PDE I - Problem Set 5. Distributed Wed 10/2/2013, due Tues 10/15/2013. No extensions beyond Friday 10/18/2013 at 5pm. Typos corrected in problem 5 (an f was missing before) and problem 6 (a sign was wrong before).
(1) We discussed how variational principles lead to PDE's; here is another example. Let Ω be a bounded domain in R^{n}, and consider the variational problem of minimizing the "Rayleigh quotient"

$$
\min _{u=0 \mathrm{at} \partial \Omega} \frac{\int_{\Omega}|\nabla u|^{2}}{\int_{\Omega} u^{2}} .
$$

Assume that a minimizer exists and is C^{2}. Show that it must be a Dirichlet eigenfunction of the Laplacian, i.e. a nonzero solution of

$$
-\Delta u=\lambda u \quad \text { in } \Omega, \text { with } u=0 \text { at } \partial \Omega .
$$

Conclude that the minimum value of the Rayleigh quotient is equal to the smallest Dirichlet eigenvalue.
(2) Show that if u is a C^{2} harmonic function defined on a region in R^{n}, then

$$
v(x)=|x|^{2-n} u\left(\frac{x}{|x|^{2}}\right)
$$

is harmonic on the region where it is defined. (Hint: while this can be done by writing the Laplacian in polar coordinates, an alternative - in my view easier - argument uses the fact that u is harmonic on Ω if and only if $\int_{\Omega}\langle\nabla u, \nabla \phi\rangle=0$ for all ϕ such that $\phi=0$ at $\partial \Omega$.)
(3) (Han, Section 4.5). Show that if u is harmonic on all R^{n} and $\int_{R^{n}}|u|^{p} d x<\infty$ for some $p>1$, then u is identically zero.
(4) Suppose that u is harmonic on all R^{n} and $|u(x)| \leq C|x|^{k}$, where C is a constant and k is a positive integer. Show that u is a polynomial of degree at most k. (Hint: in the course of proving Liouville's theorem in the Lecture 5 notes, I showed that if u is harmonic in $B\left(x_{0}, r\right)$, then $\left|\nabla u\left(x_{0}\right)\right| \leq C r^{-1} \max _{y \in B\left(x_{0}, r\right)}|u(y)|$. Use this estimate.)
(5) (From Evans, Section 2.5.) Adjust the proof of the mean value theorem to show that for $n \geq 3$, if $-\Delta u=f$ on $B(0, r)$ and $u=g$ at the boundary, then

$$
u(0)=\frac{1}{|\partial B(0, r)|} \int_{\partial B(0, r)} g d \text { area }+\frac{1}{n(n-2) \alpha_{n}} \int_{B(0, r)}\left(\frac{1}{|x|^{n-2}}-\frac{1}{r^{n-2}}\right) f d \mathrm{vol}
$$

(6) Show that the function $\Phi(x)=-\frac{1}{2}|x|$ is a fundamental solution of the 1D Laplacian, in the sense that for any compactly supported function $f: R \rightarrow R$, the function $u(x)=$ $\int \Phi(x-y) f(y) d y$ solves $-u_{x x}=f$.
(7) (From John, Section 4.1.) Newton's law of gravitation asserts that if Ω is a threedimensional body with density $\mu=\mu(x)$, then the force it exerts on a unit mass located at a point $y \in R^{3}$ is the vector

$$
F(y)=\gamma \int_{\Omega} \frac{\mu(x)(x-y)}{|x-y|^{3}} d x
$$

where γ is a universal constant.
(a) Show that $F=\nabla u$, where u (the "gravitational potential") is given by

$$
u(y)=\gamma \int_{\Omega} \frac{\mu(x)}{|x-y|} d x
$$

(b) Show that the force $F(y)$ exerted by Ω on a far away unit mass is approximately the same as if the total mass of Ω were concentrated at its center of gravity

$$
x_{0}=\frac{\int_{\Omega} \mu(x) x d x}{\int_{\Omega} \mu(x) d x} .
$$

(Hint: approximate $|x-y|^{-3}$ by $\left|x_{0}-y\right|^{-3}$.)

