A few of Louis Nirenberg’s many contributions
to the theory of partial differential equations

Robert V. Kohn

1 Introduction

Mathematics is the language of science, and partial differential equations are a cru-
cial component: they provide the language we use to describe—and the tools we
use to understand—phenomena in many areas including geometry, engineering, and
physics.

Louis Nirenberg’s contributions to this field have been hugely influential. His
impact includes the solution of many important problems, and—more importantly—
the introduction of many fundamentally new ideas.

The depth, variety, and extent of his work make it difficult to synthesize. That
challenge has nevertheless been undertaken twice, by YanYan Li [50] and by Tristan
Riviere [73], with admirable success. Rather than attempt another synthesis, I shall
focus here on six specific topics:

his early work on the Weyl and Minkowski problems;

his results with Shmuel Agmon and Avron Douglis on elliptic regularity;

his paper with Fritz John on functions with bounded mean oscillation;

his work with Luis Caffarelli and me on the Navier—Stokes equations;

his results with Haim Brezis on nonlinear elliptic equations with critical expo-
nents; and

e his work with Basilis Gidas, Wei-Ming Ni, and Henri Berestycki on the “method
of moving planes” and the “sliding method.”

My goal is to capture—to the extent possible in a few pages—the character of these
contributions. I shall point to some related and/or subsequent work; however my
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discussions are necessarily incomplete, since a comprehensive review of even one
of these topics would be a gargantuan task.

In focusing on these topics, I am necessarily omitting many important accom-
plishments; fortunately quite a few have been summarized elsewhere. For exam-
ple, I do not touch his work at the interface between PDE and several complex
variables—but these have been discussed by Joseph Kohn' and by Simon Donald-
son’. The articles just cited also discuss other aspects of his work, and the surveys
[50, 73] touch almost everything. Another rich source is [80], where leading re-
searchers discuss five of his themes in the context of recent, related work of their
own.

Louis is a friend, colleague, and role model to an entire community of math-
ematicians (myself included). A thoughtful and dedicated mentor, he has advised
46 PhD students (starting with Walter Littman in 1956, and ending with Kanishka
Perera in 1997, according to the Mathematical Genealogy website), while also hav-
ing a formative influence on countless postdocs and collaborators. His influence has
been amplified by Louis’ outstanding ability as an expositor: he writes in a way that
invites the reader’s participation, with detailed introductions that put his work in
context and explain its main ideas. In addition to many research articles he has also
written influential survey articles, including one on elliptic theory [69] and another
on variational & topological methods [70]. His book Topics in Nonlinear Functional
Analysis, written in 1974 and reprinted in 2001 [71], is still widely used today.

A cross-cutting theme in Louis’ research is his exquisite taste in problems. One
very successful mode has been to recognize, through specific challenges, the need
for new PDE tools or estimates. His uncanny ability to identify such challenges—
and to find the required tools or estimates—has been a major driver of his impact.
The early work on the Weyl and Minkowski problems (Section 2) and the work
with Brezis on nonlinear elliptic equations with critical exponents (Section 6) are
examples of such work; additional examples include his paper with Newlander on
the integrability of almost-complex structures [65] and his introduction (with Joseph
Kohn) of the class of pseudodifferential operators [45].

A very different, also very successful mode has been to identify tools that are
clearly important, and explore their scope systematically. His work with Agmon
and Douglis on elliptic regularity (Section 3) and that with Gidas and Ni on the
method of moving planes (Section 7) have this character. Another favorite exam-
ple is his systematic treatment of interpolation inequalities (known as Gagliardo—
Nirenberg inequalities, since they were found independently by E. Gagliardo [33]
and by Nirenberg, who announced them at the 1958 International Congress of Math-
ematicians and published them as Section 2 of [69]).

But this tidy framework is too narrow to accommodate all Louis’ work. In
particular, he has always loved puzzles—especially ones involving estimates or
inequalities—and this has led to many successful collaborations. The work with

'Louis Nirenberg receives the National Medal of Science, Notices Amer. Math. Soc. 43(10), 1111-
1116 (1996) (includes “Nirenberg’s work in partial differential equations” by L. Caffarelli, and
“Nirenberg’s work in complex analysis” by J. J. Kohn).

2 Donaldson, S.: On the work of Louis Nirenberg. Notices Amer. Math. Soc. 58(3), 469472 (2011).
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Fritz John on functions of bounded mean oscillation (Section 4) is, in my view, an
example of that type.

Louis’ vision, leadership, and accomplishments have been recognized by many
awards over the years; being selective, the list includes (besides the 2015 Abel Prize)
the 1959 Bdcher prize, the 1982 Crafoord Prize, the 1994 Leroy P. Steele Prize for
Lifetime Achievement, the 1995 National Medal of Science, and the 2010 Chern
Medal.

His stature has led to many interviews” as well as video available at the Simons
Foundation’s Science Lives site*. These delightful resources capture (among other
things) Louis’ engaging wit, generosity, and taste.

3

2 The Weyl problem, the Minkowski problem, and fully
nonlinear PDE in two space dimensions

Nirenberg’s PhD thesis, completed in 1949, was entitled The determination of a
closed convex surface having given line element [66]. The corresponding papers,
published in 1953, are entitled The Weyl and Minkowski problems in differen-
tial geometry in the large and On nonlinear elliptic partial differential equations
and Hoélder continuity [67, 68]. This work proved two long-standing conjectures
in differential geometry, and fundamentally advanced our understanding of fully-
nonlinear PDE in two space dimensions. Not many PhD theses achieve so much!

The environment in which he did this work was rather unusual. The research
group established at New York University by Richard Courant was still very small;
its leaders (besides Courant) were Kurt Friedrichs, James J. Stoker and Fritz John
(who arrived in 1946, shortly after Nirenberg’s arrival as a graduate student). Gov-
ernment funding permitted substantial expansion after the war, and Courant and his
colleagues had a remarkable eye for talent. As a result, Nirenberg’s fellow PhD stu-
dents were a truly remarkable group—including Avron Douglis, Harold Grad, Eu-
gene Isaacson, Joseph Keller, Martin Kruskal, Peter Lax, and Cathleen Morawetz.
(It was also a relatively large group: according to the Mathematical Genealogy web-
site, NYU granted 37 mathematics PhD’s in the four-year period 1948-1951.)

His thesis work provides an outstanding example of how specific challenges can
lead to the development of fundamentally new tools. The challenges, in this case,
were the Weyl and Minkowski problems—two easy-to-believe conjectures about
two-dimensional surfaces in three-dimensional space, which had been open for
many years. A framework for viewing them as nonlinear PDE problems was already
well-established, and Hans Lewy had used it to obtain solutions when the data are

3 Interview with Louis Nirenberg, interviewed by A. Jackson. Notices Amer. Math. Soc. 49(4),
441-449 (2002), and Interview with Louis Nirenberg, interviewed by M. Raussen and C. Skau.
Newsletter of the European Mathematical Society, Dec 2015, 33-38; reprinted in Notices Amer:
Math. Soc. 63(2), 135-140 (2016).

