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1 Orientation, and the model

These notes supplement Robert Kohn’s Lecture 3 at the 2014 PCMI Graduate Summer
School. For background and heuristic arguments, see the pdf of that lecture. For physics-
oriented discussions of this topic see [4] and [3]. For upper and lower energy bounds similar
to those presented here but using nonlinear elasticity and a rather general membrane model
see [1].

We want to study deformations of a thin elastic sheet of annular shape, which is loaded
radially at the inner and outer boundary by uniform forces Tin and Tout, respectively. To
keep things simple we consider very simple form of the energy – Föppl-von Kárman energy1

with zero Poisson ratio. The deformation is then describe by the in-plane displacement
w = (w1, w2) and out-of-plane displacement u3, and should minimize

Eh(w, u3) :=

∫
A

∣∣∣∣e(w) +
1

2
∇u3 ⊗∇u3

∣∣∣∣2 + h2
∣∣∇2u3

∣∣ dx+∫
|x|=Rin

Tinw(x) · x
|x|

dσ −
∫
|x|=Rout

Toutw(x) · x
|x|

dσ, (1.1)

where by Rin and Rout we denoted the inner and outer radius, respectively; the domain
is A =

{
x ∈ R2 : |x| ∈ (Rin, Rout)

}
; e(w) is the linear strain e(w) =

(
∇w +∇tw

)
/2; and

h > 0 is the thickness of the sheet.
The domain and applied forces are radially symmetric, and so it will be convenient to

use polar coordinates r ∈ (Rin, Rout) and θ ∈ [0, 2π). If ur, uθ denotes the in-plane part
of the displacement in the radial and azimuthal direction, respectively, and ζ denotes the

1The FvK viewpoint is appropriate in the small-strain, small-slope regime, and is often used in the physics
community.
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out-of-plane displacement, the energy has the form

Eh(ur, uθ, ζ) =∫
A

(
∂rur + 1

2 (∂rζ)2 1
2r∂θur + 1

2∂ruθ −
1
2ruθ + 1

2r∂rζ∂θζ
1
2r∂θur + 1

2∂ruθ −
1
2ruθ + 1

2r∂rζ∂θζ
ur
r + 1

r∂θuθ + 1
2r2

(∂θζ)2

)2

r dr dθ

+ h2
∫
A

(
|∂rrζ|2 +

2

r2
|∂rθζ|2 +

1

r4
|∂θθζ|2

)
r dr dθ

+ Tin

∫
r=Rin

urr dθ − Tout
∫
r=Rout

urr dθ. (1.2)

The first integrand is called membrane energy, the one with prefactor h2 bending energy,
and the last two integrals represent applied loads.

Let Erel denotes the relaxation (Γ-limit) of energy functionals Eh. Then Erel has a
unique (up to a translation) minimizer (ũr, 0, 0), i.e. the minimizer is radially symmetric
and stays in-plane. In this note we prove the following: Let E0 denotes the relaxed energy
of the minimizer and let the loads Tin > 0 and Tout > 0 satisfy (2.3). Then there exist
constants 0 < C0 < C1 such that for any h ∈ (0, 1) we have

E0 + C0h ≤ minEh ≤ E0 + C1h. (1.3)

Here and also later, all the constant depend only on the data, i.e. radii Rin, Rout and
loads Tin, Tout. In the following a . b, a & b, a ∼ b, will stand for a ≤ Cb, a ≥ Cb,
C−1a ≤ b ≤ Cb, respectively.

Before we turn to the proof of (1.3), let us write its key steps:

• we write the relaxed energy Erel, and show it has a unique, radially symmetric min-
imizer ũr. Moreover, assumption (2.3) implies that ũr < 0 and ũr > 0 in connected
and non-empty parts of the annulus (we will call these regions inner and outer region,
respectively);

• given any deformation ur, uθ, ζ, we compute the difference between its energy Eh(ur, uθ, ζ)
and E0 = Erel(ũr, 0, 0). If we denote this excess energy by ε, the lower bound in (1.3)
is equivalent to showing that ε & h;

• we observe that
∫
A |∂rζ|

2 . ε, which together with control on variations of ζ in the
azimuthal direction in part of the annulus implies control on L2-norm of ζ itself;

