PDE I - Problem Set 8. Distributed 11/07/2013, due 11/19/2013.
Problem 4 corrected 11/15 - the original version had "incoming" and "outgoing" reversed.
Problem 7 corrected $11 / 18$ - the original version lacked a factor of $1 / 2$ in the definition of $e(t)$.
(1) Consider a solution of the 1 D wave equation

$$
u_{t t}-u_{x x}=0
$$

with compactly supported initial data

$$
u=f \text { and } u_{t}=g \text { at } t=0
$$

We know that the sum of the "kinetic energy" $k(t)=\int u_{t}^{2} d x$ and the "potential energy" $p(t)=\int u_{x}^{2} d x$ is independent of t. (Note that both are finite, since u is compactly supported in space at every time.) Show that when t is sufficiently large these two "energies" are equal, in other words $k(t)=p(t)$.
(2) Let α be constant, $\alpha \neq-1$. Consider the wave equation on $x>0, t>0$ with the following data:

$$
\begin{array}{rlrl}
u_{t t}-u_{x x} & =0 & & \text { for } x>0, t>0 \\
u_{t} & =\alpha u_{x} & \text { at } x=0 \\
u & =f(x) & \text { at } t=0 \\
u_{t} & =g(x) & & \text { at } t=0
\end{array}
$$

Assume that f and g vanish near $x=0$. Give a formula for u. (Hint: start with $u=$ $F(x+t)+G(x-t)$; find F and G.) Why must $\alpha=-1$ be excluded? Can you do something even if f and g don't vanish near $x=0$?
(3) Consider solutions of $u_{t t}=\Delta u$ in $R^{3} \times R_{+}$which are radially symmetric in x. Show that the general solution is

$$
u=\frac{F(r+t)+G(r-t)}{r}
$$

where $r=|x|$. Show that for initial data of the special form

$$
u=0, \quad u_{t}=g(r) \quad \text { at } t=0
$$

(with g an even function of r) the solution is

$$
\begin{equation*}
u=\frac{1}{2 r} \int_{r-t}^{r+t} \rho g(\rho) d \rho \tag{1}
\end{equation*}
$$

Consider the case when

$$
g(r)= \begin{cases}1 & 0<r<a \\ 0 & r>a\end{cases}
$$

Show there is a discontinuity at the origin at time $t=a$. (Assume u is represented by (1), though it is not C^{2} so the derivation of this formula is not strictly speaking applicable.)
(4) Let's look further at the radial solutions of the wave equation discussed in Problem 3.
(a) Let $G(r)=1$ for $r \leq 1$ and 0 for $r>1$. Where is $u(r, t)=G(r-t) / r$ nonzero? (This solution can be viewed as an "outgoing wave.")
(b) Discuss the character of $G(r-t) / r$ for a general function G.
(c) Let $F(r)=1$ for $r>100$ and $F=0$ for $r<100$. Where is $u(r, t)=F(r+t) / r$ nonzero? (This solution can be viewed as an "incoming wave.")
(d) Discuss the character of $F(r+t) / r$ for a general function F .
(5) The pde $u_{t t}-u_{x x}+m^{2} u=0$ with $m \neq 0$ is known as the (one-dimensional) Klein-Gordon equation.
(a) For what choice of potential energy do we have that the kinetic + potential energy is constant in time?
(b) Show that, as for the wave equation, if at time 0 we have $u=u_{t}=0$ in the interval $(-a, a)$, then u vanishes in the triangle $\{|x| \leq a-t\}$.
(6) Let $u_{t t}=\Delta u$ in $R^{n} \times R_{+}$. Show that

$$
\sigma=\left[-2 u_{t} \nabla u,\left(u_{t}^{2}+|\nabla u|^{2}\right)\right]
$$

is divergence-free (as a vector field in R^{n+1}). Use this to show that $u(x, t)$ depends only on the initial data in the ball $\{y:|y-x| \leq t\}$.
(7) Let Ω be a bounded domain in R^{n}, and suppose u solves

$$
u_{t t}-\Delta u=f(x) \text { for } x \in \Omega, t>0
$$

(a) Suppose the boundary condition is $u=0$ at $\partial \Omega$. Estimate $e(t)=\int_{\Omega} \frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2} d x$ in terms of its value at time 0 , and the L^{2} norm of f. Your answer should have the character of a well-posedness result; in other words, it should show that if $e(0)$ and $\|f\|_{L^{2}}$ are small enough then $e(t)$ is small. (Hint: start by considering $\frac{d}{d t} e(t)$.)
(b) Same question, when the boundary condition is $d u / d n=0$ at $\partial \Omega$.
(c) Can you do something similar when the boundary condition is $d u / d n+a u=0$ with $a>0$? (Hint: You'll want to change the definition of $e(t)$ in this case. The good choice of $e(t)$ should be independent of time when $f=0$.)