4 Louis Nirenberg, interviewed by Jalal Shatah, on the Simons Foundation’s Science Lives website
https://www.simonsfoundation.org/2014/04/21/louis-nirenberg/. (Accessed 8 March 2018).
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analytic [48, 49]. But the analytic category is very rigid! Each problem’s natural
formulation involves data that are a few times differentiable. Solving the problems
in that setting required a new a priori estimate for fully-nonlinear PDE in two space
dimensions. Nirenberg’s fundamental contribution was to obtain that estimate.

The crucial estimate says that if u solves a PDE of the form F(D?u, Du,u,x) =0
in a two-dimensional domain,

(i) u,Du, and D?u are continuous, with L® norm at most K, and
(ii) the equation is elliptic with a positive ellipticity bound A,

then in any subdomain D?u is actually Holder continuous (with a uniform bound
depending only on K, A, the C! norm of F, and the choice of subdomain). The key
point, of course, is that while D2y was only assumed to be bounded and continuous,
the PDE assures that it is significantly better: Holder continuous. Higher regularity
follows by differentiating the equation and using linear PDE estimates (provided the
regularity of F' permits). Nirenberg’s proof of this regularity theorem was related to
the theory of quasiconformal mappings, drawing inspiration from Morrey’s proof
that 2D quasiconconformal mappings with bounded distortion are Holder continu-
ous [57].

As noted above, the specific challenges that led Nirenberg to consider this regu-
larity issue were questions from differential geometry, raised by Weyl in 1916 and
Minkowski in 1903. The Weyl problem has its roots in the fact that a convex surface
in R3 has nonnegative Gaussian curvature. It seeks a sort of converse:

Given a Riemannian metric g on the two-dimensional sphere S> with positive
Gaussian curvature, can it be realized by a convex two-dimensional surface in
R?? In other words, is there a map H : §* — R such that || DH (x)v|2; = ||v||§(x)

for every x € S? and every v € T,.52?

The Minkowski problem has its roots in the fact that if M is a strictly convex surface
in R3, Ky is its Gaussian curvature, and vy : M — S is its Gauss map (taking
x € M to the outward unit normal to M at x), then (by elementary arguments) one has

J¢» =% dA = 0, where the variable of integration is x = (x1,x2,x3) € §* C R?
Ky (vy (x))

and the integral is with respect to surface area on S2. The Minkowski problem seeks
a sort of converse:

Given a positive function K on S satisfying | 52 ﬁ dA = 0, is there a strictly
convex surface M such that K (x) = Ky (v, (x))?

The suggestion to look at these problems came from James Stoker. This is not
surprising in view of Stoker’s longstanding interest in differential geometry (in fact,
Stoker gave a new, simple proof in 1950 that a solution of the Minkowski problem
is necessarily unique [81]). However Nirenberg has said that as a PhD student he
worked most closely with Kurt Friedrichs?.

Nirenberg’s solution of each problem used what was known even then as “the
method of continuity.” Focusing (for simplicity of language) on the Weyl problem,
the method consists of
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(i) showing that the given metric (call it g1) can be joined to the standard metric
(call it gp) by continuous path in the space of matrics with positive curvature
(callit g, 0 <t <1);

(ii) showing that the set of ¢ for which g, is realizable is an open subset of [0, 1];
and
(iii) showing that the set of ¢ for which g, is realizable is a closed subset of [0, 1].

The essence of this program was already present in Weyl’s work; in fact, his 1916
paper [84] identified the fundamental issues and obtained several key estimates,
though he lacked the PDE tools to complete the program. Nirenberg’s treatment
of (i) followed Weyl’s. The proof of (ii) required solving a degenerate system of
PDE’s; Nirenberg’s treatment used an iteration scheme, whose convergence was
proved using estimates for certain 2nd order linear PDE (this was in large part a
modern implementation of Weyl’s ideas). Weyl had reduced the proof of (iii) to the
study of a fully nonlinear PDE in two space dimensions, and he had shown that
the solution was CZ, but this was not enough to conclude the argument. Nirenberg’s
regularity result—showing that the solution was actually C>* for some a—was the
crucial ingredient permitting completion of the program.

His solution of the Minkowski problem followed a similar strategy. There, too,
the argument used the method of continuity, and relied on prior work (in this case
a 1938 paper by Lewy [49] and a 1939 paper by Miranda [56]) for identification
of a suitable PDE-based framework. The prior work had reduced the analogue of
(iii) to the study of a fully nonlinear PDE in two space dimensions, and Miranda
had shown that the solution was C2. Nirenberg’s regularity result (showing that the
solution was actually C>%) was again the crucial ingredient permitting completion
of the program.

In 1949—the year Nirenberg completed his PhD—another solution of the Weyl
problem was published by the Soviet mathematician A.V. Pogorelov, using meth-
ods completely different from Nirenberg’s. (Briefly: A.D. Alexandroff had shown
the existence of a sort of weak solution, obtained by taking a limit of polyhedra;
Pogorelov proved the regularity of those weak solutions.) Pogorelov also published
a solution of the Minkowski problem in 1952. A discussion of Pogorelov’s work and
its relation to Nirenberg’s can be found in the Math Reviews entry for [67], which is
MRO0058265. Pogorelov too was an outstanding mathematician, who did this work
at the very beginning of his career. The independent solutions by Nirenberg and
Pogorelov provide a reminder that while Soviet mathematics was remarkably strong
in the post World War II period, communication with the West was quite limited.

In attacking the Weyl and Minkowski problems, Nirenberg was solving problems
that others had claimed before. Indeed, a 1940 paper by Caccioppoli addressed the
Weyl problem using the method of continuity. However, as Nirenberg wrote, in es-
tablishing point (iii) Cacciopoli “refers to previous publications on nonlinear sec-
ond order elliptic equations (see [18] for references). These papers contain only
sketches of proofs—details are not presented—and it is not clear that all the re-
sults mentioned there are fully established.” Concerning the Minkowski problem:
Miranda’s 1939 paper [56] claimed a full solution, but it relied on Cacciopoli’s
not-fully-established results. By the time Nirenberg and Pogorelov worked on these
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problems, there seems to have been a consensus that the previous “solutions” were
incomplete.

Nirenberg’s proof of C>“ regularity for solutions of fully-nonlinear elliptic equa-
tions was limited to two space dimensions. This was sufficient for the Weyl and
Minkowski problems, since they involve two-dimensional surfaces in R3. It is nat-
ural, however, to ask what happens in higher dimensions: is a C? solution of a uni-
formly elliptic, fully nonlinear equation F(D?u,Du,u,x) = 0 necessarily C>% in
space dimension n > 3? The answer is yes, but the proof requires methods entirely
different from those of Nirenberg’s 1953 paper. (I thank N. Nadirashvili for input on
this topic.) Briefly: if u solves such an equation, then for any i the partial derivative
v = du/dx; is a viscosity solution of the linear elliptic PDE obtained by formally
differentiating the original equation (see, e.g., Corollary 1.3.2 of [61]). Since the
leading-order term of this equation has the form Y ay, % with a; (x) continuous,
the regularity theory for viscosity solutions of linear elliptic equations is applica-
ble, and it shows that v is C1% for some o > 0 [19]. Interestingly, if the condition
u € C? is replaced by u € C!! then the argument breaks and higher regularity be-
comes false: a recent paper by Nadirashvili, Tkachev, and Vladut [60] identified a
nonlinear elliptic PDE of the form F(D?u) = 0 in R> with an (explicit) viscosity
solution of the form u(x) = p(x)/|x|, where p is a homogeneous polynomial in x of
degree 3. Since u is homogeneous of degree 2, it is C? except at x = 0, with bounded
but discontinuous second derivatives at the origin.

