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(1) Introduction
Prediction with expert advice as a 2-person, zero-sum game

(2) A nonlinear PDE for the scaled value function
Joint work with Nadejda Drenska, JNLS 2020

(3) A PDE-informed approach to choosing strategies
Joint work with Vladimir Kobzar and Zhilei Wang, COLT 2020

(4) Perspective
Pointers to analogous uses of PDE in other ML problems
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Online machine learning
In online machine learning, information arrives sequentially and
decisions must be made based on information available.

A widely-studied paradigm: predictor draws on guidance from N
experts, aiming to minimize worst-case regret.

VERSION 1: Predicting a binary sequence (the
stock prediction problem)

a time series – eg a binomial stock price tree;

a notion of gain/loss due to good/bad predictions (eg buy or sell
stock);

N experts (eg trading rules based on recent history);

predictor’s goal: do as well as the (retrospectively)
best-performing expert – or at least, don’t fall too far behind;

focus on worst-case scenario (malevolent market)

not today’s focus, but PDE’s are useful here too
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Today’s focus

VERSION 2: Predictor has no mind of his own – he just integrates the
advice of many experts. So let’s ignore any underlying time series.

N experts

predictor’s action: at each time step, “choose expert to follow”

to allow mixtures: predictor chooses a prob distrn on
{1, . . . ,N} (follow expert j with prob pj )

adversary’s action: at each time step, “choose experts’ gains
and losses” (eg for 3 experts, vector of gains can be (1,−1,1) or
(1,1,−1) or . . . )

to allow mixtures: adversary chooses a prob distrn on
{−1,1}N

One interpretation: experts⇔ market sectors,
predictor’s probabilities⇔ portfolio allocations.
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Prediction with expert advice as a 2-person game

Recall: predictor chooses a prob distrn (follow expert j with prob pj );
adversary chooses a prob distrn on the 2N expert gain scenarios.

This is a 2-person, zero-sum game. The state variables are

xj = j th expert’s gain− predictor’s gain = regret wrt j th expert.

The predictor’s value function is:

U(x , t) = expected final time regret, under worst-case scenario.

The dynamic programming principle says (if game ends at time T ):

U(x , t) = min
predictor′s

choices

max
adversary′s

choices

E[U(x + ∆x , t + 1)] for t < T

U(x ,T ) = φ(x) = max{x1, · · · , xN}
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Talk plan
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(2) A nonlinear PDE for the scaled value function
Joint work with Nadejda Drenska, JNLS 2020

(3) A PDE-informed approach to choosing strategies

(4) Perspective
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Focus on long-time behavior
In ML lit, a typical question is: estimate U(0, t) when T − t is large,
and give an easily-implemented strategy that does almost as well.

Continuum limits were designed for this; e.g. behavior of a random
walk after many time steps is captured by assoc diffusion process.

So: consider scaled value function uε(y , τ) = εU(y/ε, τ/ε2), where
ε = T−1/2 (so final time is τ = 1).

- dyn prog can be written in terms of uε: gains become ±ε (rather
than ±1); time step is ε2 (rather than 1).

- final-time condition is still φ(y) = maxi yi [other choices are
possible, provided φ is homogenenous of degree 1].

Claim:

There is a meaningful PDE limit; moreover, in finding it we learn
about both players’ optimal strategies.

For N = 2, 3, and 4 experts the PDE has been solved explicitly.
(So we know the optimal strategies explicitly.)
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Finding the PDE
SIMPLE VERSION: Scaled DPP defines uε. We expect uε → u. Find
the PDE by replacing uε by u in DPP and using Taylor expansion.

FANCIER VERSION: Scaled DPP is a semi-discrete numerical scheme
for the desired PDE. The simple version finds the PDE for which it’s a
consistent numerical scheme.

Recall that

predictor’s choice : follow expert k with prob pk

adversary’s choice : prob distr a of experts’ gains ε(g1, . . . ,gN).

If predictor follows expert k , then scaled regret increment is

∆y = ε(g1 − gk , . . . ,gN − gk ) = ε(g − gk
~1).

So scaled dyn prog prin is:

uε(y , τ) = min
pk≥0∑

pk =1

max
prob distr a on
g∈{−1,1}N

N∑
k=1

pk Ea[uε(y + ε(g − gk
~1), τ + ε2)]

Robert V. Kohn Prediction with expert advice



Finding the PDE
SIMPLE VERSION: Scaled DPP defines uε. We expect uε → u. Find
the PDE by replacing uε by u in DPP and using Taylor expansion.

FANCIER VERSION: Scaled DPP is a semi-discrete numerical scheme
for the desired PDE. The simple version finds the PDE for which it’s a
consistent numerical scheme.

Recall that

predictor’s choice : follow expert k with prob pk

adversary’s choice : prob distr a of experts’ gains ε(g1, . . . ,gN).

