ · nds =
∫

Ω div(σv2) dx = · · ·.]

(5) Consider the semilinear equation
ut −∆u = u5,

in a bounded domain Ω ⊂ Rn, with Dirichlet boundary condition u = 0 at ∂Ω and initial
condition u(x, 0) = u0(x). Show that if

E[u0] =
∫

Ω

(
1
2
|∇u0|2 −

1
6
u6

0

)
dx < 0
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then the solution “blows up,” i.e. a classical solution ceases to exist in finite time. [Hint:
start by noting that d

dtE[u(t)] ≤ 0. Then derive a relation linking d
dt

∫
Ω u

2 dx with E[u(t)].]
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