- This is a closed-book exam, however you may use one page of notes prepared in advance (8.5×11, both sides, any font).
- You'll be given plain white paper for scratch, and a bluebook for your solutions. I will grade only the bluebook, not the scratch paper.
- There are 8 questions, worth 15 points each. Some may be harder or more timeconsuming than others. Do the ones you find easiest first.
- Explain all answers (at least briefly). Partial credit will be given for correct ideas.
(1) Consider the PDE

$$
u_{t}-\Delta u+u-1=0
$$

in a bounded domain Ω, with the homogeneous Dirichlet boundary condition $u=0$ at $\partial \Omega$. For what functional $E[u]$ is this the L^{2} steepest descent?
(2) Let Ω be a bounded domain in R^{n}, and let $f: \Omega \rightarrow R$ be a function defined on Ω. Consider the solution of

$$
u_{t}-\Delta u=f \quad \text { for } t>0 \text { and } x \in \Omega
$$

with the homogeneous Dirichlet boundary condition $u=0$ at $\partial \Omega$, and initial condition $u=u_{0}$ at $t=0$. Show that

$$
\int_{\Omega}\left|u(x, t)-u_{*}(x)\right|^{2} d x \leq C e^{-\lambda t}
$$

where C and λ are suitable constants and u_{*} solves $-\Delta u_{*}=f$ in Ω with $u_{*}=0$ at $\partial \Omega$. (You should assume that such a function u_{*} exists.)
(3) Let Ω be a bounded domain in R^{n}. Consider the solution of

$$
u_{t}-\Delta u=5 u
$$

in Ω, with the homogeneous Neumann boundary condition $\partial u / \partial n=0$ at $\partial \Omega$. Characterize the initial data $u_{0}=u(x, 0)$ for which the solution $u(x, t)$ stays bounded as $t \rightarrow \infty$.
(4) Suppose u is a bounded solution of the heat equation

$$
u_{t}-\Delta u=0
$$

in all R^{n}, with L^{1} initial data $u_{0}(x)=u(x, 0)$. State and prove an optimal decay estimate of the form

$$
\sup _{x}|u(x, t)| \leq C t^{-\alpha} \int\left|u_{0}(x)\right| d x .
$$

(5) Suppose u is C^{2} and harmonic in a neighborhood of $x_{0} \in R^{n}$. Show that u is in fact C^{∞} near x_{0}. (Hint: one method is to consider the Laplacian of $u \phi$, where ϕ is supported in the region where u is harmonic and $\phi \equiv 1$ near x_{0}.)
(6) Use the Mean Value Principle to show that if u is harmonic in the ball B_{r} then

$$
|\nabla u(0)| \leq \frac{C}{r} \max _{x \in \partial B_{r}}|u(x)|
$$

(7) Let Ω be a bounded domain in R^{n}, and consider solutions of $\Delta u=f$ in Ω with $u=0$ at $\partial \Omega$. Using a maximum-principle-based argument, show that

$$
\max _{\Omega}|u| \leq C \max _{\Omega}|f|
$$

where C is a constant depending only on Ω.
(8) Let B be the unit ball in R^{2}, and consider the boundary value problem

$$
\Delta u=f \text { in } B \text {, with } u=g \text { at } \partial B .
$$

Show that if f and g are even functions of x_{2} (in the sense that $f\left(x_{1}, x_{2}\right)=f\left(x_{1},-x_{2}\right)$ for $x \in B$ and $g\left(x_{1}, x_{2}\right)=g\left(x_{1},-x_{2}\right)$ for $\left.x \in \partial B\right)$, then u is also an even function of x_{2}.

