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Detailed description of our numerical algorithm

We first describe an explicit time-stepping analog of our algorithm that is sufficient to handle

isotropic step motion problems. We then discuss our semi-implicit algorithm for anisotropic

problems.

Explicit algorithm for isotropic step motion

Given the periodicity of our model problem, it suffices to consider a single period cell (the

dotted square in Figure 1), which has side length d. The front of the evolving step in this

cell can be described by a simple 1D curve in the plane. We first discretize this 1D curve in

space with N grid points, (xi, yi), i = 1, 2, . . . , N , which are uniformly spaced with respect to

the arc length, s. We initialize our algorithm with a horizontal line from x1 = 0 to xN = d,

with yi ≡ 0, ∀i. Because the curve is initially horizontal, the arc length is simply the length

of the line.
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The ends of the curve at (x1, y1) = (0, 0) and (xN , yN) = (d, 0), are initially “pinned”

(fixed) at the impurity sites. In the isotropic case, κγ = κ and each interior point along the

curve evolves according to the growth law (5):

d

dt

xi
yi

 =

nxi
nyi

 (1− ξκi) , i ∈ {2, 3, . . . , N − 1}, (S.1)

where the normal at the point (xi, yi), ni = (nxi , nyi)
T , can be computed from appropriate

gradients with respect to arc length:

ni =

nxi
nyi

 =
1√

[(∂sy)i]2 + [(∂sx)i]2

−(∂sy)i

(∂sx)i

 . (S.2)

The curvature at each grid point is given by:

κi = −(∂sx)i(∂
2
sy)i − (∂sy)i(∂

2
sx)i

([(∂sx)i]2 + [(∂sy)i]2)
3/2

. (S.3)

We approximate the derivative operators (with respect to arc length), ∂s and ∂2s , that appear

in (S.2) and (S.3), using finite differences.

Equipped with ni and κi, we can solve the interior ODE system (S.1) using an explicit

time stepping scheme with a sufficiently small step size, ∆t. For i = 1, 2, . . . , N and j ∈ Z+,

we denote by (xji , y
j
i ), the ith grid point along the front (curve) at time tj = j∆t. Our explicit

scheme is then xj+1
i

yj+1
i

 =

xji
yji

+ ∆t

nxji
nyji

(1− ξκji) . (S.4)

The evolution of the ends of the front is determined by whether the front is pinned or free.

While the front is pinned at the impurity sites, we impose Dirichlet boundary conditions:

(xj1, y
j
1) = (0, 0) and (xjN , y

j
N) = (d, 0), for all j ∈ Z+. As the front evolves, the pinning angle
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between the front and the vertical at the impurity sites,

φ = atan

(
∆x

∆y

)
≈ atan

(
xi − xi−1
yi − yi−1

)
, i ∈ {2, N}, (S.5)

decreases. When the pinning angle is less than the critical pinning threshold, φ < φc,

the front breaks through the impurity fence. At this time, we impose periodic boundary

conditions: (xj1, y
j
1) = (xjN , y

j
N), and evolve the end points according to the explicit scheme

(S.4). Once the front hits the next impurity fence, it becomes pinned and we impose Dirichlet

boundary conditions again.

There are two subtleties to evolving the free front end points immediately after break-

through. Firstly, because of the periodic boundary conditions, the front forms a sharp angle

at its end points. This makes numerical computation of the normal vector (S.2) unreliable at

the end points just after breakthrough. We therefore impose that the normal vector points

in the vertical direction: ni = (0, 1), i ∈ {1, N}. Secondly, immediately after breakthrough,

the curvature at the end points, κ1 and κN is very large. Therefore, the velocity near the

end points is very large, so we need to ensure that our time step is sufficiently small.

Finally, because the growth law (S.1) determines the evolution of the front in the normal

direction only, the grid points along the front will in general not remain equally distributed

(with respect to arc length) along the curve. At each time step, we remedy this by reparam-

eterizing the grid points along the curve using numerical interpolation.

