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Abstract

Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea

introduced a model in 1958, in which the impurities are modelled as immobile stop-

pers. The quantitative consequences of this model have mainly been explored for the

special case where the stoppers are immobile and arranged in a periodic array. Here we

use numerical simulation to explore what happens when the stopper locations are ran-

domly distributed and the stoppers have finite lifetimes. As this problem has just two

nondimensional parameters, namely nondimensionalized versions of the mean stopper

distance and the mean stopper lifetime, we are able to explore a large region of the

parameter space using simulation.

The stopper density is measured by the percolation parameter, a nondimension-

alized inverse distance between stoppers, ζ. Our results show that when the stopper

density is relatively small (ζ below about 0.8), the macroscopic velocity of the step is

roughly the same for randomly-located stoppers as for a periodic array of stoppers.

Moreover, in this regime the average velocity is almost independent of the stopper

lifetime. For large stopper densities (more precisely, when the percolation parameter
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ζ is above about 0.8) the situation is entirely different. For periodically-placed immo-

bile stoppers, the average velocity drops sharply to 0 at ζ = 1. For randomly-located

immobile stoppers, by contrast, the average velocity remains positive for ζ well above

1, and it approaches 0 gradually rather than abruptly. For randomly-located stoppers

with finite lifetimes, the average velocity has a nonzero asymptote for large ζ; thus,

for large stopper densities, the average velocity depends mainly on the mean stopper

lifetime. In this regime the inhibition kinetics predicted by our model resemble those

of the Bliznakov kink blocking mechanism.

Introduction

Additives and impurities play a major role in controlling crystal growth kinetics. Under-

standing the mechanisms responsible for crystal-additive interaction is one of the primary

tasks of crystal growth science and is important for numerous applications. The most pro-

found growth inhibition occurs when impurities and additives adsorb to the crystal surface,

becoming stoppers that interfere with propagation of the growth step over the surface.1–3

This mechanism was modeled in 1958 by Cabrera and Vermilyea, who considered step propa-

gation in the presence of strongly adsorbed stoppers.4 The step cannot go through stoppers,

but it can advance in the regions between them. Doing so increases the curvature κ of the

moving front; due to the Gibbs-Thomson effect this leads to a higher step free energy and

slower step advancement. If the stopper separation is large enough, the parts of the step

on the two sides of the stopper eventually merge; this permits the step to proceed, leaving

the stopper behind. If the stopper separation is small enough, however, the step reaches a

stationary state and its progress is arrested.

To make the model quantitative, Cabrera and Vermilyea considered the case when the

stopper locations form a periodic array of size d. When d is smaller than the diameter of the

critical nucleus, 2rc, the step reaches a stationary state and growth is arrested, leading to

the so-called “dead zone.” On the other hand, if the percolation parameter ζ = 2rc/d < 1,
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the step’s progress is slowed but not arrested by the stoppers. If we approximate the part

of the step between two stoppers as a piece of a circle, we see that the step breaks past

a row of stoppers at the moment when its curvature is κ = 2/d; this is the time when

the velocity of the step reaches its minimum Vmin = V0(1 − ζ) > 0. The step breaks past

the stoppers because neighboring segments collide, forming a continuous step which quickly

becomes nearly flat. The step then proceeds at velocity V0 until it encounters the next row

of stoppers. Cabrera and Vermilyea provided an approximate expression for the average step

velocity Vavg in this context:

Vavg = V0
√

1− ζ. (1)

The C-V formula (1) provides a good qualitative description of the growth inhibition process,

including the formation of a dead zone. However, it does not agree quantitatively with

experimental data.5–20

This discrepancy is not surprising since the C-V formula was developed using numerous

assumptions. Indeed, the model of Cabrera and Vermilyea implicitly assumes that: (1) Steps

have high kink density; (2) Steps are characterized by isotropic edge energies and kinetic

coefficients; (3) Crystallization occurs close to equilibrium; (4) Stoppers are large, i.e. cannot

be overgrown by the step fluctuations; and (5) Contact with the stopper does not reduce

the step’s free energy leading it to wrap quickly around and overgrow the stopper. The

model also assumes that (6) Stoppers adsorb immediately and never desorb; and the C-V

formula (1) was derived assuming that (7) Stoppers are distributed on the crystal surface in

a square grid. Much work has been done to address the discrepancy between modeling and

experiment by modifying some of these hypotheses. Improved agreement has, for example,

been achieved by using a different expression for the driving force of crystallization,8,9 by

playing with adsorption isotherms8,9,21 or by considering a slow rate of adsorption.10,12,18,22–26

In addition, in some cases researchers have developed models combining several inhibition

mechanisms,8,9 played with mathematical expressions for the average growth rate,8,9,27 or

considered formation of macrosteps.28,29 Potapenko obtained an approximation better than
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eqn (1), for the average velocity in the original C-V setting with a periodic array of stoppers.30

While this work has achieved important insight in specific cases, overall it has not overcome

the shortcomings associated with the assumptions (1) – (7) of the C-V model, and it has not

achieved a satisfactory description of experimental data.