• we also observe that h2
∫
A |∇∇ζ|

2 . ε. Then by interpolation with the previous

estimate we get h
∫
A |∇ζ|

2 . ε, in particular h
∫
A |∂θζ|

2 . ε;

• we show that if ε is small (meaning it is smaller than some fixed constant), then ur
is sufficiently close to ũr. Since in the inner region ũr < 0, the same has to be true
for ur in a slightly smaller region. Then either we have compression in this region
(which would contribute O(1) to the excess energy) or there is a non-trivial out-of-
plane displacement ζ in this region – in this case we get that

∫
|∂θζ|2 & 1 in this

region, which combined with above implies ε & h;
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• to prove the upper bound (the second inequality in (1.3)), given h ∈ (0, 1) we need
to construct (define) a deformation with energy smaller than E0 + Ch. A naive first
idea is to set ur := ũr and for ζ use a sinusoidal profile with appropriate radius
dependent amplitude and some fixed (optimized) period to release the compression
in the azimuthal direction in {ũr < 0}. By doing this (modulo some cut-off near the
transition from wrinkled to planar state) we obtain deformation with energy bounded
by E0 + Ch (|log h|+ 1) – a worse estimate that we expected.

• to get the optimal scaling, we introduce a construction with radius dependent period
(i.e. with the radius we change not only the amplitude of wrinkles, but also the
wavenumber).

2 The relaxed problem

Using the result of Conti, Maggi, and Müller [2], relaxation of (1.2) can be written as

Erel(ur, uθ, ζ) =∫
A

(
∂rur + 1

2 (∂rζ)2 1
2r∂θur + 1

2∂ruθ −
1
2ruθ + 1

2r∂rζ∂θζ
1
2r∂θur + 1

2∂ruθ −
1
2ruθ + 1

2r∂rζ∂θζ
ur
r + 1

r∂θuθ + 1
2r2

(∂θζ)2

)2

+

+ loads .

(2.1)

Here (A)2+ = inf{|A + B|2 : B = Bt ≥ 0} denotes square of the Frobenius norm of the

positive part of the matrix. It is easy to see that (A)2+ = (λ1)
2
+ + (λ2)

2
+, where λ1,λ2

are eigenvalues of A, and f+ = max(f, 0). This has the following physical interpretation:
as h → 0, any compression (which corresponds to the negative part of the strain) can be
removed by (infinitesimally) small out-of-plane oscillations (these oscillations “introduce”
B). We observe that since the contribution from ζ is a positive matrix, we can assume
ζ = 0 while looking for a minimizer of Erel. Moreover, since the problem domain and loads
are radially symmetric, it makes sense to first look for a radially symmetric minimizer.

Assuming ζ = 0, uθ = 0, and ∂θur = 0, the energy (2.1) simplifies significantly

Erel(ur, 0, 0) = 2π

(∫ Rout

Rin

r

(
(∂rur)

2
+ +

(ur
r

)2
+

)
dr + TinRinur(Rin)− ToutRoutur(Rout)

)
.

(2.2)
We want to find conditions on the data (radii and forces) so that ur, minimizer of (2.2), is
negative in part of the domain. We will show the following:

Lemma. Let Tin > 0 and Tout > 0 satisfy

RinTin < RoutTout and
Tin
Tout

> 2
R2
out

R2
in +R2

out

. (2.3)

Then (2.2) has a unique minimizer ũr. Moreover, there exists L ∈ (Rin, Rout) such that

ũr < 0 in (Rin, L), ũr > 0 in (L,Rout). (2.4)
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We also have

∂rũr ≥
Rin
Rout

Tin and ∂r (r∂rũr(r)) =
ũr(r)+
r

(2.5)

and for r ∈ (Rin, L) the function β(r) := (−ũr(r)r)
1
2 satisfies

|β(r)| . (L− r)
1
2 , |∂rβ(r)| . (L− r)−

1
2 , |∂rrβ(r)| . (L− r)−

3
2 . (2.6)

Proof. The proof is elementary (but lengthy), and will be given in the last section.