If predictor follows expert k , then scaled regret increment is

∆y = ε(g1 − gk , . . . ,gN − gk ) = ε(g − gk
~1).

So scaled dyn prog prin is:

uε(y , τ) = min
pk≥0∑

pk =1

max
prob distr a on
g∈{−1,1}N

N∑
k=1

pk Ea[uε(y + ε(g − gk
~1), τ + ε2)]

Robert V. Kohn Prediction with expert advice



Finding the PDE

Substitute uε by u (soln of anticipated PDE) in DPP:

u(y , τ) ≈ min
pk≥0∑

pk =1

max
prob distr a on
g∈{−1,1}N

N∑
k=1

pk Ea[u(y + ε(g − gk
~1), τ + ε2)].

RHS = u(y , τ) + ε[terms involving ∂k u] + ε2[terms involving ∂2
ij u and uτ ] + . . .

Zeroth order term u(y , τ) cancels LHS.

First order term seems dominant. But min-max of first-order term
alone is a linear programming problem. Its value is 0, achieved when

predictor’s choice is pk = ∂k u/(∂1u + · · · ∂Nu);
adversary’s choices are balanced: Ea[g1] = . . . = Ea[gN ].

The predictor’s strategies are fully determined but the adversary’s
strategies are not, so we must continue . . .
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Finding the PDE

Second order term is

uτ + max
Ea[gj ] indep of j

1
2

N∑
k=1

pkEa

[
〈D2u (g − gk

~1), (g − gk
~1)〉
]

= 0

in which pk = ∂k u/(∂1u + · · · ∂Nu). But this can be greatly simplified
using that

u(y1 + c, y2 + c, . . . , yN + c, τ) = u(y , τ) + c

(proved by induction, provided final-time function has this property).
Differentiation gives Du · ~1 = 1 and D2u · ~1 = ~0, and eqn reduces to

uτ + max
g∈{−1,1}N

1
2 〈D

2u g,g〉 = 0

Adversary’s optimal strategy: given g∗ that achieves the max, choose
distrn a to give outcome g∗ with prob 1/2 and −g∗ with prob 1/2.
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Rigorous result
Theorem (Drenska-K, JNLS 2020): For the final-time function
φ(y) = maxi yi , and more generally for any final-time function φ st

φ is nondecreasing in each yi

φ has linear growth at∞
φ(y1 + c, . . . , yN + c) = φ(y) + c

the function uε (defined by the scaled dynamic program) converges
as ε→ 0 to the unique viscosity solution of the PDE with final-time
condition φ.

Proof: follow the Barles & Souganidis approach to convergence of
numerical schemes. (Briefly: a scheme that’s monotone and
consistent converges to the unique viscosity solution.)

In terms of the original (unscaled) game, PDE determines scaling of
the predictor’s outcome after many time steps:

(worst-case expected regret after T steps)/
√

T → u(0,0)

if for the PDE the final-time condition is imposed at τ = 1.
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Is the PDE of any use?
Well, the PDE (with final-time condition φ(y) = maxi yi ) has been
solved explicitly for N = 2,3,4.

N = 2 goes back to T. Cover (1965). Since D2u ~1 = ~0 we have
∂11u = ∂22u = −∂12u. PDE reduces to linear heat eqn

uτ + ∆u = 0,

and optimal adversary chooses g = ±(1,−1) with prob 1/2 each.

N = 3 soln given by Bayraktar et al (Comm PDE 2020) and Kobzar et
al (COLT 2020). Formula depends on ranking of regrets: if
y1 > y2 > y3 then

u =
y1 + y2 + y3

3
+

1
2

g(y1 − y2, τ) +
1
6

g(y1 + y2 − 2y3, τ)

where g(z, τ) solves gτ + 2gzz = 0 with final-time condition g = |z|.
An opt’l adversary strategy is g = ±(1,−1,−1) with prob 1/2 each.

N = 4 soln given by Bayraktar et al (Comm PDE 2020). An amazing
formula (given again in terms of ranked regrets)!
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Is the PDE of any use?
Most nonlinear PDE’s don’t have explicit solutions. (Moreover,
methods used for N ≤ 4 seem unlikely to work for larger N.)

A different idea, due to D Rokhlin (Int J Pure Appl Math 2017): since
PDE has a comparison principle, an explicit subsolution or
supersolution gives a bound on u. For example: if

wτ + max
g∈{−1,1}N

1
2 〈D

2w g,g〉 ≥ 0

with w ≤ φ at the final time and w(y + c~1, τ) = w(y , τ) + c, then

w(y , τ) ≤ u(y , τ).

A good idea, but it leaves some crucial questions:

Where to find such w?