Semi-implicit algorithm for anisotropic step motion

In the anisotropic case, κγ(θ) = (γ(θ) + γ′′(θ))κ(θ). The anisotropic surface energy given

by Eq. (6) leads to the formation of facets. In this case, the growth law Eq. (5) becomes

too stiff to solve explicitly so we turn to a semi-implicit scheme. To simplify our discussion,

we assume the mobility is constant, M(θ) ≡ 1. (Introducing variable mobility involves

straightforward adjustments to this algorithm.)
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The setup in the semi-implicit scheme is very similar to that of the explicit scheme. We

uniformly discretize the front (a 1D curve) with the points (xi, yi), where i = 1, 2, . . . , N . We

initialize our algorithm with a horizontal line. The ends of the curve are initially pinned at

the impurity sites with Dirichlet boundary conditions. Each interior point evolves according

to the growth law (Eq. (5)):

d

dt

xi
yi

 =

nxi
nyi

 (1− ξ (γ(θi) + γ′′(θi))κ(xi, yi)) , i ∈ {2, 3, . . . , N − 1}. (S.6)

The curvature term, κ(xi, yi), is handled differently in the semi-implicit scheme. As

before, for i = 1, 2, . . . , N and j ∈ Z+, let (xji , y
j
i ) denote ith grid point along the front at

time tj = j∆t. We evaluate the curvature term semi-implicitly in time:

κ(xi, yi) = −(∂sx)ji (∂
2
sy)j+1

i − (∂sy)ji (∂
2
sx)j+1

i(
[(∂sx)ji ]

2 + [(∂sy)ji ]
2
)3/2 , (S.7)

where i ∈ {1, 2, . . . , N} and j ∈ Z+. In Eq. (S.7), we evaluate the first order derivatives

terms at the current time (time step j) and second order derivatives terms at the future time

(time step j+1). This choice is motivated by the fact that the second order derivative terms

are the largest source of numerical stiffness.

The normal ni = (nxi , nyi)
T is computed as in Eq. (S.2) at the current time (time step

j): ni = (nxji
, nyji

)T . From ni, we also compute the polar angle at each grid point, θji , and

the surface energy terms, γ(θji ) + γ′′(θji ).

We solve the interior ODE system Eq. (S.6) using a implicit time stepping scheme. Let

xj = (xj1, x
j
2, . . . , x

j
N)T and yj = (yj1, y

j
2, . . . , y

j
N)T . Let I denote the 2N×2N identity matrix,

D the 2N × 2N matrix with diagonal entries (nx1 , . . . , nxN , ny1 , . . . , nyN ) and c the vector

(1, 1, . . . , 1)T of length 2N . Then, at the level of matrices, the semi-implicit scheme, with
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time step ∆t, takes the form:

(I + ∆tDH)

xj+1

yj+1

 =


xj

yj

+ ∆tDc

 , (S.8)

where the matrix H = H((∂sx)ji , (∂sy)ji ; γ(θi), γ
′′(θi)) appropriately encodes the surface en-

ergy terms and the first order derivatives terms from the curvature given by Eq. (S.7) that

are evaluated at time step j.

As the front evolves, we monitor the pinning angle, φ, at the impurity sites. When

φ < φc, the front breaks through the impurity fence and we impose periodic boundary

conditions at the end points of the front. When the front hits the next impurity fence,

we impose Dirichlet boundary conditions again. We handle the normal vectors at the end

points just after breakthrough in a similar manner to the explicit scheme. We also take

similar precautions with the time step and use the same interpolation approach to ensure

that the grid points remain equally distributed (with respect to arc length) along the curve.

Benchmarks

We benchmarked our algorithm as follows. We employ an ODE solver to compute the

stationary (pinned) configuration of Eq. (5) for fixed ξ and fixed lattice size. We then run

our dynamical front tracking algorithm for the same ξ and lattice size, and confirm that the

dynamical solution converges to the stationary configuration. We performed this “pinned

configuration benchmark” for several anisotropic surface energies of the form given in Eq.

(6).

Effect of numerical regularization

As explained in the main text, for numerical purposes we approximate a surface energy γ

given by Eq. (6) by the regularization given by Eq. (8).
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Figure S.1: Comparison of different regularizations for anisotropic, single-faceted step mo-
tion. Before regularization, γ is given by Eq. (6) with c2 = c3 = 0 and c1 = 1 or 10. The
growth law is V = V0(1 − ξκγ(θ)) and the horizontal axis is ζ = ξ/ξc. Data points with
the same regularization are connected by dashed lines (ε = 10−1), solid lines (ε = 10−2), or
dotted lines (ε = 10−3).
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Figure S.1 compares different choices of the regularization parameter ε, when c2 = c3 = 0

and c1 = 1 or 10. For relatively weak anisotropy (such as c1 = 1) there is no noticeable

difference between the ε = 10−2 and 10−3 regularizations. As we increase the anisotropy

to c1 = 10, we begin to notice some discrepancies. Since refining the regularization has a

computational cost – we require smaller time steps for smaller ε – we opted to use ε = 10−2

throughout the article.

