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Detailed description of our numerical algorithm

We first describe an explicit time-stepping analog of our algorithm that is sufficient to handle
isotropic step motion problems. We then discuss our semi-implicit algorithm for anisotropic

problems.

Explicit algorithm for isotropic step motion

Given the periodicity of our model problem, it suffices to consider a single period cell (the
dotted square in Figure , which has side length d. The front of the evolving step in this
cell can be described by a simple 1D curve in the plane. We first discretize this 1D curve in
space with NV grid points, (x;,y;), 7 = 1,2, ..., N, which are uniformly spaced with respect to
the arc length, s. We initialize our algorithm with a horizontal line from z; =0 to zy = d,
with y; = 0, Vi. Because the curve is initially horizontal, the arc length is simply the length

of the line.
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The ends of the curve at (z1,y1) = (0,0) and (xy,yn) = (d,0), are initially “pinned”
(fixed) at the impurity sites. In the isotropic case, k, = k and each interior point along the

curve evolves according to the growth law ([)):

— = 1 (1—¢ky), i€{2,3,....N—1}, (S.1)
Yi Ty,

where the normal at the point (x;,y;), n; = (ng,,n,,)", can be computed from appropriate

gradients with respect to arc length:
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The curvature at each grid point is given by:
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We approximate the derivative operators (with respect to arc length), d; and 92, that appear
in (S.2) and (S.3), using finite differences.

Equipped with n; and k;, we can solve the interior ODE system using an explicit
time stepping scheme with a sufficiently small step size, At. Fori=1,2,...,N and j € Z™,
we denote by (z7,%7), the i*" grid point along the front (curve) at time t; = jAt. Our explicit

scheme is then
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The evolution of the ends of the front is determined by whether the front is pinned or free.
While the front is pinned at the impurity sites, we impose Dirichlet boundary conditions:

(2, 4]) = (0,0) and (.7:5\,, yf\,) = (d,0), for all j € Z". As the front evolves, the pinning angle



between the front and the vertical at the impurity sites,
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decreases. When the pinning angle is less than the critical pinning threshold, ¢ < ¢,
the front breaks through the impurity fence. At this time, we impose periodic boundary
conditions: (7,v]) = (2%, yk), and evolve the end points according to the explicit scheme
. Once the front hits the next impurity fence, it becomes pinned and we impose Dirichlet
boundary conditions again.

There are two subtleties to evolving the free front end points immediately after break-
through. Firstly, because of the periodic boundary conditions, the front forms a sharp angle
at its end points. This makes numerical computation of the normal vector unreliable at
the end points just after breakthrough. We therefore impose that the normal vector points
in the vertical direction: n; = (0,1), i € {1, N}. Secondly, immediately after breakthrough,
the curvature at the end points, k1 and ky is very large. Therefore, the velocity near the
end points is very large, so we need to ensure that our time step is sufficiently small.

Finally, because the growth law determines the evolution of the front in the normal
direction only, the grid points along the front will in general not remain equally distributed
(with respect to arc length) along the curve. At each time step, we remedy this by reparam-

eterizing the grid points along the curve using numerical interpolation.

Semi-implicit algorithm for anisotropic step motion

In the anisotropic case, k() = (v(0) + 7"(#))x(#). The anisotropic surface energy given
by Eq. @ leads to the formation of facets. In this case, the growth law Eq. becomes
too stiff to solve explicitly so we turn to a semi-implicit scheme. To simplify our discussion,
we assume the mobility is constant, M(f) = 1. (Introducing variable mobility involves

straightforward adjustments to this algorithm.)



The setup in the semi-implicit scheme is very similar to that of the explicit scheme. We
uniformly discretize the front (a 1D curve) with the points (z;,y;), wherei =1,2,..., N. We
initialize our algorithm with a horizontal line. The ends of the curve are initially pinned at
the impurity sites with Dirichlet boundary conditions. Each interior point evolves according

to the growth law (Eq. (f)):
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The curvature term, x(x;,y;), is handled differently in the semi-implicit scheme. As
before, for i = 1,2,...,N and j € Z*, let (27,1/) denote i** grid point along the front at

time ¢; = jAt. We evaluate the curvature term semi-implicitly in time:
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where i € {1,2,...,N} and j € Z". In Eq. (S.7), we evaluate the first order derivatives
terms at the current time (time step j) and second order derivatives terms at the future time
(time step j+1). This choice is motivated by the fact that the second order derivative terms
are the largest source of numerical stiffness.

The normal n; = (ng,;,ny,)" is computed as in Eq. at the current time (time step
Jj): n; = (nxg-, ny{)T. From n;, we also compute the polar angle at each grid point, 92‘7 , and
the surface energy terms, v(67) + " (67).