A convenient way to avoid some of the preceding assumptions is to use kinetic Monte-

Carlo simulations. This approach has been used, for example, to study steps on the {001}

surface of a Kossel crystal for random and regular distributions of stoppers,31–34 different

stopper sizes,31,32 different bond energies/kink densities,31,35–37 stoppers varying in their

ability to be overgrown35 and in their mobility,32 and surfaces developing macrosteps.38,39 Ice

crystallization in the presence of antifreeze proteins has also been simulated using molecular

dynamics.40 Such simulations can capture many qualitative features of growth kinetics, but

they are not well-suited for making quantitative comparisons to experiments, since they

rely on specific models of the surface and there are many parameters associated with the

intermolecular interactions.

Recently we implemented a semi-implicit front-tracking scheme to develop the picture of

Cabrera and Vermilyea and show that moderate step anisotropy does not change the average

growth rate significantly.41 Here we use the same approach and return to the original C-V

model, relaxing just the last two assumptions (numbers 6 and 7) listed above. Specifically:

we use the same continuum model as Cabrera and Vermilyea, but our stopper locations are

random, and we consider the possibility that stoppers desorb at random times. Our starting

point is the observation that this model involves just two nondimensional parameters: a

“percolation parameter” ζ (which can be viewed as the nondimensionalized typical inverse

distance between stoppers), and a second parameter µ (a nondimensionalized measure of

the stopper lifetime); as a result, it is feasible to explore the entire parameter space using

numerical simulation. (For the definitions of ζ and µ see eqns (3) and (9) respectively.) Our

simulations use periodic boundary conditions (so the growth takes place in a strip 0 < x < L)

and front-tracking (solving a nonlinear PDE for the evolving position of the front). Since the
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problem is stochastic, for each choice of the parameters we do many runs and average the

results. In addition to kinetic Monte-Carlo simulations,31,32 the Cabrera-Vermilyea model

with randomly-located immobile stoppers was previously simulated by Miura, using a phase

field method;42 however our simulations are better-resolved and more numerous, and we are

therefore able to extract more information from them.

Our results show that when the percolation parameter ζ is less than about 0.8 the average

velocity of the step is roughly the same for randomly-located stoppers as in the periodic

case, and it is almost independent of the stopper lifetime. In this regime, the numerically-

determined average velocity is somewhat larger than that predicted by the C-V expression

(1) and somewhat smaller than that predicted by Potapenko’s formula30.

For larger ζ the situation is very different. For periodically-placed immobile stoppers,

the average velocity drops sharply to 0 at ζ = 1. For randomly-located immobile stoppers,

by contrast, the average velocity remains positive for ζ well above 1, and it approaches

0 gradually rather than abruptly. Our method does not permit identification of a critical

value ζc where the average velocity becomes 0, however, our results are consistent with

the estimate by Potapenko43 that ζc ≈ 1.33. For randomly-located stoppers with finite

lifetimes, the average velocity has a nonzero asymptote for large ζ; thus, when ζ � 1 the

average velocity depends mainly on the mean stopper lifetime. In this regime the inhibition

kinetics predicted by our model resemble those of the Bliznakov kink blocking mechanism.

Modeling

Our recent work41 simulated the motion of step past a periodic array of stoppers. Here the

situation is quite different, because the stopper locations are random. Since the problem

is intrinsically stochastic, the evolving step is a random interface, whose properties must

be explored by sampling. Moreover, in the random setting, distant parts of the step can

collide with one another, something that does not happen in the periodic setting. Thus,
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the presence of random stoppers introduces numerical challenges beyond those considered

in our prior work. However, the basic physics – the step motion law – is the same as in our

previous paper. On the other hand, one way in which our current setting is simpler, is that

our previous paper considered the effect of a highly-anisotropic surface energy, whereas in

this work we consider only the isotropic case. We believe, however, based on our previous

publication41, that our results should also be applicable for anisotropic surface energy if the

anisotropy is not very great.

Step motion law

The normal velocity of a curved step can be expressed as:

V = V0(1− ωγκ/∆µ) = Mσ

(
1− ξ

σ
κ

)
. (2)

Here, V0 = Mσ is the velocity of a straight step, κ is the step’s curvature, ∆µ is the

difference in chemical potentials between the crystal and the growth medium, γ is the surface

energy, ω is the molar volume, M is the mobility or kinetic coefficient, σ is the dimensionless

supersaturation, and ξ is a dimensional parameter related to the radius rc of the critical

nucleus by ξ/σ = rc. This law applies away from the stoppers; the velocity is, of course, 0 at

a stopper. As a result, the evolving step consists, in general, of many separate curves, each

ending at a stopper. These curves evolve independently by the motion law (2), until

(i) the two curves on opposite sites of a stopper become (nearly) tangent;

(ii) some curve encounters a new stopper; or

(iii) two curves collide.

When (i) occurs the two curves merge, leaving the stopper behind. When (ii) occurs, the

curve that encountered the stopper gets broken into two curves. When (iii) occurs there is

a topological transition.
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Our steps are nearly always “pinned,” in the sense that they include some stoppers. If

ξ is large enough compared to the typical distance between stoppers, the step will reach

a stationary state, i.e. it will get “stuck,” at least until some stopper disappears. For a

periodic array of stoppers this is familiar: if distance between stoppers is d then the critical

value of ξ at which the step becomes stationary is ξc = dσ/2. Notice that in the random

setting as well as in the periodic one, a stationary step consists of pieces of circles, each

of radius ξ/σ. If the step is not stationary, then at least one of its component curves has

nonzero velocity (the evolving piece of the step will typically not have constant curvature).