3 Elliptic regularity for boundary value problems: the
Agmon-Douglis—Nirenberg estimates

The 1950’s was a period of rapid development in our understanding of elliptic PDE,
and Nirenberg was a major player. The following discussion will focus on linear
PDE with variable coefficients, since this is the heart of the matter. It should be
understood, however, that these results are also crucial for the study of nonlinear
PDE (for example, permitting existence theorems to be proved using fixed-point
theorems or iteration arguments).

As background: by 1950 there was a rather comprehensive understanding of
second-order elliptic PDE for a scalar-valued unknown: a treatment involving L>-
type estimates using Hilbert space methods was presented, for example, in volume
2 of Courant and Hilbert’s Methoden der Mathematischen Physik [24], and esti-
mates involving Holder norms were established by Schauder in 1934. However a
similarly general understanding of higher-order equations and elliptic systems was
not yet available. Progress in those directions began in the early 50’s with work by
Vishik [83], Browder [15], and Garding [34] among others. Another key develop-
ment was the work of Calderén and Zygmund on singular integral operators [22],
which provided the crucial tools needed for LP-type estimates.

Nirenberg’s contributions in the 50’s included the following key advances:
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e His 1955 paper with Avron Douglis, Interior estimates for elliptic systems of
partial differential equations [26], extended elliptic theory to a much more gen-
eral class of systems than had been considered before, obtaining Schauder-type
interior estimates involving Holder norms. Roughly speaking, this work identi-
fied what it should mean for a system to be elliptic. An important feature of the
definition is that the system need not be of the same order in each unknown.

e His 1959 paper with Shmuel Agmon and Avron Douglis, Estimates near the
boundary for solutions of elliptic partial differential equations satisfying general
boundary conditions. I [1], provided estimates up to the boundary, for any elliptic
boundary value problem involving a scalar-valued unknown. This work was no-
table both for its scope and for its method. Concerning the scope: while previous
work provided a full understanding of problems with Dirichlet-type boundary
conditions, the 1959 paper achieved something similar for any boundary con-
dition satisfying the “complementing condition.” (Roughly speaking: these are
boundary conditions for which, in the homogeneous constant-coefficient case
for a half-space, separation of variables reveals that a solution which is periodic
on the boundary must decay exponentially toward the interior of the domain.)
Concerning the method: the paper’s starting point was was a study of the con-
stant coefficient case in a half-space, obtaining an explicit solution analogous
to the Poisson kernel representation of a harmonic function. These representa-
tions were then used to obtain estimates for the solution (up to the boundary,
even for PDE’s with variable coefficients in domains with curved boundaries),
by applying tools from potential theory and the then-recently-developed theory
of singular integral operators. This produced both estimates of Schauder type
(estimating Holder-type norms of the solution in terms of those of the data) and
also analogous estimates of LP-type. Related estimates were obtained by Felix
Browder, in work done independently around the same time [16].

This ground-breaking work was done during a period of dramatic progress, to
which many others contributed. The introductions of Nirenberg’s papers are notable
not only for their transparent discussions of the papers’ methods and achievements,
but also for their richly detailed discussions of related work by others.

The 1955 paper dealt with systems but obtained only interior estimates. The 1959
paper dealt with boundary estimates but was restricted to scalar-valued unknowns.
It was of course a natural idea to combine the papers’ methods, to obtain estimates
up to the boundary for elliptic systems with general boundary conditions. Such re-
sults were already within view by 1959: the Introduction of [1] says “In this paper
we shall derive ‘estimates near the boundary’ for elliptic equations of arbitrary or-
der under general boundary conditions, not merely Dirichlet boundary conditions.
We have obtained these results for general elliptic systems, but for simplicity, we
treat here in detail the theory of a single equation for one function. Systems will be
treated in a forthcoming paper.” It took a few years to wrap things up (which is not
surprising, considering the generality of the outcome):

e Nirenberg’s 1964 paper with Shmuel Agmon and Avron Douglis, Estimates near
the boundary for solutions of elliptic partial differential equations satisfying gen-
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eral boundary conditions. II [2], provided Schauder-type and L” estimates up to
the boundary, for boundary value problems involving the full range of systems
considered in [26]. As in [1], the boundary conditions considered are essentially
the most general ones permitting such estimates. (An indirect characterization
is that for the homogeneous constant-coefficient case in a half-space, a solution
which is periodic on the boundary must decay exponentially toward the interior
of the domain; a more algebraic characterization is included in the paper. Such
boundary conditions are said to satisfy the “complementing condition.”) Like the
earlier work [1] on scalar-valued unknowns, the analysis combines a thorough
understanding of half-space problems with tools from potential theory and sin-
gular integral operators. However the paper’s focus on general systems made the
analysis of the half-space problems quite different from what was done in [1].

It is interesting to compare the scientific style of Nirenberg’s earlier work on the
Weyl and Minkowski problems with that of the papers just discussed. One could
say that the earlier work was problem-driven, while that with Agmon and Douglis
was method-driven. Indeed, the starting point of the earlier work was to solve the
Weyl and Minkowski problems, while that of the later was to identify the full power
and scope of certain methods. And yet, upon reflection the contrast is not so sharp:
once he saw that the key to the Weyl and Minkowski problems was a regularity the-
orem for a 2nd order, fully-nonlinear elliptic PDE in two space dimensions, Niren-
berg proved a rather general result of this type—capturing the full power of his
method—and explored additional applications, for example to the existence of solu-
tions to quasilinear PDE [68]. As for the work with Agmon and Douglis: no specific
challenge was needed, since by the 1950’s the importance of a priori estimates for
elliptic equations and systems was well-established.

The Agmon—Douglis—Nirenberg estimates helped establish a sound foundation
for the theory of elliptic PDE. Since the strength of this work lies partly in its gen-
erality, no example can capture its full importance. Let me nevertheless mention
a favorite example, namely the applicability of this theory to linear elasticity. In
the early days our understanding of elastostatics relied heavily on Korn’s inequality
(whose early proofs for traction-type boundary conditions were complicated and re-
lied heavily on the special form of the problem). From a modern perspective, Korn’s
inequality is not completely irrelevant—it assures us, for example, that solutions to
traction problems are unique up to rigid motions. But as far as elliptic estimates
are concerned, the equations of elastostatics are just another example of an elliptic
system to which the Agmon—Douglis—Nirenberg theory applies.