Derivation of analytical formulas for polygonal cases

For the double-facet case, all angles are π/2, the percolation parameter is ζ = Lch/d and

α = Lcs/Lch = γh/γs; see Figure S.2. During stage 1, the vertical facets are immobile but

the horizontal facet moves with Vt = V0(1 − Lch/d) (Eq. (11)) until it reaches a vertical

position y1 = Lcs at time τ1 = Lcs/Vt. At this moment, the side facets start moving and

immediately merge forming a straight infinite horizontal step; in this case, stage 2 is absent

and τ2 = 0. Finally, at stage 3, growth proceeds with Vt = V0 for y1 < y ≤ d and takes time

τ3 = (d− Lcs)/V0. The average step velocity can be computed from Eq. (13):

Vavg = d

(
Lcs

V0(1− Lch/d)
+
d− Lcs
V0

)−1
, (S.9)

which can then be simplified to the final Eq. (14).

For the triple-faceted case, all angles are 2π/3, the percolation parameter is ζ = (Lch +

Lcs)/d, and α = Lcs/Lch = γh/(2γs− γh); see Figure S.3. During stage 1, the side facets are

immobile and the top facet moves with step velocity given by Eq. (11):

Vt =
dy

dt
= V0

(
1− Lch

Lt

)
. (S.10)

The length of horizontal facet is Lt = d−2y cot(π/3) (see Figure S.3) and stage 1 encompasses

the range 0 ≤ y < y1 =
√

3Lcs/2. One can therefore integrate Eq. (S.10) to obtain the time
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Figure S.2: Schematic illustrating the derivation of the analytical average velocity for double-
facet case, Eq. (14). The step is propagating in the positive y direction. Stoppers are shown
by red dots. Black lines show start/end step configurations for each stage and the blue lines
illustrate typical intermediate configurations for each stage. The equilibrium Wulff shape of
the corresponding 2D island is shown in the right inset.

needed to complete stage 1:

τ1 =

√
3

2V0

(
Lcs − Lch ln

(
d− Lcs − Lch

d− Lch

))
. (S.11)
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Figure S.3: Schematic illustrating derivation of average velocity for triple-facet case, Eq.
(15). The step is propagating in positive y direction. Stoppers are shown by red dots.
Black lines show start/end step configurations for each stage and the blue lines illustrate
intermediate configurations for each stage. The equilibrium Wulff shape of the corresponding
2D island is shown in the right inset.

Stage 2: The moment the step breaks through the array of stoppers, side facets start

moving, and the bottom facet appears (see Figure S.3). In accordance with Eqs. (10) and

(11) and Figure 5, velocities of the top horizontal, bottom horizontal, and side facets are

given by Vt = V0(1 − Lch/Lt), Vb = V0(1 + Lch/Lb), and Vs = V0, respectively. The bottom

facet moves faster than the top one. The time required to merge corresponds to the duration
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of stage 2, τ2, and will result in step position y2. Using equations for step velocities one can

find the coordinates of facet interception points and write equations determining the top

(Lt) and bottom (Lb) facet lengths:

dLt
dt

=
2√
3

(2V0 − Vt), and (S.12)

dLb
dt

=
2√
3

(Vb − 2V0). (S.13)

Combining these Eqs. (S.12) and (S.13) with the equations for step velocities one can write

four equations that completely determine stage 2:

dLt
dt

=
2V0√

3

(
1 +

Lch
Lt

)
,

dLt
dy

=
dLt
Vtdt

=
2√
3

(
Lt + Lch
Lt − Lch

)
,

dLb
dt

=
2V0√

3

(
Lch
Lb
− 1

)
, and

dLb
dy

=
dLb
Vbdt

=
2√
3

(
Lch − Lb
Lb + Lch

)
.

The limits of integration for these equations are determined by the initial and final times of

stage 2 (t = τ1 and t = τ1 + τ2); the initial and final lengths of the top facet (Lt(τ1) = d−Lcs

and Lt(τ1 + τ2)); the initial and final lengths of the bottom facet (0 and d−Lt(τ1 + τ2)); the

initial and final y positions of top facet (y1 and y2) and the initial and final positions of the

bottom facet (0 and y2). Integrating each equation, and writing Lt for Lt(τ1 + τ2) and Lb for
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Lb(τ1 + τ2) to simplify the notation, we get

τ2 =

√
3

2V0

(
Lt − d+ Lcs − Lch ln

(
Lt + Lch

d− Lcs + Lch

))
, (S.14)

y2 =

√
3

2

(
Lt − d+ 2Lcs − 2Lch ln

(
Lt + Lch

d− Lcs + Lch

))
, (S.15)

τ2 = −
√

3

2V0

(
Lb + Lch ln

(
Lch − Lb
Lch

))
, and (S.16)

y2 = −
√

3

2

(
Lb + 2Lch ln

(
Lch − Lb
Lch

))
. (S.17)

Eliminating τ2 from (S.14) and (S.16) gives a nonlinear equation relating Lb and Lt. Elim-

inating y2 from (S.15) and (S.17) gives a different nonlinear equation involving Lb and Lt.

