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Abstract

Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea
introduced a model in 1958, in which the impurities are modelled as immobile stop-
pers. The quantitative consequences of this model have mainly been explored for the
special case where the stoppers are immobile and arranged in a periodic array. Here we
use numerical simulation to explore what happens when the stopper locations are ran-
domly distributed and the stoppers have finite lifetimes. As this problem has just two
nondimensional parameters, namely nondimensionalized versions of the mean stopper
distance and the mean stopper lifetime, we are able to explore a large region of the
parameter space using simulation.

The stopper density is measured by the percolation parameter, a nondimension-
alized inverse distance between stoppers, (. Our results show that when the stopper
density is relatively small (¢ below about 0.8), the macroscopic velocity of the step is
roughly the same for randomly-located stoppers as for a periodic array of stoppers.
Moreover, in this regime the average velocity is almost independent of the stopper

lifetime. For large stopper densities (more precisely, when the percolation parameter


leethorp@cims.nyu.edu
shtukenberg@mail.ru
kohn@cims.nyu.edu

( is above about 0.8) the situation is entirely different. For periodically-placed immo-
bile stoppers, the average velocity drops sharply to 0 at ¢ = 1. For randomly-located
immobile stoppers, by contrast, the average velocity remains positive for ¢ well above
1, and it approaches 0 gradually rather than abruptly. For randomly-located stoppers
with finite lifetimes, the average velocity has a nonzero asymptote for large (; thus,
for large stopper densities, the average velocity depends mainly on the mean stopper
lifetime. In this regime the inhibition kinetics predicted by our model resemble those

of the Bliznakov kink blocking mechanism.

Introduction

Additives and impurities play a major role in controlling crystal growth kinetics. Under-
standing the mechanisms responsible for crystal-additive interaction is one of the primary
tasks of crystal growth science and is important for numerous applications. The most pro-
found growth inhibition occurs when impurities and additives adsorb to the crystal surface,
becoming stoppers that interfere with propagation of the growth step over the surface.l™
This mechanism was modeled in 1958 by Cabrera and Vermilyea, who considered step propa-
gation in the presence of strongly adsorbed stoppers.? The step cannot go through stoppers,
but it can advance in the regions between them. Doing so increases the curvature x of the
moving front; due to the Gibbs-Thomson effect this leads to a higher step free energy and
slower step advancement. If the stopper separation is large enough, the parts of the step
on the two sides of the stopper eventually merge; this permits the step to proceed, leaving
the stopper behind. If the stopper separation is small enough, however, the step reaches a
stationary state and its progress is arrested.

To make the model quantitative, Cabrera and Vermilyea considered the case when the
stopper locations form a periodic array of size d. When d is smaller than the diameter of the

critical nucleus, 2r., the step reaches a stationary state and growth is arrested, leading to

the so-called “dead zone.” On the other hand, if the percolation parameter ( = 2r./d < 1,



the step’s progress is slowed but not arrested by the stoppers. If we approximate the part
of the step between two stoppers as a piece of a circle, we see that the step breaks past
a row of stoppers at the moment when its curvature is k = 2/d; this is the time when
the velocity of the step reaches its minimum Vi,;, = Vo(1 — () > 0. The step breaks past
the stoppers because neighboring segments collide, forming a continuous step which quickly
becomes nearly flat. The step then proceeds at velocity V until it encounters the next row
of stoppers. Cabrera and Vermilyea provided an approximate expression for the average step

velocity Vaye in this context:

Vavg = Vo1 —¢. (1)

The C-V formula ({1)) provides a good qualitative description of the growth inhibition process,
including the formation of a dead zone. However, it does not agree quantitatively with
experimental data.? 2

This discrepancy is not surprising since the C-V formula was developed using numerous
assumptions. Indeed, the model of Cabrera and Vermilyea implicitly assumes that: (1) Steps
have high kink density; (2) Steps are characterized by isotropic edge energies and kinetic
coefficients; (3) Crystallization occurs close to equilibrium; (4) Stoppers are large, i.e. cannot
be overgrown by the step fluctuations; and (5) Contact with the stopper does not reduce
the step’s free energy leading it to wrap quickly around and overgrow the stopper. The
model also assumes that (6) Stoppers adsorb immediately and never desorb; and the C-V
formula (1) was derived assuming that (7) Stoppers are distributed on the crystal surface in
a square grid. Much work has been done to address the discrepancy between modeling and
experiment by modifying some of these hypotheses. Improved agreement has, for example,

been achieved by using a different expression for the driving force of crystallization,® by
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playing with adsorption isotherms or by considering a slow rate of adsorption.

In addition, in some cases researchers have developed models combining several inhibition
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mechanisms,®” played with mathematical expressions for the average growth rate, or

considered formation of macrosteps.?®2? Potapenko obtained an approximation better than



eqn , for the average velocity in the original C-V setting with a periodic array of stoppers.="
While this work has achieved important insight in specific cases, overall it has not overcome
the shortcomings associated with the assumptions (1) — (7) of the C-V model, and it has not
achieved a satisfactory description of experimental data.

