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1 Orientation, and the model

These notes supplement Robert Kohn’s Lecture 3 at the 2014 PCMI Graduate Summer
School. For background and heuristic arguments, see the pdf of that lecture. For physics-
oriented discussions of this topic see [4] and [3]. For upper and lower energy bounds similar
to those presented here but using nonlinear elasticity and a rather general membrane model
see [1].

We want to study deformations of a thin elastic sheet of annular shape, which is loaded
radially at the inner and outer boundary by uniform forces T;, and Ty, respectively. To
keep things simple we consider very simple form of the energy — Foppl-von Kdrman energy'
with zero Poisson ratio. The deformation is then describe by the in-plane displacement
w = (w1, wz) and out-of-plane displacement u3, and should minimize

Ep(w,u3) = /A

2

1
e(w) + §VU3 ® Vus| + h? ‘V2u3‘ dx+

]

/ Tinw(z) - o —/ Toww(z) - =z do, (1.1)
|x‘:R’Ln Ix‘:Rout ":L‘|

where by R;, and R, we denoted the inner and outer radius, respectively; the domain
is A = {z € R?: |2| € (Rin, Rowt) }; e(w) is the linear strain e(w) = (Vw + V'w) /2; and
h > 0 is the thickness of the sheet.

The domain and applied forces are radially symmetric, and so it will be convenient to
use polar coordinates r € (R, Rout) and 6 € [0,27). If u,,up denotes the in-plane part
of the displacement in the radial and azimuthal direction, respectively, and ¢ denotes the

!The FvK viewpoint is appropriate in the small-strain, small-slope regime, and is often used in the physics
community.



out-of-plane displacement, the energy has the form

Eh(UTa ug, C) =

2
/ ( Ovuiy + 5 (0:C)? oot + 30,0 — -0 + 5:0,0C > - drdf
A\ 0wy + 20,up — up + £,C0pC U 4 L9gug + 5t (06C)°

2 1
+ h2/ (!aﬂcr? + S 1000C + \aggcﬁ) rdrdf
A r r

+ Tm/ uprdf — Tout/ uyrdf. (1.2)
r=Rin r=Rout

The first integrand is called membrane energy, the one with prefactor h? bending energy,
and the last two integrals represent applied loads.

Let E,. denotes the relaxation (I'-limit) of energy functionals Fj. Then E,¢ has a
unique (up to a translation) minimizer (4,,0,0), i.e. the minimizer is radially symmetric
and stays in-plane. In this note we prove the following: Let & denotes the relaxed energy
of the minimizer and let the loads T, > 0 and Ty, > 0 satisfy (2.3). Then there exist
constants 0 < Cp < C1 such that for any h € (0,1) we have

&+ Coh <min Ey, < &)+ Cih. (1.3)

Here and also later, all the constant depend only on the data, i.e. radii R;,, Roy: and
loads T, Tout- In the following a < b, a 2 b, a ~ b, will stand for a < Cb, a > Cb,
C~'a < b < Ob, respectively.

Before we turn to the proof of (1.3), let us write its key steps:

e we write the relaxed energy F,¢, and show it has a unique, radially symmetric min-
imizer @,. Moreover, assumption (2.3) implies that @, < 0 and @, > 0 in connected
and non-empty parts of the annulus (we will call these regions inner and outer region,
respectively);

e given any deformation u,, ug, ¢, we compute the difference between its energy Ej, (u,, ug, ¢)
and & = E,¢ (U, 0,0). If we denote this excess energy by e, the lower bound in (1.3)
is equivalent to showing that & 2 h;

e we observe that [ 410:C |2 < &, which together with control on variations of ¢ in the
azimuthal direction in part of the annulus implies control on L?-norm of ( itself;

e we also observe that h? [ A41VV( |2 < e. Then by interpolation with the previous
estimate we get th |VC!2 < g, in particular th \89C|2 <eg;

e we show that if £ is small (meaning it is smaller than some fixed constant), then u,
is sufficiently close to ,. Since in the inner region @, < 0, the same has to be true
for u, in a slightly smaller region. Then either we have compression in this region
(which would contribute O(1) to the excess energy) or there is a non-trivial out-of-
plane displacement ¢ in this region — in this case we get that [ |9pC |2 2 1 in this
region, which combined with above implies € 2 h;