We seek good strategies, not just bounds. How do they emerge?
(A strategy for the predictor should give an upper bound; a
strategy for the adversary should give a lower bound.)
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PDE approach to adversary strategies & lower bds
Outline:

Consider a particular strategy for the adversary (a choice of the
distribution a, depending perhaps on x and t , chosen st ±g have
the same probability, so Ea[gi ] = 0 is indep of i).

Let Va(x , t) be the predictor’s best outcome against this strategy.
It is characterized by a dynamic programming principle.

Show that if w(x , t) is sufficiently smooth and satisfies

wt + 1
2Ea〈D2w g,g〉 ≥ 0 for t < T

w(x ,T ) ≤ maxj xj

w(x + c~1, t) = w(x , t) + c for c ∈ R

then
Va ≥ w − (error terms)

Applying this, obtain the best known lower bound for large N.
(The function w will solve a linear heat eqn wt + κ∆w = 0.)
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A PDE approach to adversary strategies & lower bds

Arguments are elementary (no viscosity theory needed)!

Given adversary strategy a, predictor’s best outcome satisfies

Va(x , t) = min
predictor′s

distrn p

Ep,a[Va(x + ∆x , t + 1)].

Lower bound is proved by induction (backward in time). If
Va ≥ w − (error terms) at time t + 1 then

Va(x , t) ≥ min
predictor′s

distrn p

Ep,a[w(x + ∆x , t + 1)]− (error terms).

Estimate RHS by considering increments in time and space:

w(x+∆x,t+1)−w(x,t) = [w(x,t+1)−w(x,t)]

+ [w(x+∆x,t+1)−w(x,t+1)]
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A PDE approach to adversary strategies & lower bds

Va(x , t) ≥ min
p

[Ep,aw(x + ∆x , t + 1)]− (error)

w(x + ∆x , t + 1) = w(x , t) + [w(x , t + 1)− w(x , t)]

+ [w(x + ∆x , t + 1)− w(x , t + 1)]

Increment in time: w(x , t + 1)− w(x , t) = wt + error.

Increment in space uses E[gi ] = 0 and hypotheses on w :∑
k pk Ea[w(x + (g − gk

~1), t + 1)]− w(x , t + 1)

=
∑

k pk Ea[w(x + g, t + 1)−��gk ]− w(x , t + 1)

=
∑

k pk Ea[���Dw · g + 1
2 〈D

2w g, g〉] + error.

Thus wt + 1
2Ea〈D2w g,g〉 ≥ 0 implies

Va ≥ w − (error) at time t ,

as desired. Error terms come from Taylor expansion.
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Making this concrete

Choose w to solve a linear heat eqn:

wt + κ∆w = 0 for t < T , with w(x ,T ) = maxi xi ;

Since maxi xi is homogeneous, w(x , t) =
√

T − t F (x/
√

T − t).
(Taylor expansion errors are small due to form of w .)

Large-N asymptotics: w(0,0) =
√

2κT EG[max Gi ] where each Gi is
an independent standard Gaussian. From probability:
EG[max Gi ] ∼

√
2 log N as N →∞, so

w(0,0) ∼
√

4κT log N as N →∞.

Error terms are smaller, if T is large enough compared to N: their
sum is at most of order

√
N log N +

√
N log(T − t) at time t .

But: what is κ? And what is the adversary strategy a?
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Making this concrete
Classic choice: if adversary chooses each gi independently, then

Ea〈D2w g,g〉 = ∆w

so wt + 1
2 Ea〈D2w g,g〉 = 0 when

wt + κ∆w = 0 with κ = 1/2.

But one can do better! Key observation: D2w is not just any
symmetric matrix – it satisfies D2~1 = ~0. Using this: if adversary’s
choices are unif distributed over

Sodd = {(g1, . . . , gN) : gi = ±1 and
∑

i gi = ±1} for N ≥ 3 odd

Seven = {(g1, . . . , gN) : gi = ±1 and
∑

i gi = 0} for N ≥ 3 even

then
Ea〈D2w g, g〉 =

{
(1 + 1

N )∆w for N ≥ 3 odd
(1 + 1

N−1 )∆w for N ≥ 3 even

so we may take

κ = 1
2 (1 + 1

N ) for N odd; κ = 1
2 (1 + 1

N−1 ) for N even.

Larger κ means larger w , hence a better lower bound.
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This adversary’s algebra
Since

Ea〈D2w g,g〉 =
1
|S|
∑
g∈S

〈D2w ,ggT 〉

our task is to identify X = 1
|S|
∑

g∈S ggT .

X has each diag element equal to 1 (obvious), and its off-diag
elements are all equal (since S is permutation-invariant). So

X = (1− λ)I + λM where M is the matrix of ones.

Since 〈ggT ,M〉 = (
∑

i gi )
2, our choice of S gives

〈X ,M〉 = 1 for N odd, 〈X ,M〉 = 0 for N even,

which implies λ = −1/N for N odd, and λ = −1/(N − 1) for N even.