A convenient way to avoid some of the preceding assumptions is to use kinetic Monte-
Carlo simulations. This approach has been used, for example, to study steps on the {001}

surface of a Kossel crystal for random and regular distributions of stoppers,*¥*#4 different
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stopper sizes, different bond energies/kink densities, stoppers varying in their
ability to be overgrown®” and in their mobility,*# and surfaces developing macrosteps.=*% Ice
crystallization in the presence of antifreeze proteins has also been simulated using molecular
dynamics.#” Such simulations can capture many qualitative features of growth kinetics, but
they are not well-suited for making quantitative comparisons to experiments, since they
rely on specific models of the surface and there are many parameters associated with the
intermolecular interactions.

Recently we implemented a semi-implicit front-tracking scheme to develop the picture of
Cabrera and Vermilyea and show that moderate step anisotropy does not change the average
growth rate significantly.*! Here we use the same approach and return to the original C-V
model, relaxing just the last two assumptions (numbers 6 and 7) listed above. Specifically:
we use the same continuum model as Cabrera and Vermilyea, but our stopper locations are
random, and we consider the possibility that stoppers desorb at random times. Our starting
point is the observation that this model involves just two nondimensional parameters: a
“percolation parameter” ¢ (which can be viewed as the nondimensionalized typical inverse
distance between stoppers), and a second parameter p (a nondimensionalized measure of
the stopper lifetime); as a result, it is feasible to explore the entire parameter space using
numerical simulation. (For the definitions of ¢ and y see eqns (3)) and (9) respectively.) Our

simulations use periodic boundary conditions (so the growth takes place in a strip 0 < x < L)

and front-tracking (solving a nonlinear PDE for the evolving position of the front). Since the



problem is stochastic, for each choice of the parameters we do many runs and average the
results. In addition to kinetic Monte-Carlo simulations,?**2 the Cabrera-Vermilyea model
with randomly-located immobile stoppers was previously simulated by Miura, using a phase
field method;*# however our simulations are better-resolved and more numerous, and we are
therefore able to extract more information from them.

Our results show that when the percolation parameter ( is less than about 0.8 the average
velocity of the step is roughly the same for randomly-located stoppers as in the periodic
case, and it is almost independent of the stopper lifetime. In this regime, the numerically-
determined average velocity is somewhat larger than that predicted by the C-V expression
and somewhat smaller than that predicted by Potapenko’s formula®Y.

For larger ¢ the situation is very different. For periodically-placed immobile stoppers,
the average velocity drops sharply to 0 at ( = 1. For randomly-located immobile stoppers,
by contrast, the average velocity remains positive for ¢ well above 1, and it approaches
0 gradually rather than abruptly. Our method does not permit identification of a critical
value (. where the average velocity becomes 0, however, our results are consistent with
the estimate by Potapenko®® that ¢, ~ 1.33. For randomly-located stoppers with finite
lifetimes, the average velocity has a nonzero asymptote for large (; thus, when ¢ > 1 the
average velocity depends mainly on the mean stopper lifetime. In this regime the inhibition

kinetics predicted by our model resemble those of the Bliznakov kink blocking mechanism.

Modeling

Our recent work®! simulated the motion of step past a periodic array of stoppers. Here the
situation is quite different, because the stopper locations are random. Since the problem
is intrinsically stochastic, the evolving step is a random interface, whose properties must
be explored by sampling. Moreover, in the random setting, distant parts of the step can

collide with one another, something that does not happen in the periodic setting. Thus,



the presence of random stoppers introduces numerical challenges beyond those considered
in our prior work. However, the basic physics — the step motion law — is the same as in our
previous paper. On the other hand, one way in which our current setting is simpler, is that
our previous paper considered the effect of a highly-anisotropic surface energy, whereas in
this work we consider only the isotropic case. We believe, however, based on our previous
publication*¥, that our results should also be applicable for anisotropic surface energy if the

anisotropy is not very great.

Step motion law

The normal velocity of a curved step can be expressed as:

V = Vo(l — wyi/Ap) = Mo (1 - é/@) | @)

g

Here, Vj = Mo is the velocity of a straight step, s is the step’s curvature, Ap is the
difference in chemical potentials between the crystal and the growth medium, ~ is the surface
energy, w is the molar volume, M is the mobility or kinetic coefficient, ¢ is the dimensionless
supersaturation, and £ is a dimensional parameter related to the radius r. of the critical
nucleus by /o = r.. This law applies away from the stoppers; the velocity is, of course, 0 at
a stopper. As a result, the evolving step consists, in general, of many separate curves, each

ending at a stopper. These curves evolve independently by the motion law , until
(i) the two curves on opposite sites of a stopper become (nearly) tangent;
(ii) some curve encounters a new stopper; or
(iii) two curves collide.

When (i) occurs the two curves merge, leaving the stopper behind. When (ii) occurs, the
curve that encountered the stopper gets broken into two curves. When (iii) occurs there is

a topological transition.



Our steps are nearly always “pinned,” in the sense that they include some stoppers. If
¢ is large enough compared to the typical distance between stoppers, the step will reach
a stationary state, i.e. it will get “stuck,” at least until some stopper disappears. For a
periodic array of stoppers this is familiar: if distance between stoppers is d then the critical
value of £ at which the step becomes stationary is . = do /2. Notice that in the random
setting as well as in the periodic one, a stationary step consists of pieces of circles, each
of radius £/o. If the step is not stationary, then at least one of its component curves has
nonzero velocity (the evolving piece of the step will typically not have constant curvature).

