PDE I - Problem Set 1. Distributed Wed 9/3/2014, due Tues 9/16/2014.
(1) Recall from Lecture 1 that for a 1 D random walk with spatial step Δx, time step Δt, and probability $1 / 2$ of going left or right, the evolution of the probability density is a finitedifference discretization of $u_{t}=u_{x x}$ when $\frac{(\Delta x)^{2}}{2 \Delta t}=1$.
(a) Consider the biased random walk in which a walker at $j \Delta x$ moves to $(j+1) \Delta x$ with probability $\frac{1}{2}+\alpha \Delta x$ and moves to $(j-1) \Delta x$ with probability $\frac{1}{2}-\alpha \Delta x$? Assuming as before that $\frac{(\Delta x)^{2}}{2 \Delta t}=1$, and taking α to be constant, what PDE does the probability density solve in the continuum limit $\Delta x \rightarrow 0$?
(b) Now suppose the bias is position-dependent; in other words, using the notation of part (a), suppose $\alpha=\alpha(j \Delta x)$ is a smooth but non-constant function of position. Extend what you found in part (a) to this case. [Warning: note that when $\alpha(x)$ is not constant, $\alpha u_{x} \neq(\alpha u)_{x}$.]
(2) In the Lecture 1 notes, the discussion of convection and diffusion ("motivation 1 ") is quite different from the discussion of probability ("motivation 2"), and there is no discussion about how population dynamics leads to a reaction-diffusion equation. This two-part question provides some amplification.
(a) Use an argument similar to that of "motivation 1 " to show that if the population density is $u(x, t)$, the birth rate is $f_{1}(u)$, the death rate is $f_{2}(u)$, and diffusion is governed by Fick's law, then $u_{t}=D \Delta u+f(u)$ with $f=f_{1}-f_{2}$.
(b) Reconcile the apparently different treatments of "motivation 1" and "motivation 2" by showing that if $u_{j}^{n}=u(j \Delta x, n \Delta t)$ satisfies

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=\frac{(\Delta x)^{2}}{2 \Delta t} \frac{u_{j+1}^{n}+u_{j-1}^{n}-2 u_{j}^{n}}{(\Delta x)^{2}}
$$

then for any $j<k$ and any n,

$$
[u(j \Delta x, t)+u((j+1) \Delta x, t)+\cdots+u(k \Delta x, t)]_{t=n \Delta t}^{t=(n+1) \Delta t}=\frac{u_{k+1}^{n}-u_{k}^{n}}{2}-\frac{u_{j}^{n}-u_{j-1}^{n}}{2}
$$

Why is this analogous to the conservation law considered in "motivation 1 "?
(3) The Lecture 1 notes use an "energy-type" argument to show that if Ω is a bounded domain in R^{n}, then the evolution problem

$$
u_{t}-\Delta u=f \text { in } \Omega \text { for } t>0, \text { with } u=\phi \text { at } \partial \Omega \text { and } u=u_{0} \text { at } t=0
$$

has at most one solution. They also show that if f and ϕ are independent of time, and accepting the existence of a steady-state solution \bar{u} (solving $-\Delta \bar{u}=f$ in Ω, with $\bar{u}=\phi$ at $\partial \Omega)$, we have

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega}|u-\bar{u}|^{2} d x \leq-C \int_{\Omega}|u-\bar{u}|^{2} d x \tag{1}
\end{equation*}
$$

with $C>0$, so that $u-\bar{u} \rightarrow 0$ exponentially fast (in L^{2}) as $t \rightarrow 0$. Let's examine what happens when the boundary condition is of Neumann rather than Dirichlet type.
(a) Use an "energy-type" argument to show that if Ω is a bounded domain in R^{n}, then the evolution problem

$$
\begin{equation*}
u_{t}-\Delta u=f \text { in } \Omega \text { for } t>0, \text { with } \frac{\partial u}{\partial n}=\psi \text { at } \partial \Omega \text { and } u=u_{0} \text { at } t=0 \tag{2}
\end{equation*}
$$

