
PCMI – Kohn – Problems for TA Session 2

Problems 1 and 2 are related to the relaxation of our membrane energies (discussed in
Lecture 2). Problem 3 (which is independent of the others, and could easily occupy the
entire hour-long TA session) develops the most accessible aspects of a classic example where
the length scale of the microstructure varies with position.

(1) In Lecture 2 we discussed the relaxation of the membrane energy W (Dg) = |DgTDg−
I|2, which can also be written as W (Dg) = (λ21− 1)2 + (λ22− 1)2 where λ1 and λ2 are
the principal stretches (the eigenvalues of (DgTDg)1/2). The relaxation turned out
to be f(Dg) = (λ21 − 1)2+ + (λ22 − 1)2+. In the argument showing that the relaxation is
less than or equal to f , we made repeated use of “one-dimensional oscillations.” That
argument can be generalized as follows:

LAYERING LEMMA: Let M0 and M1 be m × n matrices, with the property that
M1 − M0 = a ⊗ n for some a ∈ Rm and n ∈ Rn. Fixing θ between 0 and 1, let
Mθ = (1 − θ)M0 + θM1. Then for any (reasonable, bounded) domain D ⊂ Rn and
any ε > 0, there is a function gε : D → Rm such that

- gε(x) = Mθ · x for x ∈ ∂D,

- the subset of D where Dgε = M1 has measure θ|D| ± Cε,
- the subset of D where Dgε = M0 has measure (1− θ)|D| ± Cε,
- the maximum gradient is controlled: ‖Dgε‖L∞(D) ≤ C.

Here C is a positive constant that’s independent of ε.

OK, here are the questions:

(a) Identify the sense in which the Layering Lemma generalizes what we did in
Lecture 2.

(b) Prove the special case of the Layering Lemma that was used in Lecture 2.

(c) Once you have done (b), proving the Layering Lemma in full generality is not
much more difficult. Try it.

(2) In Lecture 2, I asserted that the relaxation of the von Karman membrane energy
W = |e(w) + 1

2∇u3 ⊗ ∇u3|
2 is f = (µ1)

2
+ + (µ2)

2
+, where µi are the eigenvalues of

e(w) + 1
2∇u3 ⊗∇u3 and (t)+ = max{t, 0}.

(a) Using an argument parallel to that applied in the nonlinear setting, show that
the relaxed energy is less than or equal to f .

(b) Using an argument parallel to that applied in the nonlinear setting, show that
the relaxed energy is greater than or equal to f .

(c) Show that f is a convex function of e and ∇u, by fillling in the details of the
following argument:
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(i) We are working with the function W (e, ξ) = |e + 1
2ξ ⊗ ξ|2, defined on

symmetric 2 × 2 matrices e and 2-vectors ξ. Check that the relaxation
f(e, ξ) = (µ1)

2
+ + (µ2)

2
+ has the alternative expression

f(e, ξ) = min{|e+ 1
2ξ ⊗ ξ +M |2 : M ≥ 0} (1)

in which M ranges over 2 × 2 symmetric matrices with nonnegative eigen-
values.

(ii) Fix e0, ξ0, e1, ξ1, and θ ∈ (0, 1), and set eθ = θe1 + (1 − θ)e0, ξθ = θξ1 +
(1 − θ)ξ0. Our goal is to show that f(eθ, ξθ) ≤ θf(e1, ξ1) + (1 − θ)f(e0, ξ0).
In view of (1), we can choose symmetric, nonnegative matrices M0 and M1

such that f(ei, ξi) = |ei + 1
2ξi ⊗ ξi +Mi|2, and our goal can then be written

as

min{|eθ + 1
2ξθ ⊗ ξθ +M |2 : M ≥ 0} ≤

θ|e1 + 1
2ξ1 ⊗ ξ1 +M1|2 + (1− θ)|e2 + 1

2ξ2 ⊗ ξ2 +M2|2. (2)

Check that when M∗ = θM1 + (1− θ)M0 + 1
2θ(1− θ)(ξ1 − ξ0)⊗ (ξ1 − ξ0) we

have M∗ ≥ 0 and

eθ + 1
2ξθ ⊗ ξθ +M∗ = θ(e1 + 1

2ξ1 ⊗ ξ1 +M1) + (1− θ)(e2 + 1
2ξ2 ⊗ ξ2 +M2),

and show that this implies the validity of (2).

(3) This problem leads you through the most accessible aspects of the problem

min
u=0atx=0
uy=±1

∫
0<x<L, 0<y<1

u2x + ε|uyy| dx dy. (3)

Note that this problem is more or less geometric: the domain is divided into two
regions, where uy takes the value +1 and −1 respectively, separated by interfaces.
The first term prefers that the interfaces be horizontal. The second prefers to avoid
interfaces (its value is 2ε times the total length of their projections onto the x axis).
The boundary condition at x = 0 requires that there be lots of interfaces, at least near
x = 0. We will show in this problem that the minimum value Eε is of order ε2/3L1/3.

(a) Consider the behavior of u(x0, y) as a function of y. Since uy = ±1, its graph

is a sawtooth, and
∫ 1
0 |uyy| dy is simply two times the number of teeth. Show

that if there are N teeth at x = x0, then
∫ 1
0 u

2(x0, y) dy ≥ cN−2 (with c > 0
independent of N).

(b) Now let u(x0, y) = g(y), and consider the convex variational problem

min
u=0atx=0
u=g atx=x0

∫
0<x<x0, 0<y<1

u2x dx dy,

which is clearly a lower bound for (3). (It plays a role analogous to the relaxed
membrane energy discussed in Lecture 2.) Show that the minimizer u∗ is affine
in x, i.e. that it is u∗(x, y) = (x/x0)g(y). Conclude that the minimum value is
1
x20

∫ 1
0 |g(y)|2 dy.

2



(c) Now consider any u that’s admissible for (3), i.e. any u(x, y) such that u = 0
at x = 0 and uy = ±1. If the value of (3) is not too large, then there must
clearly be not too many teeth above a typical choice of x0. But parts (a) and (b)
combine to show that if the number of teeth above x0 is small, then the energy
in the region 0 < x < x0 is large. Using this tradeoff, show that the minimum of
(3) is at least Cε2/3L1/3.

(d) Is this estimate realizable? Provide a heuristic argument that if the spacing of the
teeth above x is roughly `(x), then

∫
u2x dx dy ∼

∫
(`′)2 dx and

∫
ε|uyy| dx dy ∼∫

ε`−1 dx. (Hint for the former: argue as you did for part (a), to show that for

any x0 < x1,
∫
x0<x<x1

u2x dx dy ≥ 1
x1−x0

∫ 1
0 |u(x0, y) − u(x1, y)|2 dy). Conclude

that the scaling Eε ∼ ε2/3L1/3 will be achieved when `(x) ∼ ε1/3x2/3.
(e) Show that the construction suggested by (d) is possible. Hint: the main task is to

envision how you can get N teeth at x1 and 2N teeth at x0 < x1 while preserving
the constraint uy = ±1 and respecting the heuristic estimates obtained in (d).
The answer is a function whose graph looks something like the figure below.

For more on this topic, see R.V. Kohn & S. Müller, Relaxation and regularization
of nonconvex variational problems, Rendiconti del Seminario Matematico e Fisico di
Milano 62 (1992) 89-113 (an expository summary of Kohn and Müller, CPAM 47,
1994, 405-435). Additional references: for the connection between this problem and
twinning in martensitic phase transformation see Kohn and Müller, Phil Mag A 66
(1992) 697-715; for the behavior of minimizers near x = 0 see S. Conti, CPAM 53
(2000) 1448-1474.
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