Similar considerations apply as o varies, with £ held fixed: if o is small enough then the
interface will get stuck. When the stoppers form a periodic array, the critical value of o
(when the interface gets stuck) is o, = 2¢/d. Note that £/¢. = o./0 = 2¢/(od).

For randomly-placed stoppers, we do not have a simple criterion for the threshold at which
the surface gets stuck. Nevertheless, it is convenient to nondimensionalize £&. Therefore, we

introduce the percolation parameter C:

(£, (3)

& o
where )\ is the stopper density and &, = o/(2v/A). It is convenient to set

d
d=—=, so that 50270; (4)

these definitions are consistent with those introduced above in the periodic setting. We note,
however, that in the random setting the step does not necessarily get stuck when ¢ > 1 (so &,
is not a critical value above which the step gets stuck); moreover, in the random setting the
mean distance between stoppers is not exactly d but a multiple of d. (For the 2D Poisson
point process with density A, the mean distance from a point to its nearest neighbor is
1/(2v/X\); in view of eqn (@) this is d/2.)

Our problem is well-suited to numerical study since the motion law involves just



one nondimensional parameter, namely ¢. While our simulations were naturally done using
nondimensionalized variables, our results will be reported in terms of dimensional parameters

such as V, &, and 0.

Stoppers

A simulation must be done in a finite domain. Ours were done in a strip: 0 < z < 1, with
periodic boundary conditions in x. Thus, our stoppers are randomly located in the strip, but
our simulation assumes the presence of “image stoppers” periodically located with respect to
x. The use of periodic boundary conditions inevitably introduces finite-size effects; we shall
discuss some of them below. One expects and our simulations will confirm that the finite-size
effects are insignificant when the typical distance between stoppers is much smaller than the
width of the strip and the percolation parameter is well below the critical percolation value,
(., where the front gets stuck.

A simulation must be initialized. We took our initial interface to be straight, at the
bottom of the strip. The initial condition is, in practice, quickly forgotten.

The only stoppers that matter are those that the interface might soon encounter. There-
fore we start the simulation by choosing the locations of the stoppers in the rectangle
0 <z <1 0<y < 1/10. To simulate randomly-located stoppers with density A, we
choose the number of stoppers in the box by drawing from a Poisson distribution with mean
A/10, then we choose the location of each stopper by independent trials from a uniform dis-
tribution on [0, 1] x [0,0.1]. When the maximum height of the interface approaches y = 1/10,
we use the same protocol to determine the number and placement of stoppers in the next

region [0, 1] x [0.1,0.2], and so on. Since we do our numerics in nondimensional variables,

Mo = the expected number of stoppers in a 1 x 1 box (5)

is a key numerical parameter. Taking it large helps avoid finite-size effects, but makes the



simulation less efficient. We tried values up to A\g = 40; however most of the simulations
reported in what follows used Ag = 20.

In some of our simulations the stoppers are immobile, i.e. they never disappear. In

¢ bi

others they are “mobile,” i.e. they disappear randomly, so they have finite lifetimes. This is
modeled by assigning to each stopper a nondimensional lifetime, chosen from an exponential
distribution with a fixed mean 7,. In dimensional variables, this corresponds to typical

stopper lifetime

L
sc — Ts7 6
T, ™o (6)

where L is the width of the strip, and M and o are, respectively, the mobility coefficient and
dimensionless supersaturation introduced earlier. Evidently, 7, is the ratio of the dimensional
lifetime 7,. to the time L/(Mo) it would take a flat interface moving at velocity Vo = Mo
to traverse an L x L computational box in the absence of stoppers. We note that if the
stoppers are mobile, then the actual stopper density is not constant; rather, at the time ¢,
when the region k£/10 < y < (k4 1)/10 first gets its stoppers the density there is Ao, but as

the stoppers disappear the density decreases with time:
A(t) = Age™(7t)/m (7)

We shall explain below how we processed our data to correct for this phenomenon.

As noted earlier, the evolving front consists, at any time, of a collection of curves (whose
endpoints are at stoppers). As the curves on opposite sides of a stopper progress, the angle
between them, the “pinning angle” ¢ (Figure , will typically decrease. When it reaches
a critical value ¢. (the “pinning angle breakthrough threshold”) the two curves merge and
advance unimpeded, leaving the stopper behind. The choice of ¢. is a modeling decision;
it is natural to use a small positive value, to capture the effect of microscopic fluctuations,
which we do not explicitly represent. For the simulations presented here, we used the value

¢. = 5.8°, which was used in our previous publication.*!



Figure 1 provides a schematic of the evolving front. We are mainly interested in its
average vertical velocity. In calculating the average velocity of a single run we naturally
discard the initial transient, using only data from the second half of the simulated time
interval (10 < ¢ < 20). For a single run, the average velocity over a given time period is
computed using the step’s average height at the beginning and end of the period. Since the
problem is stochastic we use ensemble averaging as well as time averaging; for a given set of

parameter values, we typically did 50 runs and averaged the results.
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Figure 1: Schematic description of our numerical scheme: the stoppers are randomly located
in a strip of width L = 1. The only stoppers that matter are those near the front; in the
simulation, we populate 1 x 0.1 rectangles with stoppers one at a time, each rectangle being
populated when it becomes relevant. The periodic boundary condition in x assures that the
step’s macroscopic direction of motion is vertical. The step breaks past a stopper when the
pinning angle ¢ at that stopper reaches the breakthrough threshold ¢..