Similar considerations apply as σ varies, with ξ held fixed: if σ is small enough then the

interface will get stuck. When the stoppers form a periodic array, the critical value of σ

(when the interface gets stuck) is σc = 2ξ/d. Note that ξ/ξc = σc/σ = 2ξ/(σd).

For randomly-placed stoppers, we do not have a simple criterion for the threshold at which

the surface gets stuck. Nevertheless, it is convenient to nondimensionalize ξ. Therefore, we

introduce the percolation parameter ζ:

ζ =
ξ

ξc
=

2
√
λ

σ
ξ, (3)

where λ is the stopper density and ξc = σ/(2
√
λ). It is convenient to set

d =
1√
λ
, so that ξc =

dσ

2
; (4)

these definitions are consistent with those introduced above in the periodic setting. We note,

however, that in the random setting the step does not necessarily get stuck when ζ > 1 (so ξc

is not a critical value above which the step gets stuck); moreover, in the random setting the

mean distance between stoppers is not exactly d but a multiple of d. (For the 2D Poisson

point process with density λ, the mean distance from a point to its nearest neighbor is

1/(2
√
λ); in view of eqn (4) this is d/2.)

Our problem is well-suited to numerical study since the motion law (2) involves just
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one nondimensional parameter, namely ζ. While our simulations were naturally done using

nondimensionalized variables, our results will be reported in terms of dimensional parameters

such as V , ξ, and σ.

Stoppers

A simulation must be done in a finite domain. Ours were done in a strip: 0 < x < 1, with

periodic boundary conditions in x. Thus, our stoppers are randomly located in the strip, but

our simulation assumes the presence of “image stoppers” periodically located with respect to

x. The use of periodic boundary conditions inevitably introduces finite-size effects; we shall

discuss some of them below. One expects and our simulations will confirm that the finite-size

effects are insignificant when the typical distance between stoppers is much smaller than the

width of the strip and the percolation parameter is well below the critical percolation value,

ζc, where the front gets stuck.

A simulation must be initialized. We took our initial interface to be straight, at the

bottom of the strip. The initial condition is, in practice, quickly forgotten.

The only stoppers that matter are those that the interface might soon encounter. There-

fore we start the simulation by choosing the locations of the stoppers in the rectangle

0 < x < 1, 0 < y < 1/10. To simulate randomly-located stoppers with density λ, we

choose the number of stoppers in the box by drawing from a Poisson distribution with mean

λ/10, then we choose the location of each stopper by independent trials from a uniform dis-

tribution on [0, 1]× [0, 0.1]. When the maximum height of the interface approaches y = 1/10,

we use the same protocol to determine the number and placement of stoppers in the next

region [0, 1]× [0.1, 0.2], and so on. Since we do our numerics in nondimensional variables,

λ0 = the expected number of stoppers in a 1× 1 box (5)

is a key numerical parameter. Taking it large helps avoid finite-size effects, but makes the
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simulation less efficient. We tried values up to λ0 = 40; however most of the simulations

reported in what follows used λ0 = 20.

In some of our simulations the stoppers are immobile, i.e. they never disappear. In

others they are “mobile,” i.e. they disappear randomly, so they have finite lifetimes. This is

modeled by assigning to each stopper a nondimensional lifetime, chosen from an exponential

distribution with a fixed mean τs. In dimensional variables, this corresponds to typical

stopper lifetime

τsc = τs
L

Mσ
(6)

where L is the width of the strip, and M and σ are, respectively, the mobility coefficient and

dimensionless supersaturation introduced earlier. Evidently, τs is the ratio of the dimensional

lifetime τsc to the time L/(Mσ) it would take a flat interface moving at velocity V0 = Mσ

to traverse an L × L computational box in the absence of stoppers. We note that if the

stoppers are mobile, then the actual stopper density is not constant; rather, at the time tk

when the region k/10 < y < (k + 1)/10 first gets its stoppers the density there is λ0, but as

the stoppers disappear the density decreases with time:

λ(t) = λ0e
−(t−tk)/τs (7)

We shall explain below how we processed our data to correct for this phenomenon.

As noted earlier, the evolving front consists, at any time, of a collection of curves (whose

endpoints are at stoppers). As the curves on opposite sides of a stopper progress, the angle

between them, the “pinning angle” φ (Figure 1), will typically decrease. When it reaches

a critical value φc (the “pinning angle breakthrough threshold”) the two curves merge and

advance unimpeded, leaving the stopper behind. The choice of φc is a modeling decision;

it is natural to use a small positive value, to capture the effect of microscopic fluctuations,

which we do not explicitly represent. For the simulations presented here, we used the value

φc = 5.8◦, which was used in our previous publication.41
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Figure 1 provides a schematic of the evolving front. We are mainly interested in its

average vertical velocity. In calculating the average velocity of a single run we naturally

discard the initial transient, using only data from the second half of the simulated time

interval (10 < t < 20). For a single run, the average velocity over a given time period is

computed using the step’s average height at the beginning and end of the period. Since the

problem is stochastic we use ensemble averaging as well as time averaging; for a given set of

parameter values, we typically did 50 runs and averaged the results.

Figure 1: Schematic description of our numerical scheme: the stoppers are randomly located
in a strip of width L = 1. The only stoppers that matter are those near the front; in the
simulation, we populate 1× 0.1 rectangles with stoppers one at a time, each rectangle being
populated when it becomes relevant. The periodic boundary condition in x assures that the
step’s macroscopic direction of motion is vertical. The step breaks past a stopper when the
pinning angle φ at that stopper reaches the breakthrough threshold φc.