To observe that ur is a minimizer of (2.1), we use that (ur, 0, 0) is a critical point of
(2.1) and that (2.1) is a convex functional (see [2]). It will be clear later that in fact it is
the unique minimizer (up to a translation), i.e. the only solution to the relaxed problem is
radially symmetric.2 Then

Eh(ur, uθ, ζ)− Erel(ũr, 0, 0) = Eh(ur, uθ, ζ)−

(∫
A

(
∂rũr 0

0 (ũr)+
r

)2

+ loads

)

=

∫
A
∂rũr (∂rζ)2 +

(
∂rũr − ∂rur −

1

2
(∂rζ)2

)2

+
1

r2

(
(ũr)+
r

)
(∂θζ)2 +

(
(ũr)+
r
−
(
ur
r

+
1

r
∂θuθ +

1

2r2
(∂θζ)2

))2

+ 2

(
1

2r
∂θur +

1

2
∂ruθ −

1

2r
uθ +

1

2r
∂rζ∂θζ

)2

+ h2
(
|∂rrζ|2 +

2

r2
|∂rθζ|2 +

1

r4
|∂θθζ|2

)
=: ε ≥ 0,

(2.7)

where we used (2.5). Using Taylor expansion of Eh around the relaxed solution, the above
relation can be understood as follows: since ũr is the solution to the relaxed problem (in
particular critical point), the first variation of Eh wrt the in-plane directions (i.e. in ur
and uθ) vanishes, and only the quadratic terms (which in our setting are very simple since
the second variation in the strain is just twice the identity) remain. We know that the
contribution from the out-of-plane displacement ζ can only increase the energy, which is
consistent with the above equality (recall that ∂rũr > 0 and (ũr)+ ≥ 0).

3 Lower bound

Our goal is to prove a lower bound ε & min(1, h) (which implies ε & h since we consider
only h ≤ 1).

By (2.5) ∂rũr is strictly larger than 0, and so (2.7) implies∫
A

(∂rζ)2 . ε. (3.1)

2From the physical point of view this is natural, since we expect the symmetry will break only by wrinkles
– i.e. if h > 0.
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Since ũr > 0 in (L,Rout), we have ũr ≥ δ > 0 in O = ((L + Rout)/2, Rout) × [0, 2π), and
(2.7) implies ∫

O
(∂θζ)2 .

∫
O

1

r2

(
ũr
r

)
(∂θζ)2 ≤ ε. (3.2)

We combine two previous estimates to get
∫
O |∇ζ|

2 . ε. Application of Poincaré inequality

gives
∫
O
∣∣ζ − ζ̄∣∣2 . ε, which using (3.1) can be upgraded to the whole A:∫

A

∣∣ζ − ζ̄∣∣2 . ε. (3.3)

From (2.7) we get that
∫
A |∇∇ζ|

2 ≤ εh−2, and so by interpolation between that and (3.3)

we get
∫
A |∇ζ|

2 . εh−1, and in particular∫
A

(∂θζ)2 . εh−1. (3.4)

Now we want to show that
∫
A (∂θζ)2 & 1 provided ε . 1, which in turn will imply the

desired bound on ε. Let v := ũr − ur. We want to show that

F (r) :=

∫ 2π

0
v(r, θ) dθ (3.5)

is small for all r ∈ (Rin, Rout). By (2.7)∫
O

(
v

r
− 1

r
∂θuθ −

1

2r2
(∂θζ)2

)2

≤ ε, (3.6)

and so∣∣∣∣∣
∫ Rout

(L+Rout)/2

F (r)

r
dr

∣∣∣∣∣ =

∣∣∣∣∫
O

v

r

∣∣∣∣ ≤ ∣∣∣∣∫
O

v

r
− 1

r
∂θuθ −

1

2r2
(∂θζ)2

∣∣∣∣+ 1

2r2

∣∣∣∣∫
O

(∂θζ)2
∣∣∣∣ (3.6),(3.2). ε1/2+ε.