A typical example of a run using immobile stoppers, done with ( = 0.5, is available in

the Supporting Information (Video S1).

Numerical methods

At any given time the front consists of a collection of curves, pinned at their endpoints by
stoppers, moving with normal velocity equal to a constant times (1 — Ck), with C being a
positive constant. The simulation of this motion law is by now rather routine. We use the
same semi-implicit scheme as in our prior work,*! specialized to the isotropic setting of the
present paper (for a detailed account of this scheme, see the Supporting Information of that
paper). The use of a semi-implicit scheme is convenient, since it permits us to use relatively

large time steps. To maintain spatial accuracy, the discretization of each curve is equispaced
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with respect to arc length. This is maintained by redistributing the grid points at each time
step.

The list of curves (and endpoints) changes at selected times, when (i) the pinning angle
breakthrough threshold is reached at a particular stopper, (ii) the evolving front encounters a
new stopper, (iii) the front collides with itself, or (iv) a stopper that’s on the front disappears.
At such times the data structure changes: a new list of curves (and endpoints) is identified
and discretized, then the evolution continues. The simulation must, of course, be vigilant in
watching for these events. In particular, it must monitor the pinning angles, the distance to

the nearest stopper, and the distance between the curves that make up the front.

Some mathematical issues

This paper explores how the macroscopic velocity of the step depends on the density and
evaporation rates of the stoppers. Our operational definition of the macroscopic velocity is
simply Ay/At, where Ay is the change in the average height of the step over a long time
interval and At is the length of that time interval.

We are assuming that the macroscopic velocity is a well-defined random variable, so
that its mean value can estimated by averaging many samples. While this assumption
seems reasonable, we are not aware of a mathematically rigorous justification. The existence
of a macroscopic velocity has been proved** for an interface moving with normal velocity
V = f(x) — k, where f is a random function of position satisfying certain conditions. One
could mimic our problem by taking f to be zero on small randomly-placed balls (the stoppers)
and a nonzero constant elsewhere. Unfortunately, such an f is not permitted by the existing
theory, since for a 1D curve moving in the plane the theory requires f to be Lipschitz
continuous with f — |V f| everywhere positive. (There is reason to think a similar result
might hold for more general f; indeed, when f is periodic in space rather than random and
the focus is on a 1D curve moving in the plane, the macroscopic velocity exists*® under

substantially milder conditions on f.)
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A small-slope approximation to the motion law V' = f(z) — k is obtained by taking the
step to be the graph of a function u(z,t) satisfying u; = vz, + f(z,u(z,t)); here f(x,u) is
again a random function of two variables. In this setting there is somewhat more theory,
with far fewer requirements on f (for example it can be negative). In many applications it
is natural to vary the driving force while holding the heterogeneity fixed; this is modeled
by considering the equation u; = . + f(z,u(z,t)) + F where F is constant. When the
heterogeneity is strong enough one expects there to be critical values F; < F, such that the
interface gets stuck for F' < F; and it has positive average velocity for F' > F,. Rigorous
results of this type have been known for some time in the spatially-periodic setting®® (where
F, = F3), and they have been extended to the random setting.“™® A key question is whether
Fy = Fy, in other words: if the interface doesn’t get stuck, is its average velocity necessarily
positive? It is easy to imagine that the answer might be negative in a regime where interface
gets locally stuck, making progress only due to “rare events” (for example, in the context of
stoppers, the existence of regions in which the stoppers are anomalously sparse). An interface
that moves but has macroscopic velocity 0 is said to be “sub-ballistic.” Sub-ballistic interface
motion has been ruled out in some settings but shown to occur in others.#%°0

It is an open question whether sub-ballistic motion can occur in our setting (with im-
mobile stoppers). Indeed, our percolation parameter plays a role analogous to that of the
driving force F' in the preceding discussion. When ( is large enough we expect the interface
to get stuck; when ( is small enough we expect it to have positive average velocity. We
wonder whether there might be an interval of (’s for which the interface doesn’t get stuck

but its average velocity is 0.
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Results and discussion

Immobile stoppers

For a periodic array of stoppers, the step gets stuck at the first row of stoppers if { > 1,
and its motion is time-periodic if ¢ < 1 (after an initial transient). In the present setting —
immobile stoppers randomly located in a strip, simulated with periodic boundary conditions
in x — the situation is very different: the evolving step is sure to get stuck eventually. Indeed,
the number and arrangement of stoppers near height y is a random variable (independent of
y); a configuration dense enough to entirely stop the step is a rare event if ¢ is small, but if
one waits long enough (i.e. considers a large enough interval in y) such a configuration will
eventually occur.

