
PDE I – Problem Set 3. Distributed Wed 9/18/2013, due Tues 10/1/2013.
Notes added 9/27/2013: (a) While this HW can be turned in 10/1, students have an automatic
extension to 10/8. No extensions beyond 10/8 will be granted. (b) The hint on 2(c) is perhaps
misleading. You won’t have to look far to find a nonzero solution of the heat equation that’s smooth
for t > 0, decays to 0 as |x| → ∞, and has u(x, t)→ 0 a.e. as t→ 0.

(1) This problem asks you to explain two assertions made at the end of the Lecture 2 notes.

(a) Consider the PDE ut = ∆u + u3 in a bounded domain Ω, with u = 0 at ∂Ω. Show
that u evolves by “steepest descent” (with respect to the L2 norm) for the functional
E[u] =

∫
Ω

1
2 |∇u|

2 − 1
4u

4 dx.

(b) Consider the PDE ut = div
(
|∇u|2∇u

)
in a bounded domain Ω, with u = 0 at ∂Ω. Show

that u evolves by “steepest descent” (with respect to the L2 norm) for the functional
F [u] =

∫
Ω

1
4 |∇u|

4.

(2) Consider the heat equation ut = uxx on R, with the “Heaviside function” as initial data:

u(x, 0) =

{
0 if x < 0
1 if x > 0

(a) Show by integration against the fundamental solution that

u(x, t) = N(x/
√

2t)

where N is the cumulative normal distribution

N(x) =
1√
2π

∫ x

−∞
e−s2/2 ds.

(b) Argue that this calculation is legitimate (i.e. u solves the heat equation, and it has the
desired initial data) although the Heaviside function is neither continuous nor compactly
supported.

(c) If ut−uxx = 0 for t > 0, and u(x, t)→ 0 almost every where as t→ 0, should we expect
in general that u = 0? (Hint: use part (a) to give a counterexample.)

(3) Recall that for the heat equation in a bounded domain Ω with the Dirichlet boundary con-
dition u = 0 at ∂Ω, the solution decays exponentially to 0 as t → ∞. Let’s explore what
happens in all space, focusing for simplicity on one space dimension:

ut − uxx = 0 for t > 0, x ∈ R
u = u0(x) at t = 0.

(a) Show that if u0 is bounded and continuous, and
∫∞
−∞ |u0| dx <∞, then

sup
x
|u(x, t)| ≤ Ct−1/2.

What is the optimal value of C?
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(b) Show that if u0 = φx with
∫∞
−∞ |φ| dx <∞ then the decay is faster:

sup
x
|u(x, t)| ≤ Ct−1.

What is the optimal value of C in this case?

(4) Our discussion of the heat equation on the half-line x > 0 with a homogeneous Dirichlet
(u = 0 at x = 0) or Neumann (ux = 0 at x = 0) boundary condition used odd or even
reflection. Therefore we implicitly used the following assertions:

• If u0 : R→ R is an odd function of x, then the solution of the whole-space heat equation
with initial data u0 is an odd function of x for each t.

• If u0 : R→ R is an even function of x, then the solution of the whole-space heat equation
with initial data u0 is an even function of x for each t.

(a) Give a proof of these assertions, based on our solution formula (which gives u(x, t) as
the convolution of u0 with the fundamental solution).

(b) Give a different proof of these assertions, based on a uniqueness result for solutions to
the initial value problem in all space. (You need to assume something here about the
behavior of u0 and u as |x| → ∞. State briefly your assumptions and the uniqueness
result you use. There is more than one reasonable choice: your uniqueness result should
be true, but it need not be the most general result you know.)

(5) Consider the heat equation in a the first quadrant of R2, i.e.

ut −∆u = 0 for x ∈ Ω, t > 0
u = u0 at t = 0

with Ω = {x1 > 0, x2 > 0}.

(a) Let G(x, y, t) be the Green’s function associated with the homogeneous Dirichlet bound-
ary condition u = 0 at ∂Ω. (By definition, this means that the solution of the PDE with
this boundary condition has the form u(x) =

∫
ΩG(x, y, t)u0(y) dy.) Give a formula for

G.

(b) Let H(x, y, t) be the Green’s function associated with the homogeneous Neumann bound-
ary condition ∂u

∂n = 0. (By definition, this means that the solution of the PDE with this
boundary condition has the form u(x) =

∫
ΩH(x, y, t)u0(y) dy.) Give a formula for H.
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