I also have a favorite example concerning the importance of permitting elliptic
systems to be of different orders in different unknowns: if 2 is a bounded domain
in R", consider the generalized Stokes system

—Au;i+Vip=fi, divu=g inQ

with boundary condition
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(using the notation e;;(u) = A[V;u; + Vu;]). When n =2 or 3 and g = 0, problems
of this form arise both in elasticity (when the material is incompressible) and in fluid
dynamics (Stokes flow). The system is second-order in u and first-order in p, but it
meets the requirements of the Agmon—Douglis—Nirenberg theory.

4 Functions with Bounded Mean Oscillation

Research is unpredictable: tools and results developed in a particular context of-
ten have impact in other contexts, leading to entirely unanticipated consequences.
The focus of this section—Nirenberg’s 1961 paper On functions of bounded mean
oscillation with Fritz John [43]—provides a fine example.

This paper addressed the question: suppose a function u has bounded mean os-
cillation on a cube Qp C R”, in the sense that its mean oscillation on sub-cubes is
finite: |

s (7 el dx = oy <=
(here Q ranges over cubes contained in Qp, |Q| is the volume of Q, and uy is the
average of u on Q). Elementary examples (for example log |x|) show that u need not
be L™, but suggest that u can be large only on very small sets. The John—-Nirenberg
paper quantified this; its main result was that if ||u[|gmo(g,) < K then

[{x : [u—ug,| > 6} < Be b9/K|Qy|

for some constants B and b depending only on the dimension n. This yields, by
elementary arguments, control of various norms of u — ug,; in particular

1
|Q0| Qo

for constants 3 and C depending only on n, and

—1
PE gyl gy <C

1
@/hlt*qu‘deSCp!nKp (l)

for any p < eo. Focusing on the latter: while u — ug, is not uniformly of order K, its
LP norms are controlled for any p < oo as if that were the case.

The immediate motivation came from Fritz John’s work on elasticity [41]. In
nonlinear elasticity the deformation of an elastic body 2 C R¥isamap f: Q —R3.
Writing D (x) = R(x)E (x) where R(x) is arotation and E (x) = [(Df (x))"Df(x)] 12,
the nonlinear elastic energy controls the nonlinear strain |E(x) — I| but not the lo-
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cal rotation R(x). In linear elasticity, Korn’s inequality provides L> control of the
infinitesimal rotation in terms of the L2 norm of the linear strain; John’s goal was a
fully nonlinear analogue of this result. He found a proof that if the nonlinear strain
is uniformly small on a cube, then the BMO norm of Df is also small:

|E(x) —I||1=() < € implies that ||Df{|gmo(g) < C€ 2

provided ¢ is sufficiently small. Since E stays close to / by hypothesis, this is really
an estimate on the oscillation of R(x). Knowing Nirenberg’s analytical power—and
his love of inequalities—John drew Nirenberg into exploring the implications of (2).
This was the origin of the John—Nirenberg paper; note that (1) with p =2 shows that
R(x) stays close in L? to its average on Q, turning (2) into the nonlinear Korn-like
inequality

o [ Ipr = (D)ol ax < csuple) 11 )

10l Jo x€Q

It was clear from the start that their estimates on BMO functions would have

implications far beyond elasticity. Indeed the John—Nirenberg paper includes, as an
application, a new proof of a result due to M. Weiss and A. Zygmund (namely: if G is
periodic and G(x+h) +G(x—h) —2G(x) = O (h/|logh|P) for some B > 1/2 then G
is the indefinite integral of some function g belonging to every L”). A more dramatic
application was provided by Jiirgen Moser in the very same issue of Comm. Pure
Appl. Math.: he used the John—Nirenberg theory to prove a Harnack inequality for
the solution of a divergence-form elliptic equation

n

Y, Oi(ar;(x)9u) = 0,

i,j=1

when the matrix-valued function ;;(x) is merely L™ and uniformly elliptic [59].
The Holder regularity of such u was a landmark result proved in 1957 by Ennio
De Giorgi [25] and John Nash [62]. Moser had given a third proof in 1960 [58].
Harnack’s inequality implies Holder continuity by an elementary argument (this is
Section 5 of [59]), so Moser’s application of the John—Nirenberg estimate provided
a fourth proof of the celebrated De Giorgi—Nash—Moser regularity theorem.

A different perspective on BMO began to emerge in the mid-60’s, when J. Pee-
tre, S. Spanne, and E. Stein observed (independently) that while singular integral
operators (such as Riesz transforms) are not bounded linear operators on L (R"),
they are bounded linear operators on BMO(RR"), the space of functions on all R”
such that

cubes

1
sup 7/ lu— ug) dx = ||ull o @ < >
010l Jo &)

This was the first indication that BMO(R") deserved attention as a function space,
and would be the “right” substitute for L in many results of harmonic analysis.
The correctness of this viewpoint became clear in the early 70’s, when C. Fefferman
showed [29, 30] that
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(a) f € BMO(R") exactly if f = go+Y_| R;g; where go,...g, are L” and R; is
the jth Riesz transform (which acts in Fourier space as §;/|&|); and

(b) BMO(R") is dual (using the L? inner product) to the Hardy space H'(R")
(which consists, by definition, of functions in L' whose Riesz transforms are
also in L!).

Returning to elasticity, it is natural to ask: is the John—Nirenberg theory of any
use for the analysis of nonlinear elastic boundary value problems? A 1972 paper by
John provides an attractive answer, by proving the uniqueness of nonlinear elastic
equilibria when the boundary displacement is fixed and only deformations with uni-
formly small strain are considered [42]. The idea is relatively simple: writing the
deformation as f(x) = x+ u(x) and proceeding as one would for linear elasticity
(with u as the elastic displacement), one needs to show that the higher-order terms
neglected in the linear theory are truly unimportant. This is done using a conse-
quence of the John—Nirenberg theory slightly different from those displayed above:
if a function g has small BMO norm and average value 0 on a (nice enough) domain
Q then

| lsP dx < Cllglmoe [ Isdx.

In the proof of the uniqueness theorem, this is applied with g = Df| — D f, where f;
and f, are two uniformly-small-strain elastic equilibria.

Fritz John’s arguments required uniform bounds on the strain. This is a serious
handicap, since one rarely knows in advance that the solution of a nonlinear elas-
ticity problem has uniformly small strain. Forty years after the work of John and
Nirenberg, the relationship between nonlinear strain and rotation was revisited by
G. Friesecke, R.D. James, and S. Miiller [31]. They improved (3) by showing that

| b~ (DpePar<c [ £ -1Pax @
Q Q

and used this estimate to explore the connection between 3D elasticity and various
plate theories [31, 32].

I started by noting the unpredictability of research progress. In 1961 John and
Nirenberg anticipated connections to elasticity (this was after all their starting
point), and they also anticipated connections to analysis (this is clear from their
new proof of the Weiss—Zygmund result). But they could not have anticipated the
deep links to harmonic analysis that emerged a decade later, and I don’t think they
anticipated that (4) would be true without assuming uniformly small strain.