This is a finite-size effect: a step encountering random stoppers in all space (—oo <
x < o0) would not get stuck due to an unusually dense collection of stoppers in a finite
region; rather, it would break through at larger or smaller x where the configuration is more
typical. Real crystals are finite too, but this finite-size effect is much more significant in our
numerical setting than in the real world. When ( is small the configurations that arrest the
step are very rare, so the step is unlikely to get stuck within the timeframe of our simulation.
Once ( gets close to 1, however, a significant fraction of the simulations get stuck within the
computational timeframe. This occurs for two reasons: as ( increases (i) the configurations
capable of stopping the step become less rare; and (ii) the correlation length ¢ (between
different parts of the step) increases, since the step is more likely to have parts that are
locally stuck. (We expect the importance of finite-size effects to be governed by ¢/L, where
L is the width of the computational strip.)

Figure [2 shows the distribution of final average step heights, across 50 runs done at
different values of ¢ = £/€.. (These simulations were done, as usual, in a strip of width 1
with periodic boundary conditions, and each run was stopped at 7" = 20. For these tests,

the mean number of stoppers in a 1 x 1 box was taken to be \y = 40.) When ¢ = 0 the
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Figure 2: Distribution of the final average heights (ymax). These simulations were done in a
strip of width 1 with periodic boundary conditions, stopping at 7" = 20. The mean number
of stoppers in a 1 x 1 box was A\g = 40. For each value of ( = £/¢. the distribution reflects
the outcome of 50 simulations.

stoppers have no effect and every run has the same final position VyT. For ¢ = 0.33 and
¢ = 0.60 few if any runs get stuck; however the distribution of average velocities gets wider
as ( increases. At ¢ = 0.93 the distribution is extremely broad, and the finite-size effect
discussed above is evident. At ¢ = 1.27 most of the runs got stuck very early, though a few
never got stuck and one reached an average height larger than 0.6V,7T. At ¢ = 1.60 almost
all the runs got stuck, and those that didn’t still made such limited progress that their final
average step height was less than 0.01V,T'.

Our main goal, for immobile stoppers, is to estimate the dependence of V,../Vh on ¢
for a strip of infinite width, where finite-size effects are not present. Therefore — to avoid
contamination by finite-size effects — we excluded the runs that got stuck from our calculation
of the average velocity.

The green, red, yellow, and blue curves in Figure (a) show the average velocity of the

evolving front as a function of the percolation parameter (. The colors correspond to different
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choices for the mean number of stoppers )¢ in our 1 x 1 computational box (recall, from
our discussion of the modelling, that this parameter controls the magnitude of the finite-size
effects). For ¢ below about 0.5 the curves associated with different choices of Ay coalesce —
an indication that finite-size effects are unimportant in that regime. At ( ~ 0.5 the curve
associated with Ao = 5 begins to lag (i.e. the associated value of V,y, is smaller than those
obtained using Ag = 10, 20, and 40). At a larger value of { the curve associated with Ay = 10
begins to lag, and at a still larger value (around ¢ = 0.7) the curve associated with Ay = 20
begins to lag relative to the one associated with Ay = 40. These results suggest that for
¢ greater than about 0.8, finite-size effects lead our method to slightly underestimate Vg,
even for the runs using Ay = 40.

While finite-size effects are surely present for large (, our simulations in that regime are
still interesting. For each of our choices of A\, the average velocity became very small around
¢ = 1.25, although the average velocity remained positive (in particular, at least one of our
50 runs did not get completely stuck within the computational timeframe) even at { = 1.6.
These results seem quite consistent with the estimate by Potapenko®® that for the motion of
a step in the presence of immobile random stoppers, the threshold where V,,/Vjy becomes
zero is about ¢ = 1.33.

It is interesting to compare the results just discussed to what happens for periodically-
placed stoppers. The curve marked by black diamonds in Figure (a) shows the actual
average velocity, determined numerically.*! For ¢ below about 0.8 the qualitative behavior
of Vive/Vo is very similar in the periodic and random settings, though the value is slightly
smaller when the stoppers are random. For ¢ well above 0.8 the two models are very different,
since Vaye/Vo approaches 0 sharply at ¢ = 1 for periodic stoppers, whereas in the random
setting the graph has a flat tail, approaching 0 only as ( increases past about 1.25.

We have thus far discussed only numerical results. In the periodic setting there are two
well-known “approximate formulas” for V,y./Vo: The C-V eqn 4 and a formula obtained

by Potapenko.®" The solid black and magenta curves in Figure (a) show the output of
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Figure 3: Average step velocity as a function of (a) the percolation parameter ( = £/£. and
(b) the supersaturation o/o., for random immobile stoppers. The green, yellow, red, and
blue curves show results obtained using different choices of Ay (the number of stoppers in the
simulation box Ag). For comparison, results are also shown for the case when the stoppers
form a periodic array (black diamonds; these are exact results, obtained numerically). The
black and magenta solid curves in plot (a) are the predictions of two approximate formulas
developed with the periodic case in mind: the original proposal of Cabrera and Vermilyea
(our eqn (1)) and one due to Potapenko.®” The inset in plot (b) gives a magnified view of
the region where the average velocity transitions from 0 to positive, as the supersaturation

o increases.
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these formulas. Their qualitative behavior is similar to the simulations; however, when ( is
relatively small the C-V formula substantially underestimates the average velocity and
Potapenko’s formula substantially overestimates it.

