PDE I - Problem Set 4. Distributed Tues 9/24/2013, due Tues 10/8/2013.
(1) Let Ω be a bounded domain in R^{n}. The Neumann Green's function $N(x, y, t)$ is the analogue of the Dirichlet Green's function, but using the boundary condition $\partial u / \partial n=0$ at $\partial \Omega$; its defining property is that the solution of $u_{t}-\Delta u=0$ in Ω with $\partial u / \partial n=0$ at $\partial \Omega$ and $u=u_{0}$ at $t=0$ is $u(x, t)=\int_{\Omega} N(x, y, t) u_{0}(y) d y$. (Remark: $N(x, y, t)$ is symmetric in x and y; the proof is parallel to what we did in class for the Dirichlet Green's function $G(x, y, t)$.) Show that the solution of

$$
\begin{array}{rll}
u_{t}-\Delta u & =0 & \text { for } x \in \Omega, t>0 \\
\partial u / \partial n & =g & \text { for } x \in \partial \Omega \\
u & =0 & \text { at } t=0
\end{array}
$$

is given by

$$
u(x, t)=\int_{0}^{t} \int_{\partial \Omega} N(x, y, t-s) g(y, s) d y d s
$$

(2) Show that if a smooth function u_{*} minimizes

$$
E[u]=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}+\int_{\Omega} u f+\frac{1}{2} \beta \int_{\partial \Omega}|u|^{2}
$$

then it solves $\Delta u_{*}=f$ in Ω, with the boundary condition $\frac{\partial u_{*}}{\partial n}+\beta u_{*}=0$ at $\partial \Omega$. (Hint: the function $t \mapsto E\left[u_{*}+t v\right]$ is minimized at $t=0$. Since we have not imposed a boundary condition on u, there is no boundary condition restricting the choice of v.)
(3) Let $f(\theta)$ be a periodic function on the unit circle in the plane, with Fourier series

$$
f(\theta)=\sum_{n=0}^{\infty} a_{n} \cos (n \theta)+b_{n} \sin (n \theta) .
$$

Assume that $f_{\theta \theta}$ is uniformly bounded. Show that

$$
u=\sum_{n=0}^{\infty}\left[a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right] r^{n}
$$

solves Laplace's equation in the disk $r<1$ with boundary condition f.
(4) Give a similar method for solving the Neumann problem

$$
\begin{aligned}
\Delta u & =0 \quad \text { in the disk } x^{2}+y^{2}<1 \\
\partial u / \partial n & =g \quad \text { at the circle } x^{2}+y^{2}=1
\end{aligned}
$$

(5) Now consider solving $\Delta u=0$ with both Dirichlet and Neumann data imposed at the unit circle:

$$
u=f \text { and } \frac{\partial u}{\partial n}=g \text { at } x^{2}+y^{2}=1 .
$$

Let's explore whether there a solution in the punctured disk $0<x^{2}+y^{2}<1$.
(a) Show that there are plenty of examples where the answer is yes, by considering the Laurent expansion of a complex function that's analytic in the punctured disk.
(b) Show that there are plenty of examples where the answer is no (here, too, I suggest using some facts from complex variables).
(c) How should the Fourier series of f and g be related, if there is to be a solution that's harmonic on the whole disk $x^{2}+y^{2}<1$?
(6) Recall that if f is a complex analytic function then its real and imaginary parts are harmonic. Using problems (3) and (4), discuss how conformal mapping can be used to solve Laplace's equation in a (simply-connected) plane domain with either Dirichlet or Neumann boundary data.
(7) For any α between 0 and 2π, consider Laplace's equation $\Delta u=0$ in the pie-shaped region $\Omega=\left\{r e^{i \theta}: 0<r<1,0<\theta<\alpha\right\}$, with $\frac{\partial u}{\partial n}=0$ at the straight parts of the boundary (the segments $\theta=0$ and $\theta=\alpha$) and $u=f(\theta)$ at the curved part (the arc $e^{i \theta}, 0<\theta<\alpha$). Determine the character of the singularity (if any) at the origin.
(8) Let f and u be as in Problem 3. What condition on the Fourier series of f is equivalent to $\int_{x^{2}+y^{2}<1}|\nabla u|^{2} d x d y<\infty$?