A typical example of a run using immobile stoppers, done with ζ = 0.5, is available in

the Supporting Information (Video S1).

Numerical methods

At any given time the front consists of a collection of curves, pinned at their endpoints by

stoppers, moving with normal velocity equal to a constant times (1 − Cκ), with C being a

positive constant. The simulation of this motion law is by now rather routine. We use the

same semi-implicit scheme as in our prior work,41 specialized to the isotropic setting of the

present paper (for a detailed account of this scheme, see the Supporting Information of that

paper). The use of a semi-implicit scheme is convenient, since it permits us to use relatively

large time steps. To maintain spatial accuracy, the discretization of each curve is equispaced
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with respect to arc length. This is maintained by redistributing the grid points at each time

step.

The list of curves (and endpoints) changes at selected times, when (i) the pinning angle

breakthrough threshold is reached at a particular stopper, (ii) the evolving front encounters a

new stopper, (iii) the front collides with itself, or (iv) a stopper that’s on the front disappears.

At such times the data structure changes: a new list of curves (and endpoints) is identified

and discretized, then the evolution continues. The simulation must, of course, be vigilant in

watching for these events. In particular, it must monitor the pinning angles, the distance to

the nearest stopper, and the distance between the curves that make up the front.

Some mathematical issues

This paper explores how the macroscopic velocity of the step depends on the density and

evaporation rates of the stoppers. Our operational definition of the macroscopic velocity is

simply ∆y/∆t, where ∆y is the change in the average height of the step over a long time

interval and ∆t is the length of that time interval.

We are assuming that the macroscopic velocity is a well-defined random variable, so

that its mean value can estimated by averaging many samples. While this assumption

seems reasonable, we are not aware of a mathematically rigorous justification. The existence

of a macroscopic velocity has been proved44 for an interface moving with normal velocity

V = f(x) − κ, where f is a random function of position satisfying certain conditions. One

could mimic our problem by taking f to be zero on small randomly-placed balls (the stoppers)

and a nonzero constant elsewhere. Unfortunately, such an f is not permitted by the existing

theory, since for a 1D curve moving in the plane the theory requires f to be Lipschitz

continuous with f − |∇f | everywhere positive. (There is reason to think a similar result

might hold for more general f ; indeed, when f is periodic in space rather than random and

the focus is on a 1D curve moving in the plane, the macroscopic velocity exists45 under

substantially milder conditions on f .)
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A small-slope approximation to the motion law V = f(x)− κ is obtained by taking the

step to be the graph of a function u(x, t) satisfying ut = uxx + f(x, u(x, t)); here f(x, u) is

again a random function of two variables. In this setting there is somewhat more theory,

with far fewer requirements on f (for example it can be negative). In many applications it

is natural to vary the driving force while holding the heterogeneity fixed; this is modeled

by considering the equation ut = uxx + f(x, u(x, t)) + F where F is constant. When the

heterogeneity is strong enough one expects there to be critical values F1 ≤ F2 such that the

interface gets stuck for F < F1 and it has positive average velocity for F > F2. Rigorous

results of this type have been known for some time in the spatially-periodic setting46 (where

F1 = F2), and they have been extended to the random setting.47,48 A key question is whether

F1 = F2, in other words: if the interface doesn’t get stuck, is its average velocity necessarily

positive? It is easy to imagine that the answer might be negative in a regime where interface

gets locally stuck, making progress only due to “rare events” (for example, in the context of

stoppers, the existence of regions in which the stoppers are anomalously sparse). An interface

that moves but has macroscopic velocity 0 is said to be “sub-ballistic.” Sub-ballistic interface

motion has been ruled out in some settings but shown to occur in others.49,50

It is an open question whether sub-ballistic motion can occur in our setting (with im-

mobile stoppers). Indeed, our percolation parameter plays a role analogous to that of the

driving force F in the preceding discussion. When ζ is large enough we expect the interface

to get stuck; when ζ is small enough we expect it to have positive average velocity. We

wonder whether there might be an interval of ζ’s for which the interface doesn’t get stuck

but its average velocity is 0.
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Results and discussion

Immobile stoppers

For a periodic array of stoppers, the step gets stuck at the first row of stoppers if ζ ≥ 1,

and its motion is time-periodic if ζ < 1 (after an initial transient). In the present setting –

immobile stoppers randomly located in a strip, simulated with periodic boundary conditions

in x – the situation is very different: the evolving step is sure to get stuck eventually. Indeed,

the number and arrangement of stoppers near height y is a random variable (independent of

y); a configuration dense enough to entirely stop the step is a rare event if ζ is small, but if

one waits long enough (i.e. considers a large enough interval in y) such a configuration will

eventually occur.

This is a finite-size effect: a step encountering random stoppers in all space (−∞ <

x < ∞) would not get stuck due to an unusually dense collection of stoppers in a finite

region; rather, it would break through at larger or smaller x where the configuration is more

typical. Real crystals are finite too, but this finite-size effect is much more significant in our

numerical setting than in the real world. When ζ is small the configurations that arrest the

step are very rare, so the step is unlikely to get stuck within the timeframe of our simulation.