Figure (b) provides a different view of the same data: it shows how the average velocity

depends on the supersaturation . We use there the convention that
2
Oc = 25 \/_ = Ega

so that /0. = 1/ and a step gets stuck in the periodic setting precisely when o < o.. The
figure plots Ve /o. against o/o. = 1/(. The asymptotically linear behavior seen for large
o/o. is no surprise: for small values of ( we have Vo = Vi) = Mo, 50 Vaye /0. = M(0 /o).
The vanishing of the velocity for small /0. is also no surprise, since the step gets stuck
when ( is large enough. The key difference between the C-V and random models lies in
how the average velocity approaches 0. The inset in Figure (b) captures this difference by
providing a magnified view of the relevant part of the graph.

We have focused thus far on the step’s average velocity, but its roughness is also of
interest. Figure [4| reports the observed average roughness as a function of ¢ = /.. In this
figure, what we report as roughness is the average (over samples that didn’t get stuck) of the
rms height, computed as (% SV (i — y)Q) 1/2, where {y;} are the heights of an equispaced
(with respect to arclength) discretization of the front and 7 is the average height. As in
Figure 3] we provide data using several different choices for the mean number of stoppers
Ao in our 1 x 1 computational box. For values of ¢ up to about 0.8 the roughness increases
almost linearly with (, and the results are essentially independent of \y. For larger values of
¢ the results show a lot of scatter; note that a significant fraction of the steps get stuck within
the computational timeframe in this regime, so the roughness is estimated by averaging a
relatively small ensemble. The approximately linear dependence of roughness on ¢ can be

understood as follows: once ( is large enough to significantly slow the front, we expect from
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the growth law V' = V(1 — {x/0o) that the local curvature of the front will be of order o/¢.
Dimensional analysis suggests that the roughness should behave like 1/curvature. Since
¢ =¢/¢ = 2&/(do), this suggests a roughness of order /o = (d/2)C.

Since step velocity decreases as ( increases, step roughness should increase as V/Vj de-
creases. This effect has been observed experimentally for various systems, and has been
discussed quantitatively for L-cystine growing by the motion of steps in the presence of the

growth inhibitor L-cystine dimethylester."?

Stoppers with finite lifetimes

In real systems, stoppers are rarely completely immobile. Indeed, stoppers may disappear
due to desorption from the surface; or they may suddenly become irrelevant, if fluctuations
permit the step to overgrow a stopper even when the pinning angle (the angle ¢ in Figure
1)) is larger than the breakthrough threshold. These two mechanisms are indistinguishable
macroscopically if the growth conditions are constant. They can, however, be distinguished
by varying the supersaturation, since the desorption rate is independent of supersaturation,
while the statistics of growth step fluctuations should depend on supersaturation. In this
paper we focus on desorption, i.e. on stoppers that disappear from the surface. Our stoppers
disappear randomly (each stopper’s lifetime is an independent, exponentially-distributed
random variable). The stopper disappears at the end of its lifetime, whether or not it is
pinning the evolving step. Since we are modeling desorption, our stoppers’ lifetimes are
independent of supersaturation; however our data could, with appropriate processing, be
used to make predictions for stoppers whose disappearance rates have a known dependence
on supersaturation.

When each stopper has a finite lifetime the average velocity of the step must be positive.
Indeed, if ¢ is large then the step might get stuck transiently; but it is sure to make further
progress when the stoppers that pin it eventually disappear. Doing simulations with mobile

stoppers is only marginally more difficult than with immobile ones: one must simply remem-
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Figure 4: Step roughness as a function of the percolation parameter ( = £/&. (a) and super-
saturation o /o, (b) for random immobile stoppers. The results are presented for different
choices of \g (the expected number of stoppers in a 1 X 1 box within our computational strip
0<z<1).
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ber to remove the stoppers when their lifetimes expire. However the interpretation of the
output has subtleties that weren’t present in the immobile case, as we’ll explain presently.
Figure o] is the finite-stopper-lifetime analogue of Figure [3} it shows the average velocity
of the step for several different values of the expected nondimensional stopper lifetime 7
(defined in terms of the dimensional lifetime 7. by eqn (6))). In this figure, which presents
our computational results with a minimum of analysis, the roles previously played by &. =

do/2 =0 /(2V/\) and o, = 26/d = 263/ X are filled instead by

doo o 2¢
&0 5 e and ocp a §vV Ao (8)

These are the values of £, and o, for immobile stoppers; as we shall discuss presently, they are
different from &. and o. when the stoppers have finite lifetimes. One sees from the figure that
when £/, is sufficiently small, the average velocity is almost independent of 7;; in this “step
percolation limited regime,” the mean lifetime is long compared to the typical time the step
takes to overgrow a stopper. The situation is, however, entirely different as £/£. o approaches
1 (the regime where steps got stuck or nearly so when the stoppers were immobile). For such
¢ the average velocity is affected strongly by the value of 7,. When £/&.¢ > 1 the average
velocity becomes almost independent of &; in this “stopper detachment limited regime” the
step is stuck much of the time, making progress mainly when one of the stoppers that pinned
it disappears. As examples, parts of two runs are provided in the Supporting Information,
one done with 74 = 1, {/&.o = 0.5 and the other done with 7, = 1, £/£.0 = 4 (Videos S2,
S3, respectively).

