PDE I - Problem Set 3. Distributed Wed 9/18/2013, due Tues 10/1/2013.
Notes added 9/27/2013: (a) While this $H W$ can be turned in 10/1, students have an automatic extension to $10 / 8$. No extensions beyond $10 / 8$ will be granted. (b) The hint on 2(c) is perhaps misleading. You won't have to look far to find a nonzero solution of the heat equation that's smooth for $t>0$, decays to 0 as $|x| \rightarrow \infty$, and has $u(x, t) \rightarrow 0$ a.e. as $t \rightarrow 0$.
(1) This problem asks you to explain two assertions made at the end of the Lecture 2 notes.
(a) Consider the PDE $u_{t}=\Delta u+u^{3}$ in a bounded domain Ω, with $u=0$ at $\partial \Omega$. Show that u evolves by "steepest descent" (with respect to the L^{2} norm) for the functional $E[u]=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}-\frac{1}{4} u^{4} d x$.
(b) Consider the PDE $u_{t}=\operatorname{div}\left(|\nabla u|^{2} \nabla u\right)$ in a bounded domain Ω, with $u=0$ at $\partial \Omega$. Show that u evolves by "steepest descent" (with respect to the L^{2} norm) for the functional $F[u]=\int_{\Omega} \frac{1}{4}|\nabla u|^{4}$.
(2) Consider the heat equation $u_{t}=u_{x x}$ on R, with the "Heaviside function" as initial data:

$$
u(x, 0)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

(a) Show by integration against the fundamental solution that

$$
u(x, t)=N(x / \sqrt{2 t})
$$

where N is the cumulative normal distribution

$$
N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-s^{2} / 2} d s
$$

(b) Argue that this calculation is legitimate (i.e. u solves the heat equation, and it has the desired initial data) although the Heaviside function is neither continuous nor compactly supported.
(c) If $u_{t}-u_{x x}=0$ for $t>0$, and $u(x, t) \rightarrow 0$ almost every where as $t \rightarrow 0$, should we expect in general that $u=0$? (Hint: use part (a) to give a counterexample.)
(3) Recall that for the heat equation in a bounded domain Ω with the Dirichlet boundary condition $u=0$ at $\partial \Omega$, the solution decays exponentially to 0 as $t \rightarrow \infty$. Let's explore what happens in all space, focusing for simplicity on one space dimension:

$$
\begin{aligned}
u_{t}-u_{x x} & =0 \quad \text { for } t>0, x \in R \\
u & =u_{0}(x) \quad \text { at } t=0
\end{aligned}
$$

(a) Show that if u_{0} is bounded and continuous, and $\int_{-\infty}^{\infty}\left|u_{0}\right| d x<\infty$, then

$$
\sup _{x}|u(x, t)| \leq C t^{-1 / 2}
$$

What is the optimal value of C ?
(b) Show that if $u_{0}=\phi_{x}$ with $\int_{-\infty}^{\infty}|\phi| d x<\infty$ then the decay is faster:

$$
\sup _{x}|u(x, t)| \leq C t^{-1}
$$

What is the optimal value of C in this case?
(4) Our discussion of the heat equation on the half-line $x>0$ with a homogeneous Dirichlet ($u=0$ at $x=0$) or Neumann $\left(u_{x}=0\right.$ at $\left.x=0\right)$ boundary condition used odd or even reflection. Therefore we implicitly used the following assertions:

- If $u_{0}: R \rightarrow R$ is an odd function of x, then the solution of the whole-space heat equation with initial data u_{0} is an odd function of x for each t.
- If $u_{0}: R \rightarrow R$ is an even function of x, then the solution of the whole-space heat equation with initial data u_{0} is an even function of x for each t.
(a) Give a proof of these assertions, based on our solution formula (which gives $u(x, t)$ as the convolution of u_{0} with the fundamental solution).
(b) Give a different proof of these assertions, based on a uniqueness result for solutions to the initial value problem in all space. (You need to assume something here about the behavior of u_{0} and u as $|x| \rightarrow \infty$. State briefly your assumptions and the uniqueness result you use. There is more than one reasonable choice: your uniqueness result should be true, but it need not be the most general result you know.)
(5) Consider the heat equation in a the first quadrant of R^{2}, i.e.

$$
\begin{aligned}
u_{t}-\Delta u & =0 \quad \text { for } x \in \Omega, t>0 \\
u & =u_{0} \quad \text { at } t=0
\end{aligned}
$$

with $\Omega=\left\{x_{1}>0, x_{2}>0\right\}$.
(a) Let $G(x, y, t)$ be the Green's function associated with the homogeneous Dirichlet boundary condition $u=0$ at $\partial \Omega$. (By definition, this means that the solution of the PDE with this boundary condition has the form $u(x)=\int_{\Omega} G(x, y, t) u_{0}(y) d y$.) Give a formula for G.
(b) Let $H(x, y, t)$ be the Green's function associated with the homogeneous Neumann boundary condition $\frac{\partial u}{\partial n}=0$. (By definition, this means that the solution of the PDE with this boundary condition has the form $u(x)=\int_{\Omega} H(x, y, t) u_{0}(y) d y$.) Give a formula for H.

