PDE I — Problem Set 2. Distributed Thurs 9/13/2013, due 9/24/2013.

This problem set focuses exclusively on problems in 1D. The reason is that in 1D we can use Fourier
analysis, and we know the eigenvalues and eigenfunctions of the Laplacian explicitly. As you solve
each problem, however, you may wish to consider whether something similar can be expected for
solutions on a bounded domain in R".

Problems 1-5. As we discussed in class, the solution of the heat equation u; — uz; = 0 on the
interval (0,7) with the homogeneous Dirichlet boundary condition u(0,¢) = u(w,t) = 0 and initial
condition wug(x) is

u(z,t) = Z ane "t p, () (1)
n=1

with ¢n(z) = \/2/msin(nz) and a, = [ uo(z)¢dn(x) dx. Problems 1-5 explore some properties of
this solution formula.

(1) Show that the function u(z,t) defined by (1) is C* in z for each ¢t > 0.

(2) Assume now that ug(z) has two derivatives, with |ugj(x)| < M for some constant M. Assume
further that wg satisfies the boundary condition, i.e. uy(0) = up(m) = 0.

(a) Prove an inequality of the form |a,| < C/n?.
(b) Show that as ¢ decreases to 0, the function u(x,t) defined by (1) converges uniformly to
uo().
"

3) Suppose now that ug(x) has four bounded derivatives (|uf’(z)| < M), and u{(0) = uf(7) = 0.
0 0 0

(a) Show that as t decreases to 0, ugz,(2,t) converges uniformly to ug(z).

(b) If ug is smooth but uj(0) # 0 or ug(m) # 0, is it possible that the conclusion of part (a)
still holds?

(4) The solution formula (1) makes sense even when ug doesn’t vanish at the endpoints — for
example when ug(z) = 1.

(a) Does u(z,t) satisfy the boundary conditions u(0,t) = u(w,t) = 0 for t > 07

(b) Discuss the sense in which u(z,t) approaches ug as t | 0 in this case.

(5) We discussed the fact that solving the heat equation backward in time is ill-posed. But it
becomes well-posed if you know that only finitely many modes appear. Suppose you are
not given ug, but instead you are told that u(z,1) = 1% b, sin(nz), and you are given

bi,...,bio0 up to an error of at most 1072 (in each). How precisely can you determine

ug = u(x,0)?

Problems 6 and 7 concern slightly different PDE’s or boundary conditions.
(6) Suppose u solves
U — Uge = 10U

on the interval (0, 7), with the homogeneous Neumann condition u, = 0 at x = 0, 7. Char-
acterize the initial data up = u(z,0) for which u(z,t) stays bounded as t — oo.



(7) Suppose u solves

U — Ugy = F ()

on the interval (0,7), with the homogeneous Neumann condition u, = 0 and = = 0, 7. Here
F' is a given source term, independent of ¢t. For which choices of F' does the solution have a
limit as t — co? When the limit exists, what is it?

Problems 8 and 9 concern numerical approximation.

(8) The Lecture 2 notes discussed a continuous-time, discrete-space approximation of w; = tugy.
When u has a homogeneous Dirichlet boundary condition, the ODE for the nodal values is

. Uj—1 + Ujt1 — 2uj .
P = =1,.
uj (Ax)2 j ’

LN -1

with the convention that the domain is (0, NAz) and wuo(t) = un(t) = 0. Let’s discuss its
convergence as Az — 0.

(a)

()

Suppose the exact solution has uP%  bounded (uniformly with respect to space and

time). Consider the error z;(t) = u;(t) — uP4°(jAxz,t). Show that if we define ¢;(t) by

Zj—1+ Zj+1 — 2z

Zj — (Aa:)Q = (Z)j(t)v (2)

then we have an estimate of the form |¢;| < C(Az)?, with the constant C' depending
only on an upper bound for |uP%¢ |. (This corrects a mistake on page 10 of the Lecture
2 notes, as originally distributed.)

Show that if the RHS of (2) were zero we would have a discrete version of the maximum
principle. In other words: show that if w;(t) (j =1,..., N — 1) solves the ODE system
wj — %W = 0 with the convention wg(t) = wx(t) = 0, then max;, w;(t) and
min; ; w;(t) are achieved either at the initial time (¢ = 0) or the spatial boundary (j = 0
or j=N).

Apply part (b) to z; & C(Az)?t to deduce the error estimate |z;(t)| < C(Az)?t.

(9) The Lecture 2 notes discussed a discrete-time, discrete-space approximation of w; = ugy.
When u has a homogeneous Dirichlet boundary condition and the domain is (0, 7), the scheme

says

Uj (thrl) = OéUj+1(tn) + Oéujfl(tn) + (1 — 20&)’&1' (tn) (3)

with the conventions that the spatial step is Az = 7 /N, the times are t,, = nAt,

At

(Az)*’

and ug(t,) = un(t,) = 0 for all n. I told you that the scheme is stable for o < 1/2 and
unstable for v > 1/2. Let’s understand why.

(a)

Assume 0 < o < 1/2. Show that for any M, if initially max;|u;(0)] < M, then the
estimate persists: max; |u;(t,)| < M for each n =1,2,.... (Thus, the scheme is stable
in the sense that a small change in its initial data produces a small change in the
solution.)



(b)

Suppose « > 1/2. Consider, for any integer k, the initial data u;(0) = sin(jkAxz). (Note
that it vanishes at the endpoints j = 0, N.) Show that the associated solution is

wj(tn) = §"u;(0)

where £ = (k) = 1 — 2a[l — cos(kAx)].

The solution identified in part (b) grows exponentially in magnitude if || > 1. Show
that if & > 1/2, then such growth happens when cos(kAx) is close enough to —1. (Thus,
the scheme is unstable in the sense that a small change in its initial data can produce a
huge change in the solution after multiple time steps, even at times such that ¢, = nAt
is still quite small.)