To interpret this data, we observe that when the stoppers have a finite expected life-
time there is, in addition to the percolation parameter ¢ defined by eqn , an additional

nondimensional parameter

4 1
TscMJ TSCMO'\/X

[ (9)

where 7. is the mean (dimensional) stopper lifetime, A is the (dimensional) stopper density,
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Figure 5: Average step velocity, for different values of the mean nondimensional lifetime 7.

(a) Vave/Vo as a function of £/&.o; (b) Vave/0c0 as a function of 0/0.; here . and o, are
defined by eqn ({§]). These simulations were done using Ay = 20.
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and d =1/ VvA. Evidently, 1 compares the dimensional stopper lifetime to the typical time
a step moving at velocity V, = Mo takes to travel the distance between stoppers. In
terms of the nondimensional stopper lifetime 7, introduced in eqn @, 1 has the alternative
characterization y = (d/L)/7;. By dimensional analysis, there should be a law for the
average velocity of the form

‘/évg

= f(G) (10)

for some function f of two variables. To determine the function f from the results of our

simulations, we must deal with two difficulties:
(a) the density of stoppers is not constant over the course of the simulation; and
(b) the simulations estimate the value of f only at selected points in the ({, i) plane.

We deal with point (b) by interpolation, of course (after some smoothing of the data, since
the numerically-determined V,,, is the output of a stochastic simulation, and is therefore
noisy). Concerning point (a): recall that our simulation has a parameter )y, the expected
number of stoppers in a 1 x 1 square. When we distribute stoppers in a 1 x 0.1 rectangle
ahead of the front, the number of stoppers is chosen from a Poisson distribution with mean
Ao/10, assuring that the density of stoppers in the rectangle is A\g. However if the stoppers
have finite lifetimes then the density decreases as they disappear, by eqn @

To understand how our data provide information about the function f((, ) we must
account for this effect. To do so, we observe that if the average velocity is well-defined,
then the times ¢ at which new stoppers are laid down in the simulation are (approximately)
multiples of some period 7,. Neglecting stochasticity, the period 7, can be determined from
the average velocity. ¢ and p are periodic functions of the (nondimensional) simulation
time ¢, with ((¢t) = (e %)/ and u(t) = pee® /(%) as t ranges over the period

tr <t < 7, + tx (The exponential function is used because stopper lifetimes are modeled
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with Poisson distributions with mean lifetime 75). Their mean values are thus

_ 27,

C=Co2 (1 — /G (11)
Tp

i = /ﬁo% (eTp/(QTs) _ 1) ) (12)
Tp

If the velocity of the interface is given by eqn at every time t, then what we report as

Vavg (the time-averaged velocity of the interface) is actually

Vo= =2 [ 1(¢t0) ) . (13)

Since we do not know the form of f (indeed, we are trying to find f from data about Vi),
we need an approximation of eqn that does not depend on the form of f. In analyzing

our data, we used the approximation

L7 pew), nt) dt ~ £ ),

Tp Jo

Using these approximations, each simulation done at finite 7, determines the value of f at
an associated point ({, 1) in the (¢, i) plane. As already noted, given such data, smoothing
and interpolation permit evaluation of the function f throughout the region of the ((, u)
plane that was explored by our simulations.

Using this technique, we calculated the average velocity Vo = Mo f((, i) as a function

of ¢ or o, for several values of the dimensional stopper lifetime

Tsdv/ Ao

Tse — .

Mo

This formula agrees with eqn @ since \g = AL?. The results are shown in Figure |§| The
trends we observed in Figure [5] are essentially unchanged; in particular, when ( is small the

average velocity is insensitive to stopper detachment, and for ( > 1 the average velocity is
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almost independent of (. Dwelling a bit on the latter regime, when the motion of the step
is stopper-detachment-limited: it is natural to expect that V,y,/Vj should be proportional
to d/(1s.Vp), since d/Vj is the time it takes a step (in the absence of stoppers) to travel
distance d. Such proportionality was also predicted in an earlier analysis of a similar growth
regime.”! We do not expect the constant of proportionality to be 1 since (i) the local velocity
of our step is usually smaller than V{, and (ii) the typical distance to the next stopper above a
point on the step is only proportional to d, not equal to d. Our data confirms the anticipated
proportionality: indeed, using simulations done with Ay = 20 and fixing ( = 2.7, we find
that Vaye/Vo = 0.51(2) /75 (Figure [7)).