Once ζ gets close to 1, however, a significant fraction of the simulations get stuck within the

computational timeframe. This occurs for two reasons: as ζ increases (i) the configurations

capable of stopping the step become less rare; and (ii) the correlation length ` (between

different parts of the step) increases, since the step is more likely to have parts that are

locally stuck. (We expect the importance of finite-size effects to be governed by `/L, where

L is the width of the computational strip.)

Figure 2 shows the distribution of final average step heights, across 50 runs done at

different values of ζ = ξ/ξc. (These simulations were done, as usual, in a strip of width 1

with periodic boundary conditions, and each run was stopped at T = 20. For these tests,

the mean number of stoppers in a 1 × 1 box was taken to be λ0 = 40.) When ζ = 0 the
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Figure 2: Distribution of the final average heights (ymax). These simulations were done in a
strip of width 1 with periodic boundary conditions, stopping at T = 20. The mean number
of stoppers in a 1× 1 box was λ0 = 40. For each value of ζ = ξ/ξc the distribution reflects
the outcome of 50 simulations.

stoppers have no effect and every run has the same final position V0T . For ζ = 0.33 and

ζ = 0.60 few if any runs get stuck; however the distribution of average velocities gets wider

as ζ increases. At ζ = 0.93 the distribution is extremely broad, and the finite-size effect

discussed above is evident. At ζ = 1.27 most of the runs got stuck very early, though a few

never got stuck and one reached an average height larger than 0.6V0T . At ζ = 1.60 almost

all the runs got stuck, and those that didn’t still made such limited progress that their final

average step height was less than 0.01V0T .

Our main goal, for immobile stoppers, is to estimate the dependence of Vavg/V0 on ζ

for a strip of infinite width, where finite-size effects are not present. Therefore – to avoid

contamination by finite-size effects – we excluded the runs that got stuck from our calculation

of the average velocity.

The green, red, yellow, and blue curves in Figure 3(a) show the average velocity of the

evolving front as a function of the percolation parameter ζ. The colors correspond to different
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choices for the mean number of stoppers λ0 in our 1 × 1 computational box (recall, from

our discussion of the modelling, that this parameter controls the magnitude of the finite-size

effects). For ζ below about 0.5 the curves associated with different choices of λ0 coalesce –

an indication that finite-size effects are unimportant in that regime. At ζ ≈ 0.5 the curve

associated with λ0 = 5 begins to lag (i.e. the associated value of Vavg is smaller than those

obtained using λ0 = 10, 20, and 40). At a larger value of ζ the curve associated with λ0 = 10

begins to lag, and at a still larger value (around ζ = 0.7) the curve associated with λ0 = 20

begins to lag relative to the one associated with λ0 = 40. These results suggest that for

ζ greater than about 0.8, finite-size effects lead our method to slightly underestimate Vavg,

even for the runs using λ0 = 40.

While finite-size effects are surely present for large ζ, our simulations in that regime are

still interesting. For each of our choices of λ0, the average velocity became very small around

ζ = 1.25, although the average velocity remained positive (in particular, at least one of our

50 runs did not get completely stuck within the computational timeframe) even at ζ = 1.6.

These results seem quite consistent with the estimate by Potapenko43 that for the motion of

a step in the presence of immobile random stoppers, the threshold where Vavg/V0 becomes

zero is about ζ = 1.33.

It is interesting to compare the results just discussed to what happens for periodically-

placed stoppers. The curve marked by black diamonds in Figure 3(a) shows the actual

average velocity, determined numerically.41 For ζ below about 0.8 the qualitative behavior

of Vavg/V0 is very similar in the periodic and random settings, though the value is slightly

smaller when the stoppers are random. For ζ well above 0.8 the two models are very different,

since Vavg/V0 approaches 0 sharply at ζ = 1 for periodic stoppers, whereas in the random

setting the graph has a flat tail, approaching 0 only as ζ increases past about 1.25.

We have thus far discussed only numerical results. In the periodic setting there are two

well-known “approximate formulas” for Vavg/V0: The C-V eqn (1)4 and a formula obtained

by Potapenko.30 The solid black and magenta curves in Figure 3(a) show the output of
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Figure 3: Average step velocity as a function of (a) the percolation parameter ζ = ξ/ξc and
(b) the supersaturation σ/σc, for random immobile stoppers. The green, yellow, red, and
blue curves show results obtained using different choices of λ0 (the number of stoppers in the
simulation box λ0). For comparison, results are also shown for the case when the stoppers
form a periodic array (black diamonds; these are exact results, obtained numerically). The
black and magenta solid curves in plot (a) are the predictions of two approximate formulas
developed with the periodic case in mind: the original proposal of Cabrera and Vermilyea
(our eqn (1)) and one due to Potapenko.30 The inset in plot (b) gives a magnified view of
the region where the average velocity transitions from 0 to positive, as the supersaturation
σ increases.
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these formulas. Their qualitative behavior is similar to the simulations; however, when ζ is

relatively small the C-V formula (1) substantially underestimates the average velocity and

Potapenko’s formula substantially overestimates it.

Figure 3(b) provides a different view of the same data: it shows how the average velocity

depends on the supersaturation σ. We use there the convention that

σc = 2ξ
√
λ =

2ξ

d
,

so that σ/σc = 1/ζ and a step gets stuck in the periodic setting precisely when σ < σc. The

figure plots Vavg/σc against σ/σc = 1/ζ. The asymptotically linear behavior seen for large

σ/σc is no surprise: for small values of ζ we have Vavg ≈ V0 = Mσ, so Vavg/σc ≈ M(σ/σc).