(3.7)

By (2.7) we have

∫
A

(
∂rv −

1

2
(∂rζ)2

)2

≤ ε, which together with (3.1) and using the same

idea as above gives |F (r0)− F (r1)| . ε + ε1/2. Therefore, by (3.7) we get for any r ∈
(Rin, Rout) ∣∣∣∣∫ 2π

0
ũr(r)− ur(r, θ) dθ

∣∣∣∣ = |F (r)| . ε+ ε1/2. (3.8)

Now let I := (Rin, (Rin + L)/2)× [0, 2π). We write∫
I

1

2r2
(∂θζ)2 =

∫
I

(
ur
r

+
1

r
∂θuθ +

1

2r2
(∂θζ)2

)
+

∫
I

(
ũr
r
− ur

r

)
−
∫
I

ũr
r
. (3.9)

Since ũr < 0 in I, by (2.7)

∫
I

(
ur
r

+
1

r
∂θuθ +

1

2r2
(∂θζ)2

)2

≤ ε, and so∣∣∣∣∫
I

1

2r2
(∂θζ)2 +

∫
I

ũr
r

∣∣∣∣ ≤ ∫
I

∣∣∣∣urr +
1

r
∂θuθ +

1

2r2
(∂θζ)2

∣∣∣∣+

∣∣∣∣∫
I

(
ũr
r
− ur

r

)∣∣∣∣ . ε1/2 + ε.

(3.10)
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Moreover, −ũr ≥ κ > 0 in I, which gives∫
I

(∂θζ)2 & κ− C(ε+ ε1/2), (3.11)

where C and κ depend only on the data. Combining this with (3.4) gives

εh−1 & κ− C(ε+ ε1/2), (3.12)

and so either ε + ε1/2 ≥ κ/2C (i.e. ε & 1) or εh−1 ≥ κ/2. We showed that ε & min(1, h),
which completes the proof of the lower bound.

4 Upper bound

To show the upper bound, for any h > 0 we will construct a deformation with excess
energy bounded by Ch. Since we are not trying to get optimal constant, it is enough to the
construction only for h = k−2, k ∈ N. Moreover, w.l.o.g. we can assume h ≤ L−Rin.

We first define ζ and obtain estimates for some of its derivatives. We use ζ to define uθ,
and use ur := ũr. Finally, we estimate the excess energy ε.

Step 1: Let ϕ : [0,∞)→ [0, 1] be a smooth function with support in (1/4, 4) such that
for all x ∈ (0, 1]

∞∑
n=0

ϕ2 (4nx) = 1. (4.1)

Let N ∈ N be chosen such that h
4 ≤ 4−N (L−Rin) ≤ h. Then we define

ζ (r, θ) := 2
√

2πh
1
2 ((−ũr(r))r)

1
2

N∑
n=0

ϕ

(
L− r
L−Rin

4n
)

2−n cos
(

2nh−
1
2 θ
)

(4.2)

for r ∈ (Rin, L) and ζ = 0 otherwise.
Step 2: Formal estimates on ζ and the excess energy ε.
Before we do rigorous but tedious estimates of ζ let us present some heuristics. Looking

at (4.2) and using that ϕ is supported in (1/4, 4), we see that for any r ∈ (Rin, L) at most
two terms in the sum are present. Hence, with a little simplification we can think of ζ as
a sinusoidal curve with radius-dependent amplitude and period. Accepting this viewpoint,
the amplitude and period are easy to compute:

Since ϕ
(

L−r
L−Rin

4n
)
6= 0 only if L−r

L−Rin
4n ∈ (1/4, 4), we see that |ζ| ∼ h1/2 (−ũr(r)r)

1
2 2−n ∼

h1/2(L − r), where we used that (−ũr(r)r)
1
2 = β(r) ∼ (L− r)

1
2 and 2−n ∼ (L− r)

1
2 . The

period is simply 2−nh1/2 ∼ h1/2 (L− r)
1
2 .

Having this, it is straightforward to guess what estimates on ζ one could expect. We
already have

ζ(r, θ) ∼ h
1
2 (L− r). (4.3)

Taking formally derivatives in r gives

∂rζ(r, θ) ∼ h
1
2 and ∂rrζ(r, θ) ∼ h

1
2 (L− r)−1. (4.4)
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Since the period is of order h
1
2 (L− r)

1
2 , taking derivative in θ is as dividing by the period,

and so the above suggests

∂θζ(r, θ) ∼ (L− r)
1
2 , ∂rθζ(r, θ) ∼ (L− r)−

1
2 , and ∂θθζ(r, θ) ∼ h−

1
2 . (4.5)

Moreover, ζ is defined in such a way that

1

2π

∫ 2π

0

1

2r2
(∂θζ)2 dθ =

−ũr
r

(4.6)

for r ∈ (Rin, L− 4−N (L−Rin)).
Before we prove the above estimates (at least the upper bounds), let us show how these

estimates imply the upper bound on the excess energy ε. To do that we will first define uθ
(and take ur = ũr) and estimate all the terms in (2.7).