Comparing the two, we reach the conclusion that

−Lcs + Lch ln

(
Lt + Lch

d− Lcs + Lch

)
= Lch ln

(
Lch − Lb
Lch

)
.

Taking the exponential of both sides, we get a linear relation between Lt and Lb:

e−α
Lt + Lch

d− Lcs + Lch
=
Lch − Lb
Lch

where (as usual) α = Lcs/Lch. But at the end of stage 2 we also have (by definition)

Lt + Lb = d. These two linear equations determine both Lt and Lb; in particular, they give

Lb = Lch

(
1− d

eα(d+ Lch − Lcs)− Lch

)
. (S.18)

Substituting this value for Lb into Eqs. (S.16) and (S.17), one obtains expressions for τ2 and
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y2, respectively:

τ2 = −
√

3

2V0
Lch

(
1− d

eα(d+ Lch − Lcs)− Lch
+ ln

(
d

eα(d+ Lch − Lcs)− Lch

))
, and

(S.19)

y2 = −
√

3

2
Lch

(
1− d

eα(d+ Lch − Lcs)− Lch
+ 2 ln

(
d

eα(d+ Lch − Lcs)− Lch

))
. (S.20)

Stage 3 occurs over the range y2 ≤ y < d and proceeds with the unimpeded step velocity

V = V0. Therefore, stage 3 takes time

τ3 =
d− y2
V0

. (S.21)

The average step velocity is calculated by combining Eqs. (13), (S.11), (S.20), and (S.21):

Vavg = V0d

(
d+

√
3Lch
2

ln

(
eαd(d− Lch)

(eα(d+ Lch − Lcs)− Lch)(d− Lcs − Lch)

))−1
, (S.22)

which can be simplified to give the final form Eq. (15).

Step velocity as a function of facet length

According to Eq. (9), for the front motion law V = (1 − ξκγ), the velocity Vf of the top

facet is linearly related to the length Lf of the facet:

Vf =

(
1− ξ [γ′(0)]

Lf

)
=

(
1− ξc[γ′(0)]

ζ

Lf

)
,

where ζ = ξ/ξc is the percolation parameter. Figure S.4 assesses the extent to which our

numerically-computed solutions satisfy this law, focusing on a single-facet example (c1 = 10,

c2 = c3 = 0) and a symmetric triple-facet example (c3 = 0.1, c1 = c2 = 0). In both

cases the numerically-computed graph of Vf vs ζ/Lf is very nearly a straight line. The

numerically-observed slopes are slightly different from those obtained theoretically. Indeed,
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for both examples ξc = 1/2 (a result obtained both numerically and analytically), so for

the single-facet example the theoretical slope is −ξc[γ′(0)] = −c1/(1 + c1) = −0.91 while

the numerically-obtained slope is −0.94; for the triple-facet example the theoretical slope

is −ξc[γ′(0)] = −3c3/(1 + c3) = −0.27 while the numerically-obtained slope is −0.35. We

attribute the discrepancy between the theoretical and numerical slopes to the effect of reg-

ularization – specifically, to the fact that in the numerically-computed, regularized setting

the “facet” is not exactly flat, so there is some ambiguity in identifying its endpoints and

measuring its length. (For Figure S.4 the regularization was ε = 10−2 and the facet was

defined to be the part of the front where the normal angle |θ| satisfied |θ| < 10ε = 0.1.)

Figure S.4: Velocity of the top facet - characterized by the (unnormalized) midpoint velocity,
Vmid, plotted as a function of the percolation parameter multiplied by inverse facet length,
ζ/L. (a): Triple-facet motion (c3 = 0.1). (b): Single-facet motion (c1 = 10). As the step
evolves and and the facet length decreases from L = 1, the velocity of the facet decreases
linearly. Averaging across the three linear fits in each case, the slope of Vmid vs ζ/L is −0.35
in the triple-facet case (a) and −0.94 in the single-facet case (b).
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