The vanishing of the velocity for small σ/σc is also no surprise, since the step gets stuck

when ζ is large enough. The key difference between the C-V and random models lies in

how the average velocity approaches 0. The inset in Figure 3(b) captures this difference by

providing a magnified view of the relevant part of the graph.

We have focused thus far on the step’s average velocity, but its roughness is also of

interest. Figure 4 reports the observed average roughness as a function of ζ = ξ/ξc. In this

figure, what we report as roughness is the average (over samples that didn’t get stuck) of the

rms height, computed as
(

1
N

∑N
i=1(yi − y)2

)1/2
, where {yi} are the heights of an equispaced

(with respect to arclength) discretization of the front and y is the average height. As in

Figure 3, we provide data using several different choices for the mean number of stoppers

λ0 in our 1× 1 computational box. For values of ζ up to about 0.8 the roughness increases

almost linearly with ζ, and the results are essentially independent of λ0. For larger values of

ζ the results show a lot of scatter; note that a significant fraction of the steps get stuck within

the computational timeframe in this regime, so the roughness is estimated by averaging a

relatively small ensemble. The approximately linear dependence of roughness on ζ can be

understood as follows: once ζ is large enough to significantly slow the front, we expect from
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the growth law V = V0(1− ξκ/σ) that the local curvature of the front will be of order σ/ξ.

Dimensional analysis suggests that the roughness should behave like 1/curvature. Since

ζ = ξ/ξc = 2ξ/(dσ), this suggests a roughness of order ξ/σ = (d/2)ζ.

Since step velocity decreases as ζ increases, step roughness should increase as V/V0 de-

creases. This effect has been observed experimentally for various systems, and has been

discussed quantitatively for L-cystine growing by the motion of steps in the presence of the

growth inhibitor L-cystine dimethylester.19

Stoppers with finite lifetimes

In real systems, stoppers are rarely completely immobile. Indeed, stoppers may disappear

due to desorption from the surface; or they may suddenly become irrelevant, if fluctuations

permit the step to overgrow a stopper even when the pinning angle (the angle φ in Figure

1) is larger than the breakthrough threshold. These two mechanisms are indistinguishable

macroscopically if the growth conditions are constant. They can, however, be distinguished

by varying the supersaturation, since the desorption rate is independent of supersaturation,

while the statistics of growth step fluctuations should depend on supersaturation. In this

paper we focus on desorption, i.e. on stoppers that disappear from the surface. Our stoppers

disappear randomly (each stopper’s lifetime is an independent, exponentially-distributed

random variable). The stopper disappears at the end of its lifetime, whether or not it is

pinning the evolving step. Since we are modeling desorption, our stoppers’ lifetimes are

independent of supersaturation; however our data could, with appropriate processing, be

used to make predictions for stoppers whose disappearance rates have a known dependence

on supersaturation.

When each stopper has a finite lifetime the average velocity of the step must be positive.

Indeed, if ζ is large then the step might get stuck transiently; but it is sure to make further

progress when the stoppers that pin it eventually disappear. Doing simulations with mobile

stoppers is only marginally more difficult than with immobile ones: one must simply remem-
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ber to remove the stoppers when their lifetimes expire. However the interpretation of the

output has subtleties that weren’t present in the immobile case, as we’ll explain presently.

Figure 5 is the finite-stopper-lifetime analogue of Figure 3: it shows the average velocity

of the step for several different values of the expected nondimensional stopper lifetime τs

(defined in terms of the dimensional lifetime τsc by eqn (6)). In this figure, which presents

our computational results with a minimum of analysis, the roles previously played by ξc =

dσ/2 = σ/(2
√
λ) and σc = 2ξ/d = 2ξ

√
λ are filled instead by

ξc,0 =
d0σ

2
=

σ

2
√
λ0

and σc,0 =
2ξ

d0
= 2ξ

√
λ0. (8)

These are the values of ξc and σc for immobile stoppers; as we shall discuss presently, they are

different from ξc and σc when the stoppers have finite lifetimes. One sees from the figure that

when ξ/ξc,0 is sufficiently small, the average velocity is almost independent of τs; in this “step

percolation limited regime,” the mean lifetime is long compared to the typical time the step

takes to overgrow a stopper. The situation is, however, entirely different as ξ/ξc,0 approaches

1 (the regime where steps got stuck or nearly so when the stoppers were immobile). For such

ξ the average velocity is affected strongly by the value of τs. When ξ/ξc,0 � 1 the average

velocity becomes almost independent of ξ; in this “stopper detachment limited regime” the

step is stuck much of the time, making progress mainly when one of the stoppers that pinned

it disappears. As examples, parts of two runs are provided in the Supporting Information,

one done with τs = 1, ξ/ξc,0 = 0.5 and the other done with τs = 1, ξ/ξc,0 = 4 (Videos S2,

S3, respectively).