We solve the interior ODE system Eq. (S.6)) using a implicit time stepping scheme. Let

xI = (2], 2),...,23)  and y/ = (v, 93, ...,y4)7. Let I denote the 2N x 2N identity matrix,

D the 2N x 2N matrix with diagonal entries (ng,,...,Ngy, Ny, .-, Ny, ) and c the vector

(1,1,...,1)T of length 2N. Then, at the level of matrices, the semi-implicit scheme, with



time step At, takes the form:
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where the matrix H = H((9s2)7, (3sy)?; v(6:),7"(6;)) appropriately encodes the surface en-
ergy terms and the first order derivatives terms from the curvature given by Eq. that
are evaluated at time step j.

As the front evolves, we monitor the pinning angle, ¢, at the impurity sites. When
¢ < ¢, the front breaks through the impurity fence and we impose periodic boundary
conditions at the end points of the front. When the front hits the next impurity fence,
we impose Dirichlet boundary conditions again. We handle the normal vectors at the end
points just after breakthrough in a similar manner to the explicit scheme. We also take
similar precautions with the time step and use the same interpolation approach to ensure

that the grid points remain equally distributed (with respect to arc length) along the curve.

Benchmarks

We benchmarked our algorithm as follows. We employ an ODE solver to compute the
stationary (pinned) configuration of Eq. for fixed ¢ and fixed lattice size. We then run
our dynamical front tracking algorithm for the same ¢ and lattice size, and confirm that the
dynamical solution converges to the stationary configuration. We performed this “pinned

configuration benchmark” for several anisotropic surface energies of the form given in Eq.

(E)

Effect of numerical regularization

As explained in the main text, for numerical purposes we approximate a surface energy -~y

given by Eq. @ by the regularization given by Eq. .
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Figure S.1: Comparison of different regularizations for anisotropic, single-faceted step mo-
tion. Before regularization, v is given by Eq. @ with ¢co = c3 =0 and ¢; =1 or 10. The
growth law is V' = V(1 — £k, (0)) and the horizontal axis is ( = £/£.. Data points with
the same regularization are connected by dashed lines (¢ = 107!), solid lines (¢ = 1072), or
dotted lines (e = 1073).



Figure compares different choices of the regularization parameter €, when ¢y = c3 =0
and ¢; = 1 or 10. For relatively weak anisotropy (such as ¢; = 1) there is no noticeable
difference between the € = 1072 and 1073 regularizations. As we increase the anisotropy
to ¢; = 10, we begin to notice some discrepancies. Since refining the regularization has a
computational cost — we require smaller time steps for smaller € — we opted to use € = 1072

throughout the article.

Derivation of analytical formulas for polygonal cases

For the double-facet case, all angles are 7/2, the percolation parameter is ( = L.,/d and
& = Les/Len, = vn/7s; see Figure [S.2] During stage 1, the vertical facets are immobile but
the horizontal facet moves with V; = V(1 — Ly /d) (Eq. (1)) until it reaches a vertical
position y; = L. at time 7 = L.,/V;. At this moment, the side facets start moving and
immediately merge forming a straight infinite horizontal step; in this case, stage 2 is absent
and 75 = 0. Finally, at stage 3, growth proceeds with V; = V; for y; < y < d and takes time
73 = (d — L¢s)/Vo. The average step velocity can be computed from Eq. :

L d— L\
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which can then be simplified to the final Eq. .
For the triple-faceted case, all angles are 27 /3, the percolation parameter is ( = (L., +
Les)/d, and o = Les/ Lep, = Y1/ (27s — Y1); see Figure During stage 1, the side facets are

immobile and the top facet moves with step velocity given by Eq. (11)):

- dy o Lch
Vt_dt_vo(l Lt)' (S.10)

The length of horizontal facet is L; = d—2y cot(m/3) (see Figure[S.3)) and stage 1 encompasses
the range 0 < y < y; = V3L./2. One can therefore integrate Eq. (S.10) to obtain the time



YA d
-«
d L ® °
Lch
Stage 3
Les Lo

. ) AV L

Los = > Stage 1 ch

Y Li=d

0

Figure S.2: Schematic illustrating the derivation of the analytical average velocity for double-
facet case, Eq. . The step is propagating in the positive y direction. Stoppers are shown
by red dots. Black lines show start/end step configurations for each stage and the blue lines
illustrate typical intermediate configurations for each stage. The equilibrium Wulff shape of
the corresponding 2D island is shown in the right inset.

needed to complete stage 1:
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Figure S.3: Schematic illustrating derivation of average velocity for triple-facet case, Eq.
(15). The step is propagating in positive y direction. Stoppers are shown by red dots.
Black lines show start/end step configurations for each stage and the blue lines illustrate
intermediate configurations for each stage. The equilibrium Wulff shape of the corresponding
2D island is shown in the right inset.

