PDE I - Problem Set 11. Distributed 12/3/2013, due 12/10/2013.
There will be no $H W$ extensions beyond Friday 12/13 at 10am.
(1) A "viscous shock profile" for Burgers' equation is a function $U(\xi)$ with $U \rightarrow u_{L}$ as $\xi \rightarrow-\infty$ and $U \rightarrow u_{R}$ as $\xi \rightarrow+\infty$, such that $u(x, t)=U[(x-\sigma t) / \epsilon]$ solves $u_{t}+u u_{x}=\epsilon u_{x x}$. We know that if U exists then σ must be equal to $\left(u_{L}+u_{R}\right) / 2$ and we must have $u_{L}>u_{R}$.
(a) Show that U does indeed exist, and it's given by

$$
\begin{aligned}
& \xi=\int \frac{d U}{\frac{1}{2}\left(U-u_{L}\right)\left(U-u_{R}\right)} \\
&+ \text { constant } \\
&=\frac{2}{u_{L}-u_{R}} \log \left(\frac{u_{L}-U}{U-u_{R}}\right) \quad+\text { constant }
\end{aligned}
$$

(b) Show that as $\epsilon \rightarrow 0$ (and choosing the constant properly) $\lim _{\epsilon \rightarrow 0} U[(x-\sigma t) / \epsilon]$ converges to the admissible weak solution of Burgers' equation with initial condition u_{L} for $x<0$ and u_{R} for $x>0$.
(c) What happens to the above construction if $u_{R}>u_{L}$ (so that no shock is expected)?
(d) Can something similar be done for any conservation law $u_{t}+F(u)_{x}=0$?
(2) Use the method of characteristics to solve these initial value problems:
(a) $u_{t}+u_{x}=u^{2}, \quad u(x, 0)=h(x)$
(b) $u_{t}+x u_{x}+y u_{y}=u, \quad u(x, y, 0)=h(x, y)$
(c) $x u_{t}-t u_{x}=u, \quad u(x, 0)=h(x)$.
(3) Use the method of characteristics to derive these solution formulas:
(a) $x u_{x}-y u_{y}=0 \Longrightarrow u=f(x \cdot y)$
(b) $x u_{x}+y u_{y}=\alpha u \Longrightarrow u=\left(x^{2}+y^{2}\right)^{\alpha / 2} f\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)$
(4) Consider the "equation of geometrical optics" in 2D:

$$
u_{x}^{2}+u_{y}^{2}=1
$$

(a) Find the associated system of ODE's describing the characteristics.
(b) Show that ∇u is constant along each characteristic.
(c) Suppose $u=0$ on a smooth, simple closed curve S in the x, y plane. Show that $u(x)=$ \pm distance to S, if u is differentiable along the shortest path from x to S.
(d) Show that u cannot be smooth throughout the bounded region determined by S.
(5) Consider the first-order PDE $u_{t}+H(x, \nabla u)=0$ (this "Hamilton-Jacobi equation" arises naturally in the context of optimal control). Show that solving the PDE by the method of characteristics amounts to solving the ODE system

$$
\dot{x}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial x_{i}}, \quad \dot{u}=-H+\sum_{i} p_{i} \frac{\partial H}{\partial p_{i}}
$$

with the notation $H=H(x, p)$. (If you know some physics, you'll recognize that the equations for $x(t)$ and $p(t)$ are those of Hamiltonian mechanics.)