has at most one solution. In the special case $f=1, u_{0}=0, \psi=0$, can you write down the solution explicitly?
(b) Now suppose f and ψ are independent of time. Observe that for the steady-state problem $\left(-\Delta \bar{u}=f\right.$ in Ω with $\frac{\partial \bar{u}}{\partial n}=\psi$ at $\left.\partial \Omega\right)$ to have a solution, f and ψ must satisfy the consistency condition $\int_{\partial \Omega} \psi d s+\int_{\Omega} f d x=0$. Also that if the steady-state problem has a solution at all, then it is non-unique since for any constant $c, \bar{u}+c$ is another solution. Assuming the existence of a steady-state solution (something we'll prove later on; we are assuming here of course that f and ψ are consistent), show that when u solves (2) it satisfies an estimate of the form (1), with \bar{u} chosen so that $\int_{\Omega} \bar{u} d x=\int_{\Omega} u_{0} d x$. [Note: you'll need to use the mean-value-zero analogue of Poincaré's inequality. It asserts the existence of a constant M_{Ω} such that $\int_{\Omega} g^{2} d x \leq M_{\Omega} \int_{\Omega}|\nabla g|^{2} d x$ for any function g such that $\int_{\Omega} g d x=0$. You may use this result without proving it. Incidentially: the best choice of M_{Ω} is $1 / \lambda$, where λ is the first nonzero eigenvalue of the Laplacian with a Neumann boundary condition at $\partial \Omega$.]
(c) Finally, suppose f and ψ are independent of time but inconsistent in the sense that $\int_{\partial \Omega} \psi d s+\int_{\Omega} f d x \neq 0$. What is the large-time behavior of the solution of (2)?
(4) In the Lecture 1 notes, "motivation 4" was the modeling of heat transfer. In that setting, a physically natural assumption is that the heat flux at the boundary is proportional to the difference between the temperature $u(x, t)$ and some fixed constant U. Known as "Newton's law of cooling", this models loss of heat by radiation, if the far-field temperature is U. So let's consider the heat equation $u_{t}=\Delta u$ in a bounded domain $\Omega \subset R^{n}$, with initial condition $u=u_{0}(x)$ at $t=0$ and boundary condition

$$
\frac{\partial u}{\partial n}=-k(u-U) \text { at } \partial \Omega .
$$

where k and U are constants.
(a) Assuming that $k>0$, use an "energy-type argument" to show that this evolution problem has at most one solution.
(b) When $k<0$ the same conclusion is valid, but you'll have to work harder to prove it. Give a proof based on the assertion that for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\int_{\partial \Omega} v^{2} d s \leq C_{\varepsilon} \int_{\Omega} v^{2} d x+\varepsilon \int_{\Omega}|\nabla v|^{2} d x . \tag{3}
\end{equation*}
$$

(c) Prove the estimate (3) for a domain with a sufficiently smooth boundary. [Hint: one argument begins by choosing a smooth vector field σ on Ω such that $\sigma=$ outward unit normal at $\partial \Omega$. Then $\int_{\partial \Omega} v^{2} d s=\int_{\partial \Omega} v^{2} \sigma \cdot n d s=\int_{\Omega} \operatorname{div}\left(\sigma v^{2}\right) d x=\cdots$.]
(5) Consider the semilinear equation

$$
u_{t}-\Delta u=u^{5},
$$

in a bounded domain $\Omega \subset R^{n}$, with Dirichlet boundary condition $u=0$ at $\partial \Omega$ and initial condition $u(x, 0)=u_{0}(x)$. Show that if

$$
E\left[u_{0}\right]=\int_{\Omega}\left(\frac{1}{2}\left|\nabla u_{0}\right|^{2}-\frac{1}{6} u_{0}^{6}\right) d x<0
$$

then the solution "blows up," i.e. a classical solution ceases to exist in finite time. [Hint: start by noting that $\frac{d}{d t} E[u(t)] \leq 0$. Then derive a relation linking $\frac{d}{d t} \int_{\Omega} u^{2} d x$ with $E[u(t)]$.]