5 Partial regularity for the 3D Navier—Stokes equations

I had the privilege of collaborating with Louis Nirenberg and Luis Caffarelli around
1981 on partial regularity for the incompressible Navier—Stokes equations. I was a
2nd-year postdoc at Courant in 1980-81, and Luis had just joined the faculty. It was
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Louis’ suggestion that we look together at Vladimir Scheffer’s work on Navier—
Stokes [75, 76], which none of us had read before. The discussions that followed
were an incredible learning experience! Their outcome was our paper Partial Regu-
larity of Suitable Weak Solutions of the Navier Stokes Equations [20].

The incompressible Navier—Stokes equations describe the flow of a viscous,
Newtonian fluid (such as water). Focusing for simplicity on the problem in all R
with unit viscosity and no forcing, the equations say that the velocity u and pressure
p solve the initial value problem

w+u-Vu—Au+Vp =0 )
V-u=90
u(x,0) = up(x).

For this to be adequate as a description of the fluid, there should be a unique solution
of (5) for any (sufficiently smooth) initial data uy with suitable decay as |x| — eo.
We still don’t know whether this is true or not. Indeed: if ug is smooth enough (and
decays at infinity) there is a unique classical solution for a while at least, but for
large initial data we cannot rule out the development of singularities in finite time.
The solution can be continued for all time as a Leray—Hopf weak solution, but we do
not know that such weak solutions are unique. (Nonuniqueness of Leray—Hopf weak
solutions seems a real possibility, in view of recent progress including [17, 38, 40].)

The program that Scheffer began in the late 70’s seems natural in hindsight, but
at the time it was revolutionary. There was by then a well-established literature on
the partial regularity of minimizers for problems from geometry and the calculus
of variations. It was Scheffer’s idea to study the partial regularity of weak solu-
tions to the Navier—Stokes equations using similar methods. His main result was
that for a suitably constructed weak solution, the singular set has 5/3-dimensional
parabolic Hausdorff measure zero in space-time. Our paper [20] obtained a similar
result with 5/3 replaced by 1. The improved result places substantial restrictions
upon the geometry of the singular set; for example, in an axisymmetric solution the
only possible location of a singularity is on the axis. (The definition of parabolic
Hausdorff measure is similar to that of ordinary Hausdorff measure, except that it
uses coverings not by balls but rather by parabolic cylinders Q, having radius r in
space and extent 72 in time.)

Can a solution with smooth initial data really develop a singularity? We still don’t
know. Leray suggested looking for self-similar singular solutions, i.e., ones of the
form

u(x7t):(T—t)fl/zw(x/\/T—t), (6)

but we now know there are no such solutions with locally finite energy [63, 82].
Leray’s ansatz can be generalized by looking for a solution that remains “bounded
in similarity variables,” i.e., such that

u(x,) = (T —1)""w(y,s) wherey=x/v/T —tands=—In(T —1).

This leads to an autonomous evolution for w(y, s), namely
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ws—i—w-Vw—Aw—l—%w—f—%wa—i—Vq:O, @)
to be solved in all R3 and all sufficiently large s, with V-w = 0 and a suitable decay
condition as |y| — 0. Leray’s proposal was to look for a stationary solution of (7),
but to give an example of a singular solution it would suffice to find any solution of
(7) that exists for all s > s¢ and doesn’t decay to 0 as s — oo. Alas, we have no idea
whether such a w exists or not.

In looking for possible examples of singular solutions, it is natural to focus on
solutions with special symmetry. Since the partial regularity theory does not rule out
an axially symmetric solution developing a singularity along its axis, considerable
attention has been devoted to the axially symmetric setting. The main result there is
that if blowup occurs, then it must be “type II”” in both space and time, in the sense
that the functions (T —1)'/?|u(x,7)| and (x? +x3)"/?|u(x,7)| must both be unbounded
as t approaches the singular time 7. Paraphrasing the first of these estimates: in the
axially symmetric setting (with symmetry around the x3 axis), if a solution blows
up at time T then its L norm must grow faster than (7 — t)_l/ 2, and the associated
solution of (7) must have ||w||f~ — oo as s — o [23, 44, 78].

Returning for a moment to Scheffer’s program, it is natural to hope for a proof
that the parabolic Hausdorff dimension of the singular set is strictly less than 1. Alas,
it seems that this would require an entirely new approach. Indeed, Scheffer’s results
and ours rely mainly on a “generalized energy inequality” (equation (11) below).
The generalized energy inequality permits a nonzero forcing term f on the right-
hand side of the Navier—Stokes equation provided that u- f <0, and it permits u to be
discontinuous in time provided that |u|2 only jumps downward. Using observations
such as these, Scheffer has shown that the generalized energy inequality is consistent
with u being singular on a set of parabolic Hausdorff dimension & for any o < 1
[77]. Thus, the result of [20] seems to be more or less optimal, if the generalized
energy inequality is to be used as the main tool and parabolic Hausdorff measure is
used to measure the size of the singular set. (There are other ways to measure the
size of the singular set; for some results using “box-counting dimension” see [46]
the references cited there.)

The rest of this section provides a little more detail concerning the contributions
of [20]. The main ingredients of a partial regularity theorem are:

(a) a weak solution, with some global estimates;
(b) aresult of the form “locally sufficiently small implies regular;” and
(c) acovering argument.

Concerning (a): multiplying the Navier—Stokes equation by u, integrating in space,
and integrating by parts leads formally to < [ |u|?dx+2 [ |Vu|?*dx = 0. For Leray—
Hopf weak solutions the formal argument breaks down but we have still have an
energy inequality:

/ \u|2dx+2// \W\dedrg/ o dx @®)
R3x{t} R3x(0,t) R3
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where u is the initial data and we focus for simplicity only on the whole-space
problem. This clearly implies

/ uPdx<M and // Vul>dxdi < M2 ©)
R3x{t} R3x(0,1)
for all t, where M = [g3 |uo|* dx is fixed by the initial data. It also implies that
Il pf dxde < oM (10)
R3x(0,t)

for all ¢. (The estimate for u follows from (9) using the Gagliardo—Nirenberg esti-
mate [ps |u]'%3 dx < C (s |[Vul? dx) (s \u|2)2/3 and integration in time. The esti-
mate for p follows from that for u, since we are discussing the whole-space problem:
taking the divergence of the equation gives Ap = — Z?) =1ViV j(ujuj), and for each
i, j the singular integral operator A~'V,;V j is a bounded linear map from L33 to
itself.)

The energy inequality (8) is global, but partial regularity is a local matter. There-
fore we need something similar but more local—a generalized energy inequality.
For a smooth, compactly supported, scalar-valued function ¢ (x,7), multiplying the
Navier—Stokes equation by u@, integrating in space, and integrating by parts leads
formally to < [ [ul?@dx+2 [ |Vu¢pdx = [ |u*(¢ +A¢) + (|u|> +2p)u- Vo dx;
for weak solutions the formal argument breaks down, but (for suitably-constructed
weak solutions) one gets the generalized energy inequality

2//|Vu|2¢dxdt < //|u|2(¢z+A¢)+(|u|2+2p)u-V¢dxdt (1)
for smooth, compactly-supported functions ¢ such that ¢ > 0.