e to prove the upper bound (the second inequality in (1.3)), given h € (0,1) we need
to construct (define) a deformation with energy smaller than & + Ch. A naive first
idea is to set u, := U, and for { use a sinusoidal profile with appropriate radius
dependent amplitude and some fixed (optimized) period to release the compression
in the azimuthal direction in {u, < 0}. By doing this (modulo some cut-off near the
transition from wrinkled to planar state) we obtain deformation with energy bounded
by & + Ch (|logh| + 1) — a worse estimate that we expected.

e to get the optimal scaling, we introduce a construction with radius dependent period
(i.e. with the radius we change not only the amplitude of wrinkles, but also the
wavenumber).

2 The relaxed problem

Using the result of Conti, Maggi, and Miiller [2], relaxation of (1.2) can be written as

Erel(ura Ug, C) =

2
/ ( Oruy + % (@()2 %801%“ + %OTUO - %UH + %QTCGHC ) + loads .
A 2—17489ur + %&«U@ — 2—1TUQ + 2—17,&@9@“ a4 %agug + # (09C) n

(2.1)

Here (A)f_ = inf{|A + B|? : B = B' > 0} denotes square of the Frobenius norm of the

positive part of the matrix. It is easy to see that (A)?i- = ()\1)%r + ()\2)3_, where Aj,\o

are eigenvalues of A, and fi = max(f,0). This has the following physical interpretation:
as h — 0, any compression (which corresponds to the negative part of the strain) can be
removed by (infinitesimally) small out-of-plane oscillations (these oscillations “introduce”
B). We observe that since the contribution from ( is a positive matrix, we can assume
¢ = 0 while looking for a minimizer of E,..;. Moreover, since the problem domain and loads
are radially symmetric, it makes sense to first look for a radially symmetric minimizer.
Assuming ¢ = 0, ug = 0, and Jpu, = 0, the energy (2.1) simplifies significantly

Rout U 2
Erel(uraoao) =27 </ r <(8rur)3_ + (;)+> dr + TmRmur(Rm) - ToutRoutur(Rout)> .
Rin
(2.2)
We want to find conditions on the data (radii and forces) so that u,, minimizer of (2.2), is
negative in part of the domain. We will show the following:

Lemma. Let T;, > 0 and Ty > 0 satisfy

RinTin < RowtTouwr  and Tin o Rut : (2.3)
Tout R + R2

out

Then (2.2) has a unique minimizer u,. Moreover, there exists L € (Rjn, Rout) such that

iy <0 in (Rin, L), @y >0 in (L, Rout)- (2.4)



We also have

Oply > gﬂTm and Oy (royu,(r)) = U (r)+ (2.5)

out r

and for r € (Ripn, L) the function B(r) := (—ﬂr(r)r)% satisfies

[NIES
Nl

BV S (L=7)2, 1080 S (L=7)"2, [0mBO) S (L—7) (2.6)

Proof. The proof is elementary (but lengthy), and will be given in the last section. O

To observe that u, is a minimizer of (2.1), we use that (u,,0,0) is a critical point of
(2.1) and that (2.1) is a convex functional (see [2]). It will be clear later that in fact it is
the unique minimizer (up to a translation), i.e. the only solution to the relaxed problem is
radially symmetric.? Then

~ 2
- Oy 0
Eh(ura Uug, C) - Erel(ura 0, 0) = Eh(uraue) C) - </A < 0 (Gr) 4 > + loads )

2
= / Oty (87°C)2 + <arﬂr — Opuy — 1 (87"C)2>
A 2

2 <(u;)+> (99)* + ((ﬂ;)+ - (1: + %C%ug + 21? (5902))2

r2

1 1 1 1 S s 2 , 1 )
+ 2 <2Tagur + 58&@ — glm + 2T&»C69C> +h (’877( + 2 \6r94| + ) ]8990 )

=20,
(2.7)

where we used (2.5). Using Taylor expansion of Ej, around the relaxed solution, the above
relation can be understood as follows: since @, is the solution to the relaxed problem (in
particular critical point), the first variation of Ej wrt the in-plane directions (i.e. in wu,
and wuy) vanishes, and only the quadratic terms (which in our setting are very simple since
the second variation in the strain is just twice the identity) remain. We know that the
contribution from the out-of-plane displacement ( can only increase the energy, which is
consistent with the above equality (recall that 0,4, > 0 and (@,)4+ > 0).