The relation D2w~1 = ~0 can be written as 〈D2w ,M〉 = 0. So

Ea〈D2w g,g〉 = 〈D2w ,X 〉 = (1− λ)∆w .
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What about upper bounds?
Outline:

Given a particular strategy p for the predictor (depending
perhaps on x and t), let Vp(x , t) be the adversary’s best
outcome against this strategy:

Vp(x , t) = max
adversary′s

distrn a

Ep,a[Vp(x + ∆x , t + 1)].

Suppose w(x , t) is sufficiently smooth and satisfies

wt + 1
2 max

gi =±1
〈D2w g,g〉 ≤ 0 for t < T ,

w(x ,T ) ≥ max{x1, . . . , xN}

w(x + c~1, t) = w(x , t) + c for c ∈ R.

Then choosing p = ∇w(x , t + 1) at time t gives

Vp ≤ w + (error terms)

With an appropriate w , this method recovers the well-known
“multiplicative weights” upper bound.
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What about upper bounds?
Many elements are as before: arguments are elementary; proof is by
backward induction in time; errors come from Taylor expansion of w .

Main difference from lower bound is how spatial increment is handled:
Ep,a[w(x+∆x , t + 1)− w(x , t + 1)]

=
∑

k pk Ea[w(x + (g − gk
~1), t + 1)]− w(x , t + 1)

=
∑

k pk Ea[w(x + g, t + 1)− gk ]− w(x , t + 1)

=
∑

k pk Ea[Dw(x , t + 1) · g − gk + 1
2 〈D

2w(x , t + 1) g, g〉] + error.

If p = Dw(x , t + 1) then the first-order Taylor term vanishes, since∑
k

pk (Dw(x , t + 1) · g) = Dw(x , t + 1) · g =
∑

k

pk gk .

So for this predictor strategy,

Ep,a[w(x +∆x , t +1)−w(x , t +1)] ≤ 1
2 max

gi =±1
〈D2w(x , t +1) g,g〉+error.

Combined with the framework used for the lower bound, this shows
that if wt + 1

2 maxgi =±1〈D2w g,g〉 ≤ 0 then

Vp ≤ w + (sum of Taylor error terms).
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Making this concrete

The well-known multiplicative weights upper bound can be obtained
this way (D. Roklin, Int J Pure Appl Math 2017). In fact, one verifies that

w(x , t) =
1
η

log

(
N∑

i=1

eηxk

)
− 1

2ηt

has the required properties for any η > 0. Moreover, due to its special
structure the Taylor expansion errors have signs, which are favorable;
so our arguments actually show

Vp(x , t) ≤ w(x , t)

with no error term. The optimal η =
√

(2 log N)/T gives

predictor’s expected regret ≤
√

2T log N.

Upper bounds can also be obtained using other choices of w , for
example soln of linear heat eqn with a well-chosen diffusion constant.
(Heat eqn upper bound beats multiplicative weight bound for N ≤ 7.)
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Perspective – prediction with expert advice

The scaled value function solves, in the limit, a nonlinear PDE.

Its solution determines optimal strategies for both players.

In terms of original (unscaled) game, the PDE gives us CN st

worst-case expected regret after T steps ∼ CN
√

T .

———————————-

While explicit solns are only available for N = 2,3,4, our
PDE-based approach to strategies and bounds works for any N.

It provides a new perspective on potential-based prediction
strategies.

It also provides an improved adversary strategy (better than
advancing the experts independently).
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Perspective – other ML problems
The literature on regret minimization is vast. But mostly it uses:

specific (suboptimal) strategies for which analysis turns out to be
feasible (eg multiplicative weights); and

analysis of discrete-time dynamic programming problems – a bit
like studying diffusion by considering a random walk then
applying the central limit theorem.

Today’s PDE-based approach is still rather new, and its impact
remains to be seen. But this approach has already been used in
other settings.

Starting with examples close to this talk, other variants of prediction
with expert advice have been considered:

same game, but with a random final time (“geometric stopping”)
(K-Drenska JNLS 2020 and K-Kobzar-Wang MSML 2020)

same game, but with no final time (“anytime regret”)
(Harvey et al, FOCS 2020)
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Perspective – other ML problems

PDE methods like those of this talk have also been applied in other
online machine learning settings:

the stock prediction problem with history-dependent experts
(K Zhu PhD thesis 2014; K-Drenska CPAM 2022; Calder-Drenska J
Fourier Anal Appl 2020 & CPAM 2022)

drifting games (closely related to boosting)
(K-Wang arXiv:2207.11405)

the two-armed symmetric Bernoulli bandit (rather different,
since predictor has incomplete information)
(K-Kobzar arXiv:2202.05767)
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