Concerning (b): The Navier—Stokes equation has the following scale invariance: if
u(x,t) and p(x,t) solve (5) then so does

uy, (x,1) = Au(Ax,A%t),  py(x,t) = A2p(Ax,A%r) (12)

for any A > 0. A result of the form “locally small implies regular” should be scale-
invariant; in other words its hypothesis should have “dimension zero” under the
convention that each spatial dimension x; has dimension 1, time ¢ has dimension 2,
each velocity component u; has dimension —1, the pressure p has dimension —2,
and d/dx; has dimension —1. Note that in this parabolic setting, a local estimate
should involve an integral over a parabolic cylinder

0 (x0,10) = {(x,0) : |x—xo| <1, tg—1* <t <ty}.

The heart of the partial regularity theory in [20] is the following “locally small
implies regular” result: there is a constant & > 0 such that
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limsup ! // ( |Vu|*dxdt < &y implies that u is regular at (xo,f). (13)
JJQr(x0.10)

r—0

The proof makes use of a rather different “locally small implies regular” result: there
is a constant € > 0 such that

r 2 // |u)® + |p\3/2 dxdt < g implies that u is regular on Q,»(xo,f0). (14)
r(X0.10)

(This is a simplified version of Proposition 1 and Corollary 1 of [20]. The result there
was more complicated, because it was not known at the time that for the solution of
Navier—Stokes in a bounded domain the pressure was in L3/2)) The latter estimate
(and its proof) are quite close to what Scheffer had done before.

I will not attempt to discuss the proofs of these results, except to remark upon
the relation between them: the proof of (13) in [20] proceeds by showing, roughly
speaking, that if r~" [fy, (. ) [Vul*dxdr is small enough then r2 [f5 (o [uf® +
| p|3/ 2dxdt decays as r decreases, becoming eventually less than &;. Alternative
proofs of these “locally small implies regular” results have since been given by oth-
ers [47, 53]. A well-organized and modern exposition is available in [74].

Concerning (c): the covering arguments used to estimate the size of the singular
set are quite standard. Using (10) and (14) one can show that the singular set has
5/3-dimensional parabolic Hausdorff measure zero. Indeed, by (14) and Holder’s
inequality, if (xp,Z) is a singular point then for any r > 0 the parabolic cylinder Q,
centered at (xo,#p) has

F33 // u'93 + | p|>3 dxdr > €]
JJo,

for some fixed positive constant €. By a parabolic variant of the Vitali covering
lemma, one concludes that for any & > 0 the singular set is contained in a union of
parabolic cylinders Q; whose radii r; < 0 satisfy

Zris/3 < C// |u| ' + | p|>/3 dxdt.
Y

As & — 0 this shows that the singular set has Lebesgue measure 0; since U;Q; is
contained in a §-neighborhood of the singular set, the right hand side of the preced-
ing estimate tends to 0 as & — 0. So the singular set has 5/3-dimensional parabolic
Hausdorff measure 0. (This argument is close to what Scheffer did in [75, 76].)

The proof that the singular set has one-dimensional parabolic measure zero pro-
ceeds similarly, except that it combines the small-implies-regular result (13) with the
global estimate on [ |Vu|? dxdt. It estimates the one-dimensional measure whereas
the previous argument estimated the 5/3-dimensional measure, because it relies on
a global estimate for [[|Vu|?dxdt (which has scaling dimension 1) whereas the
previous argument relied on a global estimate for [[ |u|'%/3 4 |p|>/3 dxdr (which has
scaling dimension 5/3).
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Evidently, the outcome of the argument requires a suitable synergy between
the form of the small-implies-regular result and the global estimate being used.
Our paper [20] obtained additional results by considering global energy-type esti-
mates with weighted norms, associated with formal calculations of <& [ [ul?|x|dx+
2 [ |Vul|?|x| dx and % [ |u?x| =" dx+2 [ |Vu|?|x|~! dx. In doing so, we needed some
analogues of the Gagliardo—Nirenberg interpolation inequalities in norms weighted
by powers of |x|. Convinced that such estimates would have other uses as well, we
wrote a separate paper on this topic [21]. The estimates proved there have indeed
been used in many settings, and they have been generalized in various ways—for
example to interpolation estimates involving weighted Holder norms [51] and frac-
tional derivatives [64]. The extremals and sharp constants for these estimates have
also attracted considerable attention (see, e.g., [27, 52]).

6 Nonlinear elliptic equations involving critical exponents

Nirenberg’s 1983 paper with Haim Brezis, Positive solutions of nonlinear elliptic
equations involving critical Sobolev exponents [14], was a landmark development
in our understanding of semilinear PDE involving critical exponents. Its focus was
the existence of solutions to

—Au=uf + f(x,u) in Q
u>0 inQ (15)
u=0 at dQ

in a bounded domain Q C R” when n > 3, p is the “critical exponent”

_n+2
p_ n_27

and f(x,u) grows slower than u?” at infinity.
To explain the issues, it is convenient to focus on the special case f(x,u) = a(x)u,
when the PDE becomes
—Au=uf +a(x)u. (16)

A necessary condition for the existence of a positive solution is that
the first Dirichlet eigenvalue of —A — a is positive, a7

as one easily verifies by multiplying (16) by the associated eigenfunction and in-
tegrating by parts. This condition is definitely not sufficient, since by Pohozhaev’s
identity there is no solution when a(x) = 0 and € is star-shaped.

To understand why p = (n+2)/(n —2) is special, note that p = (n+2)/(n—2)
is equivalent to p+ 1 = 2n/(n —2), the exponent that appears in the scale-invariant
Sobolev inequality
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ull -2 () < ClIVull 2q)  foru € Hy (). (18)

A key point is that bounded sequences in H& () are precompact in LI*+! for g <
(n+2)/(n—2), but not in L2"/("=2)_This is relevant to the problem at hand because
when the exponent is subcritical (i.e., when p is replaced by ¢ such that 1 < g <
(n+42)/(n—2)) there are straightforward variational approaches, either

(i) seeking a positive critical point of
1 1 1
/Q 3 Vil — el Sal (19)

or else
(ii) solving the variational problem

inf / |Vu|> — a(x)u? dx (20)
Jo lu)?tdx=1 Q
u=0atdQ

(for which the Euler-Lagrange equation is —Au = a(x)u + pud with g con-
stant; the eigenvalue condition (17) assures that (t > 0, so that a well-chosen
scalar multiple of u solves (16)).

When ¢ is subcritical approach (i) is tractable since the functional (19) satisfies
the Palais—Smale condition, and approach (ii) also works since the direct method
of the calculus of variations applies straightforwardly to (20). For the critical expo-
nent, however, neither approach works (at least, not straightforwardly): (i) is dubious
since the analogue of (19) doesn’t satisfy the Palais—Smale condition; and (ii) is du-
bious since the constraint [, [u[P*!dx = 1 is not preserved under weak convergence
in H(} (). Moreover this is not just a technical issue, since (as noted above) there is
in fact no positive solution in a star-shaped domain when p = (n+2)/(n—2) and
a(x) =0.

