
PDE I – Supplementary Problems on Hamilton-Jacobi equations.
Distributed 12/10/2013. The material covered in class in the final lecture, on 12/10/2013,
will not be on the Final Exam. But you may still want to reinforce your understanding of
Hamilton-Jacobi equations. Here are some problems to help with that.

(1) The Lecture 13 notes “derive” a solution formula for the final-value problem

ut +
1

2
|∇u|2 = 0 for t < T , with u(x, T ) = g at t = T ,

namely

u(x, t) = max
z

{
g(z)− |z − x|

2

2(T − t)

}
. (1)

(I put “derive” in quotes because our treatment of the optimal control problem was
honest, but our derivation of the associated Hamilton-Jacobi equation was only for-
mal.)

(a) Reversing time, give an associated solution formula for the initial value problem

uτ −
1

2
|∇u|2 = 0 for τ > 0, with u(x, 0) = g at τ = 0.

(b) Changing the max to a min, give analogous solution formulas for the final-value
problem

ut −
1

2
|∇u|2 = 0 for t < T , with u(x, T ) = g at t = T ,

and for the initial-value problem

uτ +
1

2
|∇u|2 = 0 for τ > 0, with u(x, 0) = g at τ = 0.

(2) Find an optimal control problem and a solution-formula analogous to (1) for which
the Hamilton-Jacobi equation is

ut +
1

4
|∇u|4 = 0 for t < T , with u(x, T ) = g at t = T ,

(3) We discussed in lecture that when g = |x| in one space dimension, the solution formula
(1) gives u(x, t) = 1

2(T − t) + |x|. What happens when we change the final-time
condition to

g =

{
1
εx

2 if |x| ≤ ε/2
|x| − ε

4 if |x| ≥ ε/2.

(This is a C1 approximation to |x|.) Does the resulting solution have continuous
derivatives, or does its graph still have a sharp valley?
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(4) Consider the viscously-perturbed eikonal equation on a 1D interval:

1− |ux|+ εuxx = 0 for −1 < x < 1

u = 0 at x = ±1.

Assume the solution is C2. (This is true; extra challenge: can you justify it?).

(a) Show that v = ux has the form

v = −1 + e−x/ε for 0 < x < 1

v = +1− ex/ε for −1 < x < 0.

(b) Integrate once to find a formula for u, and show that as ε → 0 it approaches
1− |x|.

[Hint for (a): any critical point of u must be a maximum, since ux = 0 implies uxx < 0.
Therefore u has just one critical point. To the left of it ux ≥ 0; to the right ux ≤ 0.]

(5) This problem is a special case of the “linear-quadratic regulator” widely used in en-
gineering applications. The state is y(s) ∈ Rn, and the control is α(s) ∈ Rn. There is
no pointwise restriction on the values of α(s). The evolution law is

dy/ds = Ay + α(s), y(t) = x,

for some constant matrix A, and the goal is to minimize∫ T

t
|y(s)|2 + |α(s)|2 ds+ |y(T )|2.

(In words: we prefer y = 0 along the trajectory and at the final time, but we also
prefer not to use too much control.)

(a) Consider the value function

u(x, t) = min

{∫ T

t
|y(s)|2 + |α(s)|2 ds+ |y(T )|2

}
(where the minimum is over all controls α(s), and the trajectory y(s) satisfies
y(t) = x). What Hamilton-Jacobi equation does u (formally) solve? Explain
further why we should expect the relation α(s) = −1

2∇u(y(s)) to hold along
optimal trajectories.

(b) Since the problem is quadratic, it’s natural to guess that the value function u(x, t)
takes the form

u(x, t) = 〈K(t)x, x〉
for some symmetric n× n matrix-valued function K(t). Show that this u solves
the Hamilton-Jacobi-Bellman equation exactly if

dK

dt
= K2 − I − (KTA+ATK) for t < T , K(T ) = I

where I is the n × n identity matrix. (Hint: two quadratic forms agree exactly
if the associated symmetric matrices agree.)
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