PDE I – **Problem Set 5.** Distributed Wed 10/2/2013, due Tues 10/15/2013. No extensions beyond Friday 10/18/2013 at 5pm. Typos corrected in problem 5 (an f was missing before) and problem 6 (a sign was wrong before).

(1) We discussed how variational principles lead to PDE's; here is another example. Let Ω be a bounded domain in \mathbb{R}^n , and consider the variational problem of minimizing the "Rayleigh quotient"

$$\min_{u=0 \text{ at } \partial\Omega} \frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^2}.$$

Assume that a minimizer exists and is C^2 . Show that it must be a Dirichlet eigenfunction of the Laplacian, i.e. a nonzero solution of

$$-\Delta u = \lambda u$$
 in Ω , with $u = 0$ at $\partial \Omega$.

Conclude that the minimum value of the Rayleigh quotient is equal to the smallest Dirichlet eigenvalue.

(2) Show that if u is a C^2 harmonic function defined on a region in \mathbb{R}^n , then

$$v(x) = |x|^{2-n} u\left(\frac{x}{|x|^2}\right)$$

is harmonic on the region where it is defined. (Hint: while this can be done by writing the Laplacian in polar coordinates, an alternative – in my view easier – argument uses the fact that u is harmonic on Ω if and only if $\int_{\Omega} \langle \nabla u, \nabla \phi \rangle = 0$ for all ϕ such that $\phi = 0$ at $\partial \Omega$.)

- (3) (Han, Section 4.5). Show that if u is harmonic on all \mathbb{R}^n and $\int_{\mathbb{R}^n} |u|^p dx < \infty$ for some p > 1, then u is identically zero.
- (4) Suppose that u is harmonic on all \mathbb{R}^n and $|u(x)| \leq C|x|^k$, where C is a constant and k is a positive integer. Show that u is a polynomial of degree at most k. (Hint: in the course of proving Liouville's theorem in the Lecture 5 notes, I showed that if u is harmonic in $B(x_0, r)$, then $|\nabla u(x_0)| \leq Cr^{-1} \max_{y \in B(x_0, r)} |u(y)|$. Use this estimate.)
- (5) (From Evans, Section 2.5.) Adjust the proof of the mean value theorem to show that for $n \ge 3$, if $-\Delta u = f$ on B(0, r) and u = g at the boundary, then

$$u(0) = \frac{1}{|\partial B(0,r)|} \int_{\partial B(0,r)} g \, d\text{area} + \frac{1}{n(n-2)\alpha_n} \int_{B(0,r)} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}}\right) f \, d\text{vol}.$$

(6) Show that the function $\Phi(x) = -\frac{1}{2}|x|$ is a fundamental solution of the 1D Laplacian, in the sense that for any compactly supported function $f: R \to R$, the function $u(x) = \int \Phi(x-y)f(y) \, dy$ solves $-u_{xx} = f$.

(7) (From John, Section 4.1.) Newton's law of gravitation asserts that if Ω is a threedimensional body with density $\mu = \mu(x)$, then the force it exerts on a unit mass located at a point $y \in \mathbb{R}^3$ is the vector

$$F(y) = \gamma \int_{\Omega} \frac{\mu(x)(x-y)}{|x-y|^3} \, dx,$$

where γ is a universal constant.

(a) Show that $F = \nabla u$, where u (the "gravitational potential") is given by

$$u(y) = \gamma \int_{\Omega} \frac{\mu(x)}{|x-y|} dx.$$

(b) Show that the force F(y) exerted by Ω on a far away unit mass is approximately the same as if the total mass of Ω were concentrated at its center of gravity

$$x_0 = \frac{\int_\Omega \mu(x) x \, dx}{\int_\Omega \mu(x) \, dx}.$$

(Hint: approximate $|x - y|^{-3}$ by $|x_0 - y|^{-3}$.)