The essential phenomenon here is the study of a variational problem involving
both [ |Vu|?dx and [ |u|PT!dx, for the special value of p where the latter is con-
trolled by the former but with a lack of compactness. What intrigued Brezis and
Nirenberg was the observation that the existence or nonexistence of a solution can
depend, for such problems, on the presence (and form of) “lower order terms” such
as [a(x)u®dx. This observation had already been made in a special case by Thierry
Aubin, in a 1976 paper on the Yamabe problem [4] (a problem from geometry which
is easily reduced to solving a PDE quite similar to (16) but on a Riemannian mani-
fold without boundary rather than a domain in R"). Indeed it was Aubin’s work that
attracted their attention to this area.

Actually, variational problems involving a lack of compactness arise in a great
variety of settings. The work of P.L. Lions on concentration compactness [54, 55] is
a rich source of examples; in a different direction, the recent paper [35] by Ghous-
soub and Robert discusses many examples involving the existence of extremals for
Sobolev-type inequalities involving weighted norms.
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The goal of the Brezis—Nirenberg paper [14] was to understand when and how
the presence of a “lower order term” permits the variational approaches (i) or (ii) to
succeed even when the exponent is critical. Their results include a rather complete
understanding about when approach (ii)—based on a minimization analogous to
(20)—sulffices to solve (16) in space dimension n > 4. Focusing on this part of the
story for a moment, let

S—  inf / Vul2dx @1
dx=1 Q

Jo lulPt!
u=0atdQ

with p = (n+2)/(n—2). (Clearly S~'/2 is the best constant for the scale-invariant
Sobolev estimate (18); the value of this constant doesn’t depend on £ and is the
same as the best constant for the analogous scale invariant inequality in all R”; in
particular, the value of S is known.) Now let J be the minimum value of (20) with ¢
replaced by p:

J= inf / Vul® — a(x)udx. 22)

JawPtdx=1 /@
w=0atdQ

Brezis and Nirenberg showed that when n > 4 and the eigenvalue condition (17)
holds, the the following are equivalent:

(a) a(x) > 0 somewhere in Q
b) J<S
(c) the minimum defining J is achieved.

(This statement combines several of the results in [14], following the lead of [12].)
The proofs that (b) — (c¢) and (¢) — (a) are relatively elementary, and they work
even when n = 3. The assertion (a) — (b)—proved using a well-chosen test function
for J—is what restricts the result to n > 4.

The case n = 3 is surprisingly different, and the treatment in [14] was limited to
the case when Q is a ball and a(x) is constant. A full understanding was achieved
only in 2002 by Druet [28]; the n = 3 analogue of assertion (a) turns out to be that
g(x,x) > 0 somewhere in 2, where g(x,y) is the regular part of the Green’s function
for —A —aon Q.

I have focused thus far on approach (ii), which minimizes a suitable functional
subject to the constraint [, |u|’*!dx = 1. Brezis and Nirenberg also studied ap-
proach (i), which is more useful when f(x,u) is nonlinear in u, for example when
the PDE is

—Au=uf+ pu? (23)

where ¢ < p=(n+2)/(n—2) and u > 0 is constant. If p were subcritical it would be
standard to find a critical point using the mountain-pass lemma. When p is critical,
they show this still works (despite the failure of the Palais—Smale condition) when
the min-max value of the functional (the critical value, so to speak) is strictly less
than %S"/ 2 Using this result, they show (for example) that when n > 4 equation (23)
has a positive solution for any ¢ > 0 and any bounded 2.
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I have already mentioned Pierre-Louis Lions’ work on concentration compact-
ness, which was roughly contemporaneous with [14]. While its focus was very
similar—namely, variational problems with a lack of compactness—its method was
rather different. Briefly: Lions focused on classifying the mechanisms by which
compactness can be lost (and developing methods for ruling them out in specific
examples), while Brezis and Nirenberg focused more sharply on a particular class
of problems. The two investigations complement each other nicely: conditions for
existence analogous to J < S show up also in Lions’ work, but Brezis and Nirenberg
achieved a more complete understanding for the particular problems they addressed.

We have thus far discussed two particular methods for finding solutions of (15).
Their failure does not necessarily imply nonexistence, as [14] makes clear by point-
ing to examples (such as —Au = u” in the shell {1 < |x| < 2}). The nonexistence the-
orems in [14] are mainly for star-shaped domains, proved using Pohozhaev’s iden-
tity or something similar. The fact that —Au = u” has a positive solution in a shell
but not in a star-shaped domain suggests that the topology of 2 might be relevant—
and this was confirmed by Bahri and Coron in a 1988 paper [5], which developed
an approach to existence theorems that takes advantage of nontrivial topology.

7 The method of moving planes and the sliding method

Nirenberg’s 1979 paper with Basilis Gidas and Wei-Ming Ni, Symmetry and related
properties via the maximum principle [36], began the development of a powerful and
flexible toolkit for showing that the solutions of certain nonlinear elliptic PDE re-
spect the symmetry suggested by their boundary conditions. Their approach, which
soon became known as the method of moving planes, drew inspiration from work
by Alexandroff on problems from geometry (for which their citation was [39]) and
work by Serrin on PDE’s with overdetermined boundary conditions [79]. The es-
sential contribution of [36] was to show that far from being a trick that solves a
few specific problems, the method of moving planes provides an intuitive and flex-
ible approach for proving the symmetry of positive solutions, for a broad class of
nonlinear PDE. While the 1979 paper [36] focused mainly on problems in bounded
domains, it also considered some problems in all R”, and a followup paper [37]
obtained additional results in that setting.

The method of moving planes is particularly well-suited to the study of positive
solutions of equations of the form Au+ f(u) = 0 (as I'll discuss in some detail be-
low). The introduction of [36] points briefly to the equations Au + unt2)/(=2) — ¢
and Au—u"t2/("=2) = 0 in space dimension n > 2 as motivating examples, ex-
plaining their relevance to Yang—Mills field theory and geometry. However the pa-
per is method-oriented not application-oriented, written with confidence that the
method of moving planes would in due course find many applications. And indeed
it has! While a survey is beyond beyond the scope of this article (and beyond the
expertise of this author), let me mention one recent thread. The methods of Gidas,
Ni, and Nirenberg have been extended to positive solutions of some nonlocal prob-
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lems, by considering equivalent local problems in one more space dimension; for
discussion and selected references see the segment of [80] by Xavier Cabré.

In the late 80’s Nirenberg returned to this area in a fruitful collaboration with
Henri Berestycki. Their focus was on certain nonlinear PDE’s in infinite cylinders,
whose solutions describe moving combustion fronts. In this setting, a key goal is to
prove monotonicity of the solution (with respect to the cylinder’s axial variable). To
achieve this goal, they introduced a maximum-principle-based approach to mono-
tonicity, known as the “sliding method,” whose spirit is similar to the method of
moving planes [8, 9].