In order to have ur
r + 1

r∂θuθ + 1
2r2

(∂θζ)2 = 0 (at least for r ∈ (Rin, L− 4N (L− Rin))),
for r ∈ (Rin, L) we define

uθ(r, θ) := − 1

2r

∫ θ

0

(
(∂θζ)2 −

(
1

2π

∫ 2π

0
(∂θζ)2

))
dθ. (4.7)

Since ζ is h
1
2 -periodic in θ, by definition uθ is also h

1
2 -periodic. That means in the following

estimates we can assume |θ| ≤ h
1
2 . By (4.5) we have

|uθ(r, θ)| . |θ| (L− r) ≤ h
1
2 (L− r). (4.8)

Similarly, for ∂ruθ we get

|∂ruθ(r, θ)| . |θ|
(
‖∂θζ(r, ·)‖2L∞ + ‖∂θζ(r, ·)‖L∞‖∂rθζ(r, ·)‖L∞

)
. h

1
2 . (4.9)

Now we can estimate terms in (2.7):

• ∂rũr . 1, and so by (4.4) we have
∫
A ∂rũr (∂rζ)2 . h;

• ũr = ur, and so by (4.4) we have
∫
A

(
∂rũr − ∂rur − 1

2 (∂rζ)2
)2

= 1
4

∫
A (∂rζ)4 . h2;

• (ur)+ and ζ have distinct support, and so 1
r2

(
(ũr)+
r

)
(∂θζ)2 = 0 everywhere;

• the term
(
(ũr)+
r −

(
ur
r + 1

r∂θuθ + 1
2r2

(∂θζ)2
))2

vanishes except for a small region r ∈
(L − 4−N (L − Rin), L) (a cut-off region, with size of order h), where it is enough to
estimate the term pointwise by a constant (but this term is, in fact, much smaller –
of order h2);

• by (4.8),(4.9),(4.4), and (4.5) we have
(

1
2r∂θur + 1

2∂ruθ −
1
2ruθ + 1

2r∂rζ∂θζ
)2

. h;

• finally, by (4.4) and (4.5) the bending term is bounded by a multiple of h2
∫ L−Rin

h/4
h
r2

+

r−1 + h−1 dr . h.
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This concludes the proof of the upper bound provided we rigorously show (4.3), (4.4), and
(4.5).

Step 3: Proof of (4.3-4.5). As long as L−r ≥ (L−Rin)4−N we have
∑N

n=0 ϕ
2
(

L−r
L−Rin

4n
)

=

1, and so for such r∫ 2π

0
(∂θζ)2 dθ = 4 (2π)h ((−ũr(r))r)

N∑
n=0

ϕ2

(
L− r
L−Rin

4n
)

2−2n
∫ 2π

0
sin2

(
2nh−

1
2 θ
)

22nh−1 dθ

= 4π(−ũr(r)r), (4.10)

where we used that h−
1
2 is an integer and that sin(kθ) are orthogonal in L2(0, 2π). Moreover,

it follows from (4.2) that
ζ(r, ·) is h1/2-periodic. (4.11)

Next

|∂rζ(r, θ)| . h1/2
N∑
n=0

∂r

(
β(r)ϕ

(
L− r
L−Rin

4n
))

2−n, (4.12)

where β(r) was define in (2.6). Since ϕ has support in (1/4, 4), we see that ϕ
(

L−r
L−Rin

4n
)
6=

0 only if 4−n ∼ L − r. Moreover, at most 2 terms in the sum are not zero, and so∣∣∣∂r (β(r)ϕ
(

L−r
L−Rin

4n
))∣∣∣ 2−n (2.6)

.
(

(L− r)−
1
2 + (L− r)

1
2 4n

)
2−n . 1 implies

|∂rζ(r, θ)| . h1/2. (4.13)

