PDE I - Problem Set 6. Distributed Thurs 10/10/2013, due Fri 10/18/2013 by 5pm (in my WWH lobby mailbox or under my office door). No extensions.
(1) In proving the "weak form" of the maximum principle, we actually showed a little more, namely that

- if $\Delta u \geq 0$ in Ω then u achieves its max at $\partial \Omega$, and
- if $\Delta u \leq 0$ in Ω then u achieves its min at $\partial \Omega$,
where Ω is a bounded domain in R^{n}. Using these, find an explicit constant C such that

$$
\max _{B}|u| \leq C \max _{B}|f|
$$

when $B=B_{1}(0)$ is the unit ball in R^{n}, and u solves the boundary value problem

$$
\begin{equation*}
\Delta u=f \text { in } B \text { with } u=0 \text { at } \partial B . \tag{1}
\end{equation*}
$$

(2) Problem 1 concerns how the maximum principle can be used to prove well-posedness of the boundary value problem described by eqn (1). This problem concerns how the energy method gives an alternative approach to well-posedness.
(a) Poincare's inequality says that if $u=0$ at $\partial \Omega$ then $\int_{\Omega} u^{2} \leq C \int_{\Omega}|\nabla u|^{2}$ (here Ω is a bounded domain in R^{n}, and the constant C depends on Ω). Prove it. [Hint: we can extend u by 0 outside Ω, so it's defined in a cube in R^{n}. Therefore it suffices to prove the inequality when Ω is a cube.]
(b) Using Poincare's inequality, show that if u solves eqn (1) then $\int_{\Omega}|\nabla u|^{2} \leq \int_{\Omega} f^{2}$. [Hint: multiply the equation by u and integrate.]
(3) We proved the maximum principle for harmonic functions on a bounded domain. When the domain is unbounded an additional hypothesis is needed; for example, in the halfspace $x_{n}>0$ the linear function $u(x)=x_{n}$ is harmonic but doesn't achieve its maximum on the boundary. Let's focus for simplicity on the 2D halfspace $\Omega=\left\{\left(x_{1}, x_{2}\right): x_{2}>0\right\}$. Show that if u is C^{2} and harmonic on this Ω and continuous up to the boundary, and if in addition u is uniformly bounded from above, then $\max _{\Omega} u=\max _{\partial \Omega} u$. [Hint: for $\epsilon>0$, consider the harmonic function $u(x)-\epsilon \log \left(x_{1}^{2}+\left(x_{2}+1\right)^{2}\right)^{1 / 2}$. Apply the maximum principle to the region where $x_{1}^{2}+\left(x_{2}+1\right)^{2}<a^{2}$ and $x_{2}>0$, with a sufficiently large. Then let $\epsilon \rightarrow 0$.]
(4) Consider the quadrant $\{x>0, y>0\}$ in the $x-y$ plane. What is its Green's function?
(5) Let u solve $\Delta u=0$ in the n-dimensional halfspace $\left\{x_{n}>0\right\}$, with Dirichlet data $u=g$ at $\left\{x_{n}=0\right\}$. Suppose g is bounded and $g(z)=|z|$ when z is near 0 . Show that ∇u is unbounded near $x=0$. (Hint: estimate $\left[u\left(\lambda e_{n}\right)-u(0)\right] / \lambda$, using Poisson's formula for a halfspace; here e_{n} is the unit vector in the x_{n} direction.)