The early 90’s saw another important development, of a methodological charac-
ter. Since the method of moving planes and the sliding method rely on versions of
the maximum principle, the early papers had to exercise considerable care to be sure
the required versions of the maximum principle were true. Besides complicating the
analysis, this limited the statements of the theorems, for example by not permitting
domains with corners. However it was understood in the early 90’s that a uniformly
elliptic operator of the form Lu = Y a;;(x)d;ju + ¥ bi(x)diu+ c(x)u with bounded,
measurable coefficients satisfies a maximum principle in a domain Q (Lu > 0in Q
and u < 0 at dQ implies # < 0 in Q ) provided only that Q has sufficiently small
measure. Nirenberg’s 1991 paper with Berestycki, On the method of moving planes
and the sliding method [10], shows how this version of the maximum principle per-
mits dramatic simplification of the proofs of many results, and extends their validity
to more general domains (e.g., ones with corners). (For an expository account of
these developments with much more detail than given here, see [13].)

The preceding paragraphs are at best an incomplete survey of Nirenberg’s work
in this area. In his paper with Berestycki on problems in cylinders [9], a subtlety
quite distinct from the sliding method involves understanding the solution’s asymp-
totics at +oo; this is analyzed using Nirenberg’s 1963 results with Agmon [3] and
related results by Pazy [72]. While [9] obtains qualitative results about solutions that
are assumed to exist, a 1992 paper with Berestycki obtains rather complete informa-
tion about the existence and uniqueness of traveling fronts for cylinder analogues of
the most-studied one-dimensional models [11]. Later, Nirenberg wrote two papers
with Berestycki and Caffarelli [6, 7] applying the method of moving planes or the
sliding method to the monotonicity and symmetry of some problems in unbounded
domains.

But achieving completeness is a hopeless task. Rather, let me try to communicate
the elegant simplicity of the method of moving planes and the sliding method, by
discussing two examples from Introduction of [10]. The first uses the method of
moving planes:

Let © be a bounded domain in R" which is convex in the x; direction and
symmetric about x; = 0. Suppose u € C(2) NC?(2) solves

—Au= f(u) in Q

u>0 in Q 24)
u=20 at Q0
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where f is locally Lipschitz. Then u is symmetric with respect to x1, and dju < 0
for x; > 0.

The hypothesis that u be positive is crucial; for example, when  is a ball cen-
tered at O there are plenty of Dirichlet eigenfunctions that are not symmetric in
x1—but they are not positive. The hypothesis that © be convex is also crucial; for
example, when € is the shell {1 < |x| < 2} the equation —Au = u? has a non-radial
positive solution with u = 0 at d when the space dimension is n > 2 and ¢ is below
but sufficiently close to the critical value (n+2)/(n—2) [14].

The following argument is general, but we visualize it in Figure 1 by taking
Q to be a diamond. Writing x = (x;,y) for points in R”, let —a = inf,c x;. For
—a < A < 0let Tj be the hyperplane x; = A, let X, be the part of Q where x; is
less than A, and observe that the function (x1,y) — u(2A4 — x1,y) is the reflection
of u about the hyperplane 7). The key idea is to compare u with its reflection, by
considering the function

Wl(xlay) = u(za’ _xlvy) - u('x17y)'
Since f is locally Lipschitz and u is bounded, w solves an equation of the form
—Awy +c)(x)wy, =0 (25)

in X, , with ¢, (x) bounded. Moreover w; > 0 on dZ, (in fact, it vanishes on the part
of the boundary where x; = A and it is strictly positive on the part of the boundary
that belongs to d2). The main task in the method of moving planes lies in proving
that

wy > 0on X, whenever —a < A < 0. (26)

The symmetry of u follows from (26) by elementary arguments combined with rel-
atively standard applications of the maximum principle (for full details see [10] or
[13]).

We now sketch the proof of (26), using the fact that the PDE (25) has a maximum
principle on a domain of sufficiently small volume. When A is close to —a the set
X, is thin in the x; direction; so the maximum principle applies and w), > 0in X, .
Now let it < 0 be the largest value such that wy >0on X, forA € (—a,u). Iff u =0
we’re done, so we assume [t < 0 and seek a contradiction. By continuity we have
wy > 0in X, and it follows (using a version of the usual maximum principle) that in
fact wy > 0in X;;. Now let K be a compact subset of X, such that X, \ K has small
measure. Evidently w, is bounded away from 0 on K. Therefore (by continuity)
Wy te is strictly positive on K when ¢ is sufficiently small. Since X, ¢ \ K has small
volume, the maximum principle on sets with small volume shows that wy, e > 0 on
Zyute. It follows that wy . > 0 on the entire set X, ¢, contradicting the definition
of u. Thus u = 0 and the argument is complete.

Turning to the sliding method: the following example is again from the Introduc-
tion of [10] (though the statement there is a bit more general).
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Ty

Fig. 1 The method of moving planes, when (2 is a diamond. Left: the hyperplane 7, and the region
X, (shaded); the broken line shows the boundary of the reflection of X, . Right: in the argument by
contradiction, the set K (shaded) occupies most of X,.

Let © be a bounded domain in R” which is convex in the x; direction, and

assume d contains no segment parallel to the x| axis. Suppose u € C(2)N
C*(Q) solves
—Au=f(u) inQ (27

where f is locally Lipschitz, with boundary data such that

u=¢ atdQ.

Assume that for any three points x’ = (x},y),x = (x1,y),x” = (x],y) withx’,x" €
09, we have
O(x') < u(x) < o). (28)

Then u is strictly monotone in x1, in the sense that

u(x; +t,y) > u(x;,y) when 7 > 0, if (x1,y) and (x; + 7,y) are both in Q.

Furthermore, if f is differentiable then dyu > 0. Finally, u is the unique solution
of the given boundary value problem satisfying (28).

The proof uses translation rather than reflection: for 7 > 0, it compares u with its
translate by 7, by considering the difference

W‘L‘(xhy) = u('xl +T7y) _u(xlay)'

This function is defined in the domain D obtained by intersecting Q2 with its trans-
lation Q — te;. It once again solves a PDE of the form (25), and the (28) assures
that w; > 0 at dD-. The main task is to show that

wz > 0 on Dy for all T > 0 such that D; is nonempty. 29)
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The argument is parallel to that used in the first example. Briefly: when 7 is large the
domain D is small and the maximum principle for (25) in small domains gives w; >
0 on Dz. On the other hand if w; > 0 on D for all T > 7; > 0, an argument similar
the one given before (relying once again on the maximum principle for domains
with small volume) shows that that we also have w; > 0 on D; for T = 7; — € when
€ is sufficiently small.

The monotonicity of u and the other conclusions follow from (29) by elementary
arguments combined with relatively standard applications of the maximum principle
(for full details see [10]).

8 Conclusion

As indicated by my title, I have discussed just a few of Louis Nirenberg’s many con-
tributions. The topics I have selected are important, but many topics I have omitted
are also very important. Writing about—indeed, thinking about—Louis’ impact is
truly a humbling experience. It was a great pleasure to see his contributions recog-
nized by the 2015 Abel Prize.
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