For ∂θζ we directly have

|∂θζ(r, θ)| . (L− r)
1
2 , (4.14)

where we again used that at most two terms in the sum in (4.2) are not zero. For the second
derivatives of ζ we similarly obtain

|∂θθζ| . h
1
2β(r)

N∑
n=0

ϕ

(
L− r
L−Rin

4n
)

2−n22nh−1 . h−
1
2 , (4.15)

where we again used that only the terms for which (L − r) ∼ 4−n are present, and so β,

which by (2.6) is smaller than C(L− r)
1
2 , cancelled with

(
2−n22n

)
. Next

|∂rθζ| .
∣∣∣∣∂r (β(r)ϕ

(
L− r
L−Rin

4n
))∣∣∣∣ . 2n . (L− r)−

1
2 , (4.16)

where as before n is such that 4−n ∼ L− r. Finally we have

|∂rrζ(r, θ)| . h
1
2 2−n

∣∣∣∣∂rr (√−urrϕ( L− r
L−Rin

4n
))∣∣∣∣ . h

1
2

L− r
, (4.17)

where again n is such that 4−n ∼ L− r.
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5 Proof of the Lemma

First we observe that if RinTin > RoutTout the energy (2.2) is not bounded by below, so in
the following we assume RinTin ≥ RoutTout. Let f(r) := Rout−r

Rout−Rin
RinTin+ r−Rin

Rout−Rin
RoutTout

be a linear function interpolating between TinRin at r = Rin and ToutRout at r = Rout.

Then clearly f > 0 and ∂rf ≥ 0 in (Rin, Rout). Since ∂r(f(r)ur(r)) = r
(
∂rf

ur
r + f

r ∂rur

)
,

the energy (2.2) can be written as

Erel(ur, 0, 0)/2π =

∫ Rout

Rin

r

(
(∂rur)

2
+ −

f

r
∂rur +

(ur
r

)2
+
− ∂rf

ur
r

)
dr. (5.1)

Since both f and ∂rf have the correct sign, we see that the energy is bounded from below
and that any minimizing sequence ∂rur is bounded in L2(Rin, Rout). We see that if TinRin =
ToutRout, ∂rf = 0 and the variational problem is degenerate and possesses infinitely many
solutions of the form ur(r) := α for all α ≤ 0.

Let us therefore consider the case TinRin < ToutRout. In this case f > 0 and ∂rf > 0,
and the minimizing sequence is bounded in W 1,2 ∩ L∞(Rin, Rout). Hence the existence of
a minimizer can be shown using direct method of Calculus of Variations. We observe that
the minimizer has to satisfy ∂rur ≥ 0 a.e. Indeed, it this were not the case, we define
v(r) := ur(Rout) −

∫ Rout

r (∂rur(r
′))+ dr′ so that (∂rv)+ = (∂rur)+, v+ ≤ (ur)+. Since

v(Rin) < ur(Rin), energy of v would be strictly smaller than of ur.
Now we replace the first integrand in the energy functional by (∂rur)

2. Since ∂rur ≥ 0
a.e., we see that ur will still be minimizer of this new (possibly larger) energy functional.
The advantage of this functional over the previous is that we can integrate by parts to
derive the Euler-Lagrange equations:

∂r (r∂rur(r)) =
ur(r)+
r

, (5.2)

with the boundary conditions 2∂rur(Rin) = Tin and 2∂rur(Rout) = Tout. Since (ur)+ ≥ 0,
we see that r∂rur(r) is non-decreasing and (2.5) follows. Hence ur is strictly increasing,
and so ur < 0 in (Rin, L) and ur > 0 in (L,Rout) (where possibly L = Rin or L = Rout).

We would like to derive conditions on the data so that Rin < L < Rout. In the case
L = Rout the quantity rur(r) would be constant, in particular we would have TinRint =
ToutRout. Hence it remains to rule out the case L = Rin (no azimuthal compression). Using
the Euler-Lagrange equation and the boundary values we compute explicitly the solution

2ur(r) =
Tin − Tout
R−2out −R

−2
in

1

r
+
ToutR

2
out − TinR2

in

R2
out −R2

in

r, (5.3)

and observe that ur(Rin) < 0 provided the second condition in (2.3) holds.
Since for r ∈ (Rin, L), ur(r) = C log

(
r
L

)
for with some C > 0, (2.6) follows by a direct

computation.
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