To interpret this data, we observe that when the stoppers have a finite expected life-

time there is, in addition to the percolation parameter ζ defined by eqn (3), an additional

nondimensional parameter

µ =
d

τscMσ
=

1

τscMσ
√
λ

(9)

where τsc is the mean (dimensional) stopper lifetime, λ is the (dimensional) stopper density,
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and d = 1/
√
λ. Evidently, µ compares the dimensional stopper lifetime to the typical time

a step moving at velocity V0 = Mσ takes to travel the distance between stoppers. In

terms of the nondimensional stopper lifetime τs introduced in eqn (6), µ has the alternative

characterization µ = (d/L)/τs. By dimensional analysis, there should be a law for the

average velocity of the form

Vavg
Mσ

= f(ζ, µ) (10)

for some function f of two variables. To determine the function f from the results of our

simulations, we must deal with two difficulties:

(a) the density of stoppers is not constant over the course of the simulation; and

(b) the simulations estimate the value of f only at selected points in the (ζ, µ) plane.

We deal with point (b) by interpolation, of course (after some smoothing of the data, since

the numerically-determined Vavg is the output of a stochastic simulation, and is therefore

noisy). Concerning point (a): recall that our simulation has a parameter λ0, the expected

number of stoppers in a 1 × 1 square. When we distribute stoppers in a 1 × 0.1 rectangle

ahead of the front, the number of stoppers is chosen from a Poisson distribution with mean

λ0/10, assuring that the density of stoppers in the rectangle is λ0. However if the stoppers

have finite lifetimes then the density decreases as they disappear, by eqn (7).

To understand how our data provide information about the function f(ζ, µ) we must

account for this effect. To do so, we observe that if the average velocity is well-defined,

then the times tk at which new stoppers are laid down in the simulation are (approximately)

multiples of some period τp. Neglecting stochasticity, the period τp can be determined from

the average velocity. ζ and µ are periodic functions of the (nondimensional) simulation

time t, with ζ(t) = ζ0e
−(t−tk)/(2τs) and µ(t) = µ0e

(t−tk)/(2τs) as t ranges over the period

tk < t < τp + tk (The exponential function is used because stopper lifetimes are modeled
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with Poisson distributions with mean lifetime τs). Their mean values are thus

ζ̄ = ζ0
2τs
τp

(
1− e−τp/(2τs)

)
, (11)

µ̄ = µ0
2τs
τp

(
eτp/(2τs) − 1

)
. (12)

If the velocity of the interface is given by eqn (10) at every time t, then what we report as

Vavg (the time-averaged velocity of the interface) is actually

Vavg =
Mσ

τp

∫ τp

0

f(ζ(t), µ(t)) dt. (13)

Since we do not know the form of f (indeed, we are trying to find f from data about Vavg),

we need an approximation of eqn (13) that does not depend on the form of f . In analyzing

our data, we used the approximation

1

τp

∫ τp

0

f(ζ(t), µ(t)) dt ≈ f(ζ̄ , µ̄),

Using these approximations, each simulation done at finite τs determines the value of f at

an associated point (ζ̄ , µ̄) in the (ζ, µ) plane. As already noted, given such data, smoothing

and interpolation permit evaluation of the function f throughout the region of the (ζ, µ)

plane that was explored by our simulations.

Using this technique, we calculated the average velocity Vavg = Mσf(ζ, µ) as a function

of ζ or σ, for several values of the dimensional stopper lifetime

τsc =
τsd
√
λ0

Mσ
.

This formula agrees with eqn (6) since λ0 = λL2. The results are shown in Figure 6. The

trends we observed in Figure 5 are essentially unchanged; in particular, when ζ is small the

average velocity is insensitive to stopper detachment, and for ζ � 1 the average velocity is
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almost independent of ζ. Dwelling a bit on the latter regime, when the motion of the step

is stopper-detachment-limited: it is natural to expect that Vavg/V0 should be proportional

to d/(τscV0), since d/V0 is the time it takes a step (in the absence of stoppers) to travel

distance d. Such proportionality was also predicted in an earlier analysis of a similar growth

regime.51 We do not expect the constant of proportionality to be 1 since (i) the local velocity

of our step is usually smaller than V0, and (ii) the typical distance to the next stopper above a

point on the step is only proportional to d, not equal to d. Our data confirms the anticipated

proportionality: indeed, using simulations done with λ0 = 20 and fixing ζ = 2.7, we find

that Vavg/V0 ≈ 0.51(2)/τsc (Figure 7).

In experimental work on crystal growth, kinetic data are usually reported as V (c), where

c is concentration of the inhibitor in the growth medium. We expect the stopper density, λ,

to be proportional to c, so ζ is proportional to
√
c in this setting; see eqn (3). For a high

density of weakly bound stoppers (high ζ and low τsc), our kinetic curves resemble those

associated with the Bliznakov mechanism,52,53 in which impurity molecules do not pin steps

but only make attachment to kinks slower. Mathematically, for the Bliznakov mechanism

one has V = (1− θ)V0 + θV∞, where θ measures the surface coverage by the impurity, V0 is

the step velocity in the absence of impurities, and V∞ is the step velocity with full coverage

by the impurities (θ = 1). It is natural to model the surface coverage using the Langmuir

isotherm: θ = Kc/(1 +Kc), where K is the adsorption constant; then the prediction of the

Blizkanov mechanism becomes

V

V0
= 1−

(
1− V∞

V0

)
θ = 1− α Kc

1 +Kc
, (14)

where 0 < α < 1 is a system-dependent and supersaturation-dependent constant.

