PDE I - Problem Set 7. Distributed 10/30/2013, due 11/12/2013.
(1) If u is harmonic on $B_{r}(0) \subset R^{n}$ with $u=g$ at $|x|=r$, it can be represented using Poisson's formula:

$$
u(x)=\frac{r^{2}-|x|^{2}}{n \alpha(n) r} \int_{\partial B_{r}(0)} \frac{g(y)}{|x-y|^{n}}
$$

(As we have discussed in class, this follows from the explicit Green's function for a ball; for the purposes of this problem you should take it as known.) Use this to show that if u is harmonic and nonnegative on $B_{r}(0)$ then

$$
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) \leq u(x) \leq r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0)
$$

(This is an explicit version of Harnack's inequality.)
(2) Recall that a periodic function on R^{n} (with period 1 in each variable) has a Fourier series:

$$
u(x)=\sum_{k \in Z^{n}} \hat{u}(k) e^{2 \pi i k \cdot x}
$$

Let's use this to study the inhomogeneous Laplace equation

$$
\Delta u=f
$$

with periodic boundary conditions (we assume f is periodic, and we seek a solution with u periodic):
(a) What consistency condition should f satisfy? Show by an energy argument that u is unique up to an additive constant.
(b) Express the Fourier series of u in terms of that of f.
(c) Show that for each i, j,

$$
\int_{Q}\left|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right|^{2} \leq C \int_{Q}|f|^{2}
$$

where $Q=[0,1]^{n}$ is the period cell. Can you identify the optimal value of C ?
(3) The Lecture 7 notes give a variational principle for solving the Neumann boundary value problem $\Delta u=f$ in Ω with $\partial u / \partial n=g$ at $\partial \Omega$ (provided of course that f and g are consistent). This problem shows that one cannot solve that PDE problem by instead imposing the boundary condition as a constraint. For simplicity let's work in 1 D , taking $\Omega=(0,1)$; and let's take $f=0$. Here's the question: show that for an $a, b \in R$, the (misguided) variational problem

$$
\min _{u_{x}(0)=a, u_{x}(1)=b} \int_{0}^{1} u_{x}^{2}
$$

has minimum value 0 . [Food for thought: why is it OK to fix $\left.u\right|_{\partial \Omega}$, as we do for a Dirichlet boundary condition, though this problem shows that it is not OK to fix $\partial u /\left.\partial n\right|_{\partial \Omega}$?]
(4) Use the convexity of

$$
E[u]=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}+\frac{1}{4} u^{4} d x
$$

to prove that there can be at most one solution of $-\Delta u+u^{3}=0$ in Ω with a given Dirichlet boundary condition $u=g$ at $\partial \Omega$.
(5) Let Ω be a bounded domain in R^{n}, and consider the operator

$$
L u=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}}
$$

where $a_{i j}(x)$ and $b_{i}(x)$ are continuous and $a_{i j}=a_{j i}$. Assume moreover that there is a positive lower bound on the eigenvalues of $a_{i j}$, i.e. that $\sum_{i, j} a_{i, j}(x) \xi_{i} \xi_{j} \geq c_{0}|\xi|^{2}$ for all $x \in \Omega$ and all $\xi \in R^{n}$, for some $c_{0}>0$. Show that
(a) if u is C^{2} and $L u \geq 0$ in Ω then $\max _{x \in \Omega} u(x)=\max _{x \in \partial \Omega} u(x)$;
(b) if If u is C^{2} and $L u \leq 0$ in Ω then $\min _{x \in \Omega} u(x)=\min _{x \in \partial \Omega} u(x)$.
(Hint: consider, for sufficiently large λ, the function $u_{\epsilon}=u(x) \pm \epsilon e^{\lambda x_{1}}$.)
(6) Use problem 5 to show that if Ω is a bounded domain in R^{n} and $F: R^{n} \rightarrow R$ is smooth then there can be at most one solution of $\Delta u=F(\nabla u)$ with a given Dirichlet boundary condition $u=g$ at $\partial \Omega$. (Hint: By Taylor's theorem with remainder, $F(\xi)-F(\eta)=$ $\left.\left(\int_{0}^{1} \nabla F(\eta+t(\xi-\eta)) d t\right) \cdot(\xi-\eta).\right)$
(7) A question about the finite element method:
(a) Explain why if u and v are piecewise linear on $[0,1]$, determined by their nodal values u_{j}, v_{j} at $x_{j}=j / N$, then integration gives

$$
\int_{0}^{1} u v d x=\frac{1}{N}\langle K \vec{u}, \vec{v}\rangle
$$

where K is a symmetric matrix, $\vec{u}=\left(u_{0}, u_{1}, \ldots, u_{N}\right)$ and $\vec{v}=\left(v_{0}, v_{1}, \ldots, v_{N}\right)$. What is K ?
(b) With the same notation as in (a), express $\int_{0}^{1} u_{x}^{2} d x$ in terms of the nodal values of u.

