
PDE I – Problem Set 1. Distributed Tues 9/3/2013, due 9/17/2013.

Throughout this problem set we are concerned with “classical solutions,” i.e. solutions smooth
enough that all convenient manipulations (integration by parts, maximum principle, etc) are jus-
tified. Except for Problem 1, this problem set is concerned exclusively with solutions of PDE’s
in bounded domains. The domain is always assumed connected. If the regularity of the boundary
makes a difference, please assume it is as smooth as needed to make your argument work.

(1) Recall from Lecture 1 that for a 1D random walk with spatial step ∆x, time step ∆t, and
probability 1/2 of going left or right, the evolution of the probability density is a finite-

difference discretization of ut = uxx when (∆x)2

2∆t = 1.

(a) Consider the biased random walk in which a walker at j∆x moves to (j + 1)∆x with
probability 1

2 + α∆x and moves to (j − 1)∆x with probability 1
2 − α∆x? Assuming as

before that (∆x)2

2∆t = 1, and taking α to be constant, what PDE does the probability
density solve in the continuum limit ∆x→ 0?

(b) Now suppose the bias is position-dependent; in other words, using the notation of part
(a), suppose α = α(j∆x) is a smooth but non-constant function of position. Extend
what you found in part (a) to this case. [Warning: note that when α(x) is not constant,
αux 6= (αu)x.]

(2) We saw that for the heat equation in a bounded domain with a homogeneous Dirichlet bound-
ary condition,

∫
Ω |u|2dx decays exponentially to 0 as t→ 0. What is the analogous assertion

for the heat equation in a bounded domain with a homogeneous Neumann boundary condition
(∂u/∂n = 0 at ∂Ω)? [Hint: There is a constant MΩ with the following property: if u : Ω→ R
has mean value 0 then

∫
Ω u

2 dx ≤ MΩ
∫

Ω |∇u|2 dx. You may use this result without proving
it.]

(3) Let’s explore the power of the “energy method” for proving uniqueness.

(a) In Lecture 1’s discussion of heat flow, we discussed only the cases of a Dirichlet boundary
condition (fixed temperature at ∂Ω) and a Neumann boundary condition (fixed heat flux
at ∂Ω). Another physically-natural assumption is that the heat flux from the boundary
is proportional to the difference between the temperature u(x, t) and some fixed constant
U . Known as “Newton’s law of cooling”, this models loss of heat by radiation, if the
far-field temperature is U . So consider the heat equation ut = ∆u in a bounded domain
Ω ⊂ Rn, with initial condition u = u0(x) at t = 0 and boundary condition

∂u/∂ν = −k(u− U) at ∂Ω,

where ν is the outward unit normal and k ≥ 0. Use the “energy method” to show that
there can be at most one solution. Does a similar assertion hold also for k < 0?

(b) Suppose a(x) = aij(x) takes values in the class of symmetric, positive definite n × n
matrices. Consider the PDE

ut =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)

in a bounded domain Ω, with initial condition u = u0(x) at t = 0 and a Dirichlet
boundary condition u = g at ∂Ω. Use the “energy method” to show there can be at
most one solution.
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(c) Now consider the PDE

ut =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi

in a bounded domain Ω ⊂ Rn, where a(x) = aij(x) takes values in the class of positive
definite symmetric matrices and b(x) = bi(x) takes values in Rn. Suppose the boundary
condition is u = u0 at t = 0, and the boundary condition is u = g at ∂Ω. Try proving
uniqueness by considering the difference between two solutions, then multiplying the
equation by u(x, t)p(x) and integrating by parts, where p is a well-chosen function of x.
Under what circumstances does this work?

(4) In Lecture 1 we gave a maximum-principle-based proof of uniqueness for the heat equation
with a Dirichlet boundary condition. This problem asks you to do something similar for the
heat equation with a Neumann boundary condition. Suppose ut −∆u = 0 on Ω× (0, t) with
∂u/∂n = 0 at ∂Ω. Show that u achieves its maximum and minimum values at the initial time
t = 0. [Hint: consider uε,δ(x) = u− δφ(x)− εt, with a suitable choices of φ(x), δ, and ε.]

(5) Let’s look at how the maximum principle changes when the PDE has a zeroth order term.
Throughout this problem, we work in a bounded domain Ω ⊂ Rn, with Dirichlet boundary
condition u = 0 at ∂Ω and initial condition u(x, 0) = u0(x).

(a) Suppose the PDE is
ut −∆u+ c(x, t)u = 0

with c(x, t) ≥ 0. Show that

maxu ≤ maxu+
0 and minu ≥ minu−0

where u+
0 and u−0 are respectively the positive and negative parts of u0.

(b) Consider the same PDE, but assume now that c(x, t) ≥ γ where γ is a positive constant.
Show that |u(x, t)| ≤ Ce−γt. [Hint: apply part (a) to ueγt.]

(c) Consider the same PDE, but let c(x, t) be any smooth function (bounded, but possibly
negative). Show that if u0 ≥ 0 then u(x, t) ≥ 0 for all x ∈ Ω and t > 0. [Hint: consider
v(x, t) = eλtu(x, t) for a suitable choice of λ.]

(6) Consider two solutions u1 and u2 of the semilinear parabolic equation

ut −∆u = f(u)

in a bounded domain Ω, with the same Dirichlet boundary data but different initial conditions.
Show that if initially u1(x, 0) ≤ u2(x, 0) for all x ∈ Ω, then this property holds for all time:
u1(x, t) ≤ u2(x, t) for all x ∈ Ω and all t > 0. [Hint: show that w = u2−u1 solves an equation
of the form wt −∆w = c(x, t)w.]

(7) Let u solve the semilinear equation

ut −∆u = f(u)

in a bounded domain Ω, with a Dirichlet boundary condition u = 0 at ∂Ω. Suppose ut ≥ 0
initially (in other words, suppose ∆u0 + f(u0) ≥ 0, where u0 is the initial condition). Show
that ut ≥ 0 for all x ∈ Ω and all t > 0. [Hint: start by differentiating the equation in time,
to get a PDE satisfied by ut.]
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(8) Consider the semilinear equation
ut −∆u = u3,

in a bounded domain Ω ⊂ Rn, with Dirichlet boundary condition u = 0 at ∂Ω and initial
condition u(x, 0) = u0(x). Show that if

E[u0] =

∫
Ω

(
1

2
|∇u0|2 −

1

4
u4

0

)
dx < 0

then the solution “blows up,” i.e. a classical solution ceases to exist in finite time. [Hint:
start by noting that d

dtE[u(t)] ≤ 0. Then derive a relation linking d
dt

∫
Ω u

2 dx with E[u(t)].]
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