3 Lower bound
Our goal is to prove a lower bound € 2 min(1, %) (which implies € 2 h since we consider

only h <1).
By (2.5) O, is strictly larger than 0, and so (2.7) implies

/A (0,0 <. (3.1)

2From the physical point of view this is natural, since we expect the symmetry will break only by wrinkles
—ie. if h > 0.



Since @, > 0 in (L, Royt), we have 4, > § > 0in O = ((L + Rout)/2, Rout) % [0,27), and

(2.7) implies ~
Lcrs [ 5 (%) @or < (32)

We combine two previous estimates to get [, [V¢ |2 < e. Application of Poincaré inequality
gives [, ‘C — 5‘2 < €, which using (3.1) can be upgraded to the whole A:

/ -’ <e. (3.3)
A

From (2.7) we get that [, |VV(|? < eh2, and so by interpolation between that and (3.3)
we get fA |V(|2 < eh~!, and in particular

/ (89¢)* < eh™t. (3.4)
A

Now we want to show that | 4 (08¢ )2 2 1 provided € < 1, which in turn will imply the
desired bound on €. Let v := @, — u,. We want to show that

21
F(r) ::/ v(r,0)do (3.5)
0
is small for all r € (Rjp, Rout). By (2.7)
v 1 1 5 2
Z_Z - < .
(2= tomn - 5z @) < (36)
and so
Rout F(T) v v 1 1 5 1 5 (3.6),(3.2)
/(L+Rout)/2 . dr /(97“ < /(97“ Taeue o2 (96¢) 5,2 /0(590 S et
(3.7)

1 2
By (2.7) we have / (&,U -5 (87()2) < g, which together with (3.1) and using the same
A

idea as above gives |F(rg) — F(r1)| < € 4+ €'/2. Therefore, by (3.7) we get for any r €
(RinaRout)

/% i (r) — un(r, 0) de‘ CF()| < e+ V2. (3.8)
0

Now let Z := (Rjn, (Rin + L)/2) x [0,27). We write

[ o002 = [ (% + oo+ o5 (390) [(E-m)- [ e

2
( + (%ug —|— (89C) ) < g, and so

/ﬁr_ur <ell?4e
T\ r r )|~ '

(3.10)

Since @, < 0 in Z, by (2.7) /

A
‘/1233(89@)%/13 <[|=

+ 89U9 +t5.3 (390




Moreover, —t, > k > 0 in Z, which gives

/ (060)* 2 5 — Cle + 1), (3.11)
T
where C' and x depend only on the data. Combining this with (3.4) gives

eh™! > Kk — C(e +€V?), (3.12)

and so either € +&/2 > k/2C (i.e. € > 1) or eh~' > k/2. We showed that ¢ > min(1, h),
which completes the proof of the lower bound.

4 Upper bound

To show the upper bound, for any h > 0 we will construct a deformation with excess
energy bounded by C'h. Since we are not trying to get optimal constant, it is enough to the
construction only for h = k2, k € N. Moreover, w.l.o.g. we can assume h < L — R;,.

We first define ¢ and obtain estimates for some of its derivatives. We use ¢ to define uy,
and use u, := u,. Finally, we estimate the excess energy ¢.

Step 1: Let ¢ : [0,00) — [0, 1] be a smooth function with support in (1/4,4) such that
for all = € (0,1]

> (') =1. (4.1)
n=0

Let N € N be chosen such that % < 4*N(L — Rj») < h. Then we define

¢ (r,0) := 2v/27h3 (( Z¢<L A >2 "cos( o~ 20) (4.2)

for r € (Rin, L) and ¢ = 0 otherwise.

Step 2: Formal estimates on ¢ and the excess energy ¢.

