
PDE I – Problem Set 7. Distributed 10/30/2013, due 11/12/2013.

(1) If u is harmonic on Br(0) ⊂ Rn with u = g at |x| = r, it can be represented using Poisson’s
formula:

u(x) =
r2 − |x|2

nα(n)r

∫
∂Br(0)

g(y)
|x− y|n

.

(As we have discussed in class, this follows from the explicit Green’s function for a ball; for
the purposes of this problem you should take it as known.) Use this to show that if u is
harmonic and nonnegative on Br(0) then

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0).

(This is an explicit version of Harnack’s inequality.)

(2) Recall that a periodic function on Rn (with period 1 in each variable) has a Fourier series:

u(x) =
∑
k∈Zn

û(k)e2πik·x.

Let’s use this to study the inhomogeneous Laplace equation

∆u = f

with periodic boundary conditions (we assume f is periodic, and we seek a solution with u
periodic):

(a) What consistency condition should f satisfy? Show by an energy argument that u is
unique up to an additive constant.

(b) Express the Fourier series of u in terms of that of f .

(c) Show that for each i, j, ∫
Q

∣∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣∣
2

≤ C
∫
Q
|f |2

where Q = [0, 1]n is the period cell. Can you identify the optimal value of C?

(3) The Lecture 7 notes give a variational principle for solving the Neumann boundary value
problem ∆u = f in Ω with ∂u/∂n = g at ∂Ω (provided of course that f and g are consis-
tent). This problem shows that one cannot solve that PDE problem by instead imposing the
boundary condition as a constraint. For simplicity let’s work in 1D, taking Ω = (0, 1); and
let’s take f = 0. Here’s the question: show that for an a, b ∈ R, the (misguided) variational
problem

min
ux(0)=a, ux(1)=b

∫ 1

0
u2
x

has minimum value 0. [Food for thought: why is it OK to fix u|∂Ω, as we do for a Dirichlet
boundary condition, though this problem shows that it is not OK to fix ∂u/∂n|∂Ω?]
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(4) Use the convexity of

E[u] =
∫

Ω

1
2
|∇u|2 +

1
4
u4 dx

to prove that there can be at most one solution of −∆u+ u3 = 0 in Ω with a given Dirichlet
boundary condition u = g at ∂Ω.

(5) Let Ω be a bounded domain in Rn, and consider the operator

Lu =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi

where aij(x) and bi(x) are continuous and aij = aji. Assume moreover that there is a positive
lower bound on the eigenvalues of aij , i.e. that

∑
i,j ai,j(x)ξiξj ≥ c0|ξ|2 for all x ∈ Ω and all

ξ ∈ Rn, for some c0 > 0. Show that

(a) if u is C2 and Lu ≥ 0 in Ω then maxx∈Ω u(x) = maxx∈∂Ω u(x);

(b) if If u is C2 and Lu ≤ 0 in Ω then minx∈Ω u(x) = minx∈∂Ω u(x).

(Hint: consider, for sufficiently large λ, the function uε = u(x)± εeλx1 .)

(6) Use problem 5 to show that if Ω is a bounded domain in Rn and F : Rn → R is smooth
then there can be at most one solution of ∆u = F (∇u) with a given Dirichlet bound-
ary condition u = g at ∂Ω. (Hint: By Taylor’s theorem with remainder, F (ξ) − F (η) =(∫ 1

0 ∇F (η + t(ξ − η)) dt
)
· (ξ − η).)

(7) A question about the finite element method:

(a) Explain why if u and v are piecewise linear on [0, 1], determined by their nodal values
uj , vj at xj = j/N , then integration gives∫ 1

0
uv dx =

1
N
〈K~u,~v〉

where K is a symmetric matrix, ~u = (u0, u1, . . . , uN ) and ~v = (v0, v1, . . . , vN ). What is
K?

(b) With the same notation as in (a), express
∫ 1

0 u
2
x dx in terms of the nodal values of u.
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