In the large-ζ regime the results of our simulations are very similar to those predicted by

(14). Since c is proportional to ζ2, it is natural to start by considering Vavg/V0 as a function

of ζ2 rather than ζ: Figure 8a does this, using the same data as Figure 6, for values of ζ up
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to about 3. Since V0 = Mσ, eqn (14) predicts that V (c) should depend roughly linearly on

supersaturation, σ 2,3 (we use here that c and K are independent of supersaturation, and α

is only weakly dependent on it). Our simulations are consistent with this: Vavg is nearly a

linear function of σ for σ/σc = 1/ζ < 0.4 (Figure 8b).

The similarity between Cabrera-Vemilyea and Bliznakov inhibition kinetics for a high

density of weakly bound stoppers is not surprising, since these conditions substantially sup-

press cooperativity in the action of impurity stoppers. The possibility of considering two

types of inhibition kinetics within one framework was considered before,27 but our simu-

lations provide a physical basis for connecting the C-V and Bliznakov mechanisms. We

emphasize that the underlying physics of the C-V mechanism remains different from that

of Bliznakov in the high-ζ, low-τsc regime; but the associated kinetics are similar, because

in this regime the stoppers impede the propagation of the step without developing strong

cooperativity. This similarity in the consequences of the two growth inhibition mechanisms

means that it is difficult to distinguish between them using only kinetic data.
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Conclusions

We have studied how the macroscopic velocity of a step is affected by the presence of

randomly-located stoppers with finite or infinite lifetimes. This was done using a continuum

model for the evolution of the step, simulated numerically using a front-tracking-based nu-

merical method. Our continuum model is a generalization of the one formulated by Cabrera

and Vermilyea in 1958: our stoppers pin the moving interface unless/until they are over-

grown (when the pinning angle reaches the breakthrough threshold) or they disappear (if

they have finite lifetimes).

It has, up to now, been a challenge to understand the quantitative consequences of this

model. Indeed, the consequenes of the C-V mechanism have mainly been considered up

to now for a periodic array of immobile stoppers. (A notable exception is the work of

Potapenko43, which estimates the density of randomly-located immobile stoppers required

to fully arrest the motion of a step.) Our starting point is the observation that this problem

is well-suited to numerical simulation, since there are just two nondimensional parameters, ζ

and µ, and the macroscopic velocity is determined by a function f(ζ, µ). We have shown that

f can be determined by simulations, and have used the results to discuss the consequences

of our version of the Cabrera-Vermilyea inhibition model. Thus, we have refined the classic

Cabrera-Vermilyea inhibition model and extended its applicability to a wider spectrum of

crystal growth conditions.

When the stoppers are immobile (i.e. they never desorb) there is just one nondimensional

parameter, the “percolation parameter” ζ. In this case (which corresponds to taking µ = 0)

we have found that shape of the kinetic curve is roughly the same for random vs periodic

stoppers for low values ζ. As ζ approaches 1, however, the two cases behave very differently.

In the periodic setting Vavg decreases sharply to 0 at a well-defined threshold ζ = 1. In the

random setting Vavg decreases much more gradually, remaining nonzero well above ζ = 1. In

our stochastic simulations at values of ζ up to about 1.6, some runs show the step getting

stuck within the computational timeframe, but others show it continuing to make progress.
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This indicates that in the context of immobile stoppers, slow crystallization should be still

possible at relatively high stopper densities.

For stoppers with finite lifetimes, complete inhibition is not possible. At low ζ, the shape

of the kinetic curve is almost independent of the stopper lifetime; however when ζ is large

Vavg becomes independent of ζ, with a value that depends on the stopper lifetime.

These results improve our understanding of crystal growth inhibition mechanisms, broad-

ening the range of systems for which we have tools to study growth inhibition quantitatively.

The tools developed here should, in particular, be useful for studying systems with a high

kink density where crystallization occurs at moderate supersaturation, for example ice with

antifreeze proteins,22,54 potassium dihydrogen phosphate in the presence of trivalent met-

als,5 calcium oxalate monohydrate with acidic peptides,10–13 and L-cystine with tailor-made

additives.19,20 The model needs further development, however, to address other common

situations, especially to consider steps with low kink densities and the case of growth under

a high driving force for crystallization. Growth instabilities related to slow adsorption of

impurities, leading to formation of macrosteps, are another important scenario worth con-

sidering. Such instabilities have generally been modelled by considering the velocity of the

step as a function of stopper density.55–57 Our more microscopic approach offers a possible

alternative, though the required simulations would be much larger than those reported here

since they would need to track many steps whereas we only follow a single step. The simula-

tion of macroscopic phenomena such as 2D pattern-formation involving macrosteps57 would

probably not be feasible using our approach, due to the large spatial and timescales on which

they occur.
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Videos S1 – S3 show typical simulation runs of steps moving through arrays of stoppers.

Video S1: ζ = 0.5, τs =∞; Video S2: ζ = 0.5, τs = 1; Video S3: ζ = 4, τs = 1.
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Crystal growth inhibition by mobile randomly distributed stoppers

James P. Lee-Thorp, Alexander G. Shtukenberg, and Robert V. Kohn

Synopsis: To refine the classical Cabrera-Vermilyea step pinning model, a semi-implicit

front tracking algorithm was used to simulate growth inhibition by randomly distributed

stoppers with finite lifetimes. It was shown that compared to periodic placement, a random

distribution of stoppers results in a much more gradual decrease of the average step velocity

to its asymptotic value, zero in the case of permanent stoppers and some non-zero value for

stoppers with finite lifetimes.
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