Before we do rigorous but tedious estimates of ¢ let us present some heuristics. Looking
at (4.2) and using that ¢ is supported in (1/4,4), we see that for any r € (R;,, L) at most
two terms in the sum are present. Hence, with a little simplification we can think of ( as
a sinusoidal curve with radius-dependent amplitude and period. Accepting this viewpoint,
the amplitude and period are easy to compute:

Since ¢ ( = n) # 0 only if Z27—4" € (1/4,4), we see that |¢| ~ h1/? (—a (r)r)% 9-n
RY2(L — ), Where we used that (—ﬂT(r)r)% = B(r) ~ (L — 7«)% and 2" ~ (L — )% The
1
period is simply 27 "h'/2 ~ h1/2 (L —r)2.
Having this, it is straightforward to guess what estimates on ( one could expect. We
already have

C(r,0) ~ h2(L —r). (4.3)

Taking formally derivatives in r gives

0,C(r,0) ~h2 and 9, C(r,0) ~ h2(L—7r)". (4.4)



N|=

Since the period is of order h2 (L—r)
and so the above suggests

, taking derivative in 6 is as dividing by the period,

N
N|=

00C(r,0) ~ (L—7)2,  0C(r,0) ~(L—7)"2, and 9ppC(r,0) ~h73.  (4.5)
Moreover, ( is defined in such a way that

2w s
L7 L 02 a0 = =

o ), 22 ;

(4.6)

for r € (Rin, L — 4 N (L — Rin)).

Before we prove the above estimates (at least the upper bounds), let us show how these
estimates imply the upper bound on the excess energy €. To do that we will first define uy
(and take u, = 4,) and estimate all the terms in (2.7).

In order to have = + 19pug + 55 (89¢)* = 0 (at least for r € (Rin, L — 4N (L — Ry,))),
for r € (Rjn, L) we define

wir0)i= o [ (00 (5 [ @) . (4.7

Since ( is h%—periodic in 6, by deilinition ug is also h%—periodic. That means in the following
estimates we can assume || < hz. By (4.5) we have

lug(r,0)| < |0] (L — 1) < h2(L — 7). (4.8)
Similarly, for d,ug we get

1
[0ruo(r, 0)] S 101 (196G (r, )70 + 106C(r, ) zoe [10r6¢ (1, )| 1oe) S P2 (4.9)
Now we can estimate terms in (2.7):

e 0,u, $1, and so by (4.4) we have [, 0,1y, (8,0)* < h;

~

2
o @iy = uy, and so by (4.4) we have [, (arar — Oty — 1 (@4)2) =1 [,0.0" Sk

e (u;)+ and ¢ have distinct support, and so %2 (M> (99¢)* = 0 everywhere;

T

_ 2
e the term (M — (% + %({)gue + # (8902)) vanishes except for a small region r €

T
(L —4=N(L — R;,), L) (a cut-off region, with size of order h), where it is enough to
estimate the term pointwise by a constant (but this term is, in fact, much smaller —
of order h?);

e by (4.8),(4.9),(4.4), and (4.5) we have (5dpu, + 30rug — =ug + %&C@g{f < h;

e finally, by (4.4) and (4.5) the bending term is bounded by a multiple of h? th/ZRi” r% +

r~ 1+ h~tdr < h.



This concludes the proof of the upper bound provided we rigorously show (4.3), (4.4), and
(4.5).

Step 3: Proof of (4.3-4.5). Aslong as L—r > (L—R;,)4~" we have ZnN:o ©? (LL__RCn 4”) =
1, and so for such r

/0 T 00 o = 4(2w)h((—ar(r))r)§:¢2 < LL__R: n4"> g-2n /0 7 gin? (2%h30) 22h o
= Arn(—u.(r)r), (4.10)

where we used that h~2 is an integer and that sin(k@) are orthogonal in L?(0, 27). Moreover,
it follows from (4.2) that
¢(r,-) is h'/?-periodic. (4.11)

Next

N
0.0 S B2 0, (ﬁ(r)so ( . 4)) o, (1.12)
=0 in

where 3(r) was define in (2.6). Since ¢ has support in (1/4,4), we see that ¢ (ﬁzﬂl) £

