PDE I - Problem Set 10. Distributed 11/21/2013, due 12/3/2013.

Problem 1 gives an alternative proof of the Rankine-Hugoniot condition. Problem 2 reveals that conservation laws that are equivalent to one another for smooth solutions are not equivalent for weak solutions. Problems 3-6 ask you to work out some examples. Remember that when considering a conservation law $u_{t}+(F(u))_{x}=0$, a shock must satisfy the Rankine-Hugoniot condition $\dot{s}=$ $[F(u)] /[u]$. In addition, shocks must satisfy the "admissibility condition" that the characteristics go into the shock (equivalently: $\left.F^{\prime}\left(u_{L}\right)>d s / d t>F^{\prime}\left(u_{R}\right)\right)$. The reason for this restriction is discussed in the Lecture 10 notes (we'll discuss it in class on $11 / 26$).
(1) Suppose $u(x, t)$ and $q(x, t)$ are smooth except at a "shock" $x=s(t)$, where u and q are both discontinuous. Suppose $u_{t}+q_{x}=0$ away from the shock. Use the fundamental theorem of calculus to show that for any $a<s(t)<b$, the relation

$$
\frac{d}{d t}\left[\int_{a}^{s(t)} u_{L}(x, t) d x+\int_{s(t)}^{b} u_{R}(x, t) d x\right]=-q_{R}(b)+q_{L}(a)
$$

is equivalent to

$$
[u] \dot{s}=[q]
$$

(Here $u_{L}, u_{R}, q_{L}, q_{R}$ are the restrictions of u and q to the left and right of the shock; $[u]=$ $u_{R}-u_{L}$ and $[q]=q_{R}-q_{L}$ are the jumps across the shock.)
(2) We know that

$$
u(x, t)= \begin{cases}2 & \text { for } x<3 t / 2 \\ 1 & \text { for } x>3 t / 2\end{cases}
$$

is an admissible weak solution of Burgers' equation (the shock speed is $\left(u_{L}+u_{R}\right) / 2=3 / 2$). Show that u is not a weak solution of the conservation law $\frac{1}{2}\left(u^{2}\right)_{t}+\frac{1}{3}\left(u^{3}\right)_{x}=0$. (Note that for smooth nonzero u, this conservation law reduces - like Burgers' equation - to $u_{t}+u u_{x}=0$.)
(3) Consider Burgers' equation $u_{t}+\frac{1}{2}\left(u^{2}\right)_{x}=0$, with initial data

$$
u(x, 0)= \begin{cases}1 & \text { for } x<-1 \\ 0 & \text { for }-1<x<0 \\ 2 & \text { for } 0<x<1 \\ 0 & \text { for } x>1\end{cases}
$$

Find the solution for all $t>0$.
(4) Now consider Burgers' equation with initial data

$$
u(x, 0)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
x & \text { for } 0<x<1 / 2 \\
1-x & \text { for } 1 / 2<x<1 \\
0 & \text { for } x>1
\end{array}\right.
$$

Find the time and place of shock formation, and the velocity of the shock for all later times.
(5) This time consider Burgers' equation with initial data

$$
u(x, 0)= \begin{cases}0 & \text { for } x<0 \\ 1 & \text { for } 0<x<L \\ 0 & \text { for } x>L\end{cases}
$$

(a) Show that when t is large enough the solution has the form

$$
u(x, t)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
x / t & \text { for } 0<x<s(t) \\
0 & \text { for } x>s(t)
\end{array}\right.
$$

where $s(t)$ is an (as yet undetermined) shock locus.
(b) Use the Rankine-Hugoniot condition $d s / d t=\left(u_{L}+u_{R}\right) / 2$ and the conservation law $(d / d t) \int u(x, t) d x=0$ to determine the function $s(t)$.
(6) As explained in Lecture 10, a continuum model of traffic flow on a 1D road is $\rho_{t}+(Q(\rho))_{x}=0$ where Q (the traffic flux, with units cars per unit time) should vanish at $\rho=0$ and at $\rho=\rho_{\text {max }}$ and be unimodal in between, as in the figure.

(a) Consider the solution with initial data

$$
\rho=\left\{\begin{array}{cc}
\rho_{\max } & x<0 \\
0 & x>0
\end{array}\right.
$$

(This captures what happens after a red light turns green, if the backup behind the light is infinite.) Discuss both the space-time picture (is the solution a fan or a shock?) and the form of the function $x \mapsto \rho(x, t)$ at a given time.
(b) Let ρ_{1} and ρ_{2} be constants, chosen so that ρ_{1} is below the value where Q is maximized, ρ_{2} is above the value where Q is maximized, and $Q\left(\rho_{1}\right)=Q\left(\rho_{2}\right)$. (Note that $Q^{\prime}\left(\rho_{1}\right)>0$ and $Q^{\prime}\left(\rho_{2}\right)<0$.) Discuss the solution with initial data

$$
\rho= \begin{cases}\rho_{1} & x<-1 \\ \rho_{2} & -1<x<0 \\ \rho_{1} & x>0\end{cases}
$$

(The special case $\rho_{1}=0, \rho_{2}=\rho_{\max }$ captures a red light turning green, if the backup behind the light is finite.) As for (a), you should discuss both the spacetime picture (hint: there is both a fan and a shock) and the form of the function $x \mapsto \rho(x, t)$ (hint: there is a qualitative change in the form of this function at a certain time).