Stage 2: The moment the step breaks through the array of stoppers, side facets start
moving, and the bottom facet appears (see Figure . In accordance with Eqgs. and
and Figure , velocities of the top horizontal, bottom horizontal, and side facets are
given by V; = Vo(1 — Len/Ly), Vo = Vo(1 + Len/Ly), and V = Vj, respectively. The bottom

facet moves faster than the top one. The time required to merge corresponds to the duration



of stage 2, 19, and will result in step position y,. Using equations for step velocities one can
find the coordinates of facet interception points and write equations determining the top

(L;) and bottom (L) facet lengths:

dL, 2
— = —(2Vy — 12
= 5=V, and (5.12)
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Combining these Egs. (S.12]) and (S.13|) with the equations for step velocities one can write

four equations that completely determine stage 2:
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The limits of integration for these equations are determined by the initial and final times of
stage 2 (t = 11 and t = 71 + 72); the initial and final lengths of the top facet (L;(71) = d — Les
and L¢(7; 4+ 72)); the initial and final lengths of the bottom facet (0 and d — Li(7; + 72)); the
initial and final y positions of top facet (y; and y») and the initial and final positions of the

bottom facet (0 and y,). Integrating each equation, and writing L; for L;(7; + 72) and L, for



Ly(71 + 72) to simplify the notation, we get
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Eliminating 7 from (S.14]) and (S.16)) gives a nonlinear equation relating L, and L;. Elim-

inating y, from ([S.15) and (S.17)) gives a different nonlinear equation involving L, and L;.

Comparing the two, we reach the conclusion that

Lt + Lch Lch - Lb
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Taking the exponential of both sides, we get a linear relation between L; and Ly:

Li+ L  Len — Ly
d— Lcs + Lch B Lch

—

where (as usual) & = L./L.,. But at the end of stage 2 we also have (by definition)

L; + L, = d. These two linear equations determine both L; and L;; in particular, they give

d
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Substituting this value for L; into Eqgs. (S.16|) and (S.17)), one obtains expressions for 7 and
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1o, Tespectively:
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Stage 3 occurs over the range y» < y < d and proceeds with the unimpeded step velocity

V' = Vy. Therefore, stage 3 takes time

d— 1y
v
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The average step velocity is calculated by combining Egs. (13), (S.11)), (S.20), and (S.21):

-1

V3L, e*d(d — Lep)
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which can be simplified to give the final form Eq. .

Step velocity as a function of facet length

According to Eq. (9], for the front motion law V = (1 — £k,), the velocity V} of the top

facet is linearly related to the length L of the facet:

vi= (1) - (1-epong ).

where ¢ = £/, is the percolation parameter. Figure assesses the extent to which our
numerically-computed solutions satisfy this law, focusing on a single-facet example (¢; = 10,
ca = c3 = 0) and a symmetric triple-facet example (c3 = 0.1, ¢; = ¢ = 0). In both
cases the numerically-computed graph of V vs (/L is very nearly a straight line. The

numerically-observed slopes are slightly different from those obtained theoretically. Indeed,
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for both examples £, = 1/2 (a result obtained both numerically and analytically), so for
the single-facet example the theoretical slope is —£.[v(0)] = —¢1/(1 4+ ¢1) = —0.91 while
the numerically-obtained slope is —0.94; for the triple-facet example the theoretical slope
is —&.[7(0)] = —3c3/(1 4 ¢3) = —0.27 while the numerically-obtained slope is —0.35. We
attribute the discrepancy between the theoretical and numerical slopes to the effect of reg-
ularization — specifically, to the fact that in the numerically-computed, regularized setting
the “facet” is not exactly flat, so there is some ambiguity in identifying its endpoints and
measuring its length. (For Figure the regularization was ¢ = 1072 and the facet was

defined to be the part of the front where the normal angle || satisfied |0] < 10e = 0.1.)
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Figure S.4: Velocity of the top facet - characterized by the (unnormalized) midpoint velocity,
Vi, plotted as a function of the percolation parameter multiplied by inverse facet length,
¢/L. (a): Triple-facet motion (¢3 = 0.1). (b): Single-facet motion (¢; = 10). As the step
evolves and and the facet length decreases from L = 1, the velocity of the facet decreases
linearly. Averaging across the three linear fits in each case, the slope of Viq vs (/L is —0.35
in the triple-facet case (a) and —0.94 in the single-facet case (b).
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