0 only if 4™ ~ L — r. Moreover, at most 2 terms in the sum are not zero, and so
(2.6)

Or <ﬁ(7‘)<,0 (LL_j{;n 4”)) ‘ 27 < ((L - r)_% + (L — r)% 4”) 27" < 1 implies

0:C(r,0)] < W12, (4.13)
For 0y we directly have
1
|06C(r, )] S (L —7)2, (4.14)

where we again used that at most two terms in the sum in (4.2) are not zero. For the second
derivatives of { we similarly obtain

L—r
L_Rin

N
O0C] S BEB0)Y ( 4“) g gy < b, (4.15)
n=0

where we again used that only the terms for which (L — r) ~ 4™ are present, and so [3,
which by (2.6) is smaller than C'(L — r)%, cancelled with (27"2%"). Next

‘8r0<| ,S

o (B (e} )| s 2" S (L=}, (4.16)
L—R;,

where as before n is such that 47" ~ L — r. Finally we have

10,,C(r,0)] < h227"

1
Opr (x/—u,«rcp <LL__]:§ 4"))‘ < he (4.17)

where again n is such that 4™ ~ L —r.



5 Proof of the Lemma

First we observe that if R;,Tin > RoutTout the energy (2.2) is not bounded by below, so in
the following we assume R, Tin > RoutTout- Let f(r) := %Rmﬂn + #%RomT Dt

be a linear function interpolating between T;, R;, at 7 = Ry, and Ty Rowr at 7 = Ryt
Then clearly f > 0 and 0,f > 0 in (Rjn, Rout). Since O.(f(r)u,(r)) =r <6rf1;—r + %&ur),

the energy (2.2) can be written as

Rout uT’

Eya(uy,0,0)/27 = / r <(6Tur)i - gﬁru,« v (T)i _ 9, fi) dr. (5.1

Rin
Since both f and 0, f have the correct sign, we see that the energy is bounded from below
and that any minimizing sequence d,u, is bounded in L?(R;y,, Rout). We see that if Ty, Ry, =
Tout Rout, Orf = 0 and the variational problem is degenerate and possesses infinitely many
solutions of the form w,(r) := a for all o < 0.

Let us therefore consider the case T, Rin < ToutRout. In this case f > 0 and O0,.f > 0,
and the minimizing sequence is bounded in W12 N L*°(Rjn, Rout). Hence the existence of
a minimizer can be shown using direct method of Calculus of Variations. We observe that
the minimizer has to satisfy d,u, > 0 a.e. Indeed, it this were not the case, we define
v(r) == u(Rout) — fTR"“t (Orur (1)), dr’ so that (9,v)y = (Orur)y, vy < (up)y. Since
V(Rin) < ur(Rsyn), energy of v would be strictly smaller than of u,.

Now we replace the first integrand in the energy functional by (6TuT)2. Since J,u, > 0
a.e., we see that u, will still be minimizer of this new (possibly larger) energy functional.
The advantage of this functional over the previous is that we can integrate by parts to
derive the Euler-Lagrange equations:

0, (rpup(r) = 0t (5.2)

r
with the boundary conditions 20,u,(R;,) = Tin and 20,uy(Rout) = Tout- Since (u,)4 > 0,
we see that r0,u,(r) is non-decreasing and (2.5) follows. Hence w, is strictly increasing,
and so u, < 0in (R, L) and u, > 0 in (L, Ryye) (where possibly L = Ry, or L = Ryyt).
We would like to derive conditions on the data so that R;, < L < Rgy:. In the case
L = R,y the quantity ru,(r) would be constant, in particular we would have T, R;ny =
Tout Rout- Hence it remains to rule out the case L = R;,, (no azimuthal compression). Using
the Euler-Lagrange equation and the boundary values we compute explicitly the solution

Ti — dout 1 ToutR2 - Tanfn

2u,(r) = — —— + out T, (5.3)
" Rou2t - Ring r R(Q)ut - Rzzn

and observe that u,(R;,) < 0 provided the second condition in (2.3) holds.
Since for r € (Rin, L), u,(r) = Clog () for with some C' > 0, (2.6) follows by a direct
computation.
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