
PDE I – Problem Set 2. Distributed Thurs 9/13/2013, due 9/24/2013.

This problem set focuses exclusively on problems in 1D. The reason is that in 1D we can use Fourier
analysis, and we know the eigenvalues and eigenfunctions of the Laplacian explicitly. As you solve
each problem, however, you may wish to consider whether something similar can be expected for
solutions on a bounded domain in Rn.

Problems 1–5. As we discussed in class, the solution of the heat equation ut − uxx = 0 on the
interval (0, π) with the homogeneous Dirichlet boundary condition u(0, t) = u(π, t) = 0 and initial
condition u0(x) is

u(x, t) =
∞∑
n=1

ane
−λntφn(x) (1)

with φn(x) =
√

2/π sin(nx) and an =
∫ π
0 u0(x)φn(x) dx. Problems 1–5 explore some properties of

this solution formula.

(1) Show that the function u(x, t) defined by (1) is C∞ in x for each t > 0.

(2) Assume now that u0(x) has two derivatives, with |u′′0(x)| ≤M for some constant M . Assume
further that u0 satisfies the boundary condition, i.e. u0(0) = u0(π) = 0.

(a) Prove an inequality of the form |an| ≤ C/n2.

(b) Show that as t decreases to 0, the function u(x, t) defined by (1) converges uniformly to
u0(x).

(3) Suppose now that u0(x) has four bounded derivatives (|u′′′′0 (x)| ≤M), and u′′0(0) = u′′0(π) = 0.

(a) Show that as t decreases to 0, uxx(x, t) converges uniformly to u′′0(x).

(b) If u0 is smooth but u′′0(0) 6= 0 or u′′0(π) 6= 0, is it possible that the conclusion of part (a)
still holds?

(4) The solution formula (1) makes sense even when u0 doesn’t vanish at the endpoints – for
example when u0(x) ≡ 1.

(a) Does u(x, t) satisfy the boundary conditions u(0, t) = u(π, t) = 0 for t > 0?

(b) Discuss the sense in which u(x, t) approaches u0 as t ↓ 0 in this case.

(5) We discussed the fact that solving the heat equation backward in time is ill-posed. But it
becomes well-posed if you know that only finitely many modes appear. Suppose you are
not given u0, but instead you are told that u(x, 1) =

∑100
n=1 bn sin(nx), and you are given

b1, . . . , b100 up to an error of at most 10−3 (in each). How precisely can you determine
u0 = u(x, 0)?

Problems 6 and 7 concern slightly different PDE’s or boundary conditions.

(6) Suppose u solves
ut − uxx = 10u

on the interval (0, π), with the homogeneous Neumann condition ux = 0 at x = 0, π. Char-
acterize the initial data u0 = u(x, 0) for which u(x, t) stays bounded as t→∞.

1



(7) Suppose u solves
ut − uxx = F (x)

on the interval (0, π), with the homogeneous Neumann condition ux = 0 and x = 0, π. Here
F is a given source term, independent of t. For which choices of F does the solution have a
limit as t→∞? When the limit exists, what is it?

Problems 8 and 9 concern numerical approximation.

(8) The Lecture 2 notes discussed a continuous-time, discrete-space approximation of ut = uxx.
When u has a homogeneous Dirichlet boundary condition, the ODE for the nodal values is

u̇j =
uj−1 + uj+1 − 2uj

(∆x)2
j = 1, . . . , N − 1

with the convention that the domain is (0, N∆x) and u0(t) = uN (t) = 0. Let’s discuss its
convergence as ∆x→ 0.

(a) Suppose the exact solution has upde
xxxx bounded (uniformly with respect to space and

time). Consider the error zj(t) = uj(t)− upde(j∆x, t). Show that if we define φj(t) by

żj −
zj−1 + zj+1 − 2zj

(∆x)2
= φj(t), (2)

then we have an estimate of the form |φj | ≤ C(∆x)2, with the constant C depending
only on an upper bound for |upde

xxxx|. (This corrects a mistake on page 10 of the Lecture
2 notes, as originally distributed.)

(b) Show that if the RHS of (2) were zero we would have a discrete version of the maximum
principle. In other words: show that if wj(t) (j = 1, . . . , N − 1) solves the ODE system

ẇj − wj−1+wj+1−2wj

(∆x)2
= 0 with the convention w0(t) = wN (t) = 0, then maxj,twj(t) and

minj,twj(t) are achieved either at the initial time (t = 0) or the spatial boundary (j = 0
or j = N).

(c) Apply part (b) to zj ± C(∆x)2t to deduce the error estimate |zj(t)| ≤ C(∆x)2t.

(9) The Lecture 2 notes discussed a discrete-time, discrete-space approximation of ut = uxx.
When u has a homogeneous Dirichlet boundary condition and the domain is (0, π), the scheme
says

uj(tn+1) = αuj+1(tn) + αuj−1(tn) + (1− 2α)uj(tn) (3)

with the conventions that the spatial step is ∆x = π/N , the times are tn = n∆t,

α =
∆t

(∆x)2
,

and u0(tn) = uN (tn) = 0 for all n. I told you that the scheme is stable for α ≤ 1/2 and
unstable for α > 1/2. Let’s understand why.

(a) Assume 0 < α ≤ 1/2. Show that for any M , if initially maxj |uj(0)| ≤ M , then the
estimate persists: maxj |uj(tn)| ≤ M for each n = 1, 2, . . .. (Thus, the scheme is stable
in the sense that a small change in its initial data produces a small change in the
solution.)
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(b) Suppose α > 1/2. Consider, for any integer k, the initial data uj(0) = sin(jk∆x). (Note
that it vanishes at the endpoints j = 0, N .) Show that the associated solution is

uj(tn) = ξnuj(0)

where ξ = ξ(k) = 1− 2α[1− cos(k∆x)].

(c) The solution identified in part (b) grows exponentially in magnitude if |ξ| > 1. Show
that if α > 1/2, then such growth happens when cos(k∆x) is close enough to −1. (Thus,
the scheme is unstable in the sense that a small change in its initial data can produce a
huge change in the solution after multiple time steps, even at times such that tn = n∆t
is still quite small.)
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