In experimental work on crystal growth, kinetic data are usually reported as V' (¢), where
¢ is concentration of the inhibitor in the growth medium. We expect the stopper density, A,
to be proportional to ¢, so ( is proportional to /c in this setting; see eqn (3)). For a high
density of weakly bound stoppers (high ¢ and low 7,.), our kinetic curves resemble those

2253 in which impurity molecules do not pin steps

associated with the Bliznakov mechanism,
but only make attachment to kinks slower. Mathematically, for the Bliznakov mechanism
one has V = (1 — 0)Vy + 0V, where 6 measures the surface coverage by the impurity, Vj is
the step velocity in the absence of impurities, and V,, is the step velocity with full coverage
by the impurities (# = 1). It is natural to model the surface coverage using the Langmuir
isotherm: # = Kc¢/(1+ Kc), where K is the adsorption constant; then the prediction of the
Blizkanov mechanism becomes

Vv V. Ke
Lo (1-2)e=1- 14
( VO) S (14)

where 0 < a < 1 is a system-dependent and supersaturation-dependent constant.
In the large-( regime the results of our simulations are very similar to those predicted by
(14)). Since c is proportional to ¢?, it is natural to start by considering Vi /Vp as a function

of (2 rather than (: Figure |S8a does this, using the same data as Figure |§|, for values of ¢ up
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Figure 7: Average step velocity V,../Vo as a function of dimensional stopper detachment
rate 1/7,., for ( = 2.7. These simulations were done with \g = 20.

to about 3. Since Vy = Mo, eqn ([14) predicts that V'(c) should depend roughly linearly on

supersaturation, o4 (

we use here that ¢ and K are independent of supersaturation, and «a
is only weakly dependent on it). Our simulations are consistent with this: V,, is nearly a
linear function of o for o /o, = 1/¢ < 0.4 (Figure 8p).

The similarity between Cabrera-Vemilyea and Bliznakov inhibition kinetics for a high
density of weakly bound stoppers is not surprising, since these conditions substantially sup-
press cooperativity in the action of impurity stoppers. The possibility of considering two
types of inhibition kinetics within one framework was considered before,%” but our simu-
lations provide a physical basis for connecting the C-V and Bliznakov mechanisms. We
emphasize that the underlying physics of the C-V mechanism remains different from that
of Bliznakov in the high-(, low-7,. regime; but the associated kinetics are similar, because
in this regime the stoppers impede the propagation of the step without developing strong

cooperativity. This similarity in the consequences of the two growth inhibition mechanisms

means that it is difficult to distinguish between them using only kinetic data.
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Conclusions

We have studied how the macroscopic velocity of a step is affected by the presence of
randomly-located stoppers with finite or infinite lifetimes. This was done using a continuum
model for the evolution of the step, simulated numerically using a front-tracking-based nu-
merical method. Our continuum model is a generalization of the one formulated by Cabrera
and Vermilyea in 1958: our stoppers pin the moving interface unless/until they are over-
grown (when the pinning angle reaches the breakthrough threshold) or they disappear (if
they have finite lifetimes).

It has, up to now, been a challenge to understand the quantitative consequences of this
model. Indeed, the consequenes of the C-V mechanism have mainly been considered up
to now for a periodic array of immobile stoppers. (A notable exception is the work of
Potapenko™, which estimates the density of randomly-located immobile stoppers required
to fully arrest the motion of a step.) Our starting point is the observation that this problem
is well-suited to numerical simulation, since there are just two nondimensional parameters,
and pu, and the macroscopic velocity is determined by a function f(¢, ). We have shown that
f can be determined by simulations, and have used the results to discuss the consequences
of our version of the Cabrera-Vermilyea inhibition model. Thus, we have refined the classic
Cabrera-Vermilyea inhibition model and extended its applicability to a wider spectrum of
crystal growth conditions.

When the stoppers are immobile (i.e. they never desorb) there is just one nondimensional
parameter, the “percolation parameter” (. In this case (which corresponds to taking pu = 0)
we have found that shape of the kinetic curve is roughly the same for random vs periodic
stoppers for low values (. As ( approaches 1, however, the two cases behave very differently.
In the periodic setting V,y; decreases sharply to 0 at a well-defined threshold ¢ = 1. In the
random setting V,,, decreases much more gradually, remaining nonzero well above ¢ = 1. In
our stochastic simulations at values of ¢ up to about 1.6, some runs show the step getting

stuck within the computational timeframe, but others show it continuing to make progress.
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This indicates that in the context of immobile stoppers, slow crystallization should be still
possible at relatively high stopper densities.

For stoppers with finite lifetimes, complete inhibition is not possible. At low (, the shape
of the kinetic curve is almost independent of the stopper lifetime; however when ( is large
Vavg becomes independent of ¢, with a value that depends on the stopper lifetime.

These results improve our understanding of crystal growth inhibition mechanisms, broad-
ening the range of systems for which we have tools to study growth inhibition quantitatively.
The tools developed here should, in particular, be useful for studying systems with a high
kink density where crystallization occurs at moderate supersaturation, for example ice with

22154

antifreeze proteins, potassium dihydrogen phosphate in the presence of trivalent met-

WS and L-cystine with tailor-made

als,” calcium oxalate monohydrate with acidic peptides,
additives.??” The model needs further development, however, to address other common
situations, especially to consider steps with low kink densities and the case of growth under
a high driving force for crystallization. Growth instabilities related to slow adsorption of
impurities, leading to formation of macrosteps, are another important scenario worth con-
sidering. Such instabilities have generally been modelled by considering the velocity of the
step as a function of stopper density.”*? Our more microscopic approach offers a possible
alternative, though the required simulations would be much larger than those reported here
since they would need to track many steps whereas we only follow a single step. The simula-
tion of macroscopic phenomena such as 2D pattern-formation involving macrosteps™” would

probably not be feasible using our approach, due to the large spatial and timescales on which

they occur.

Supporting Information Available

The Supporting Information is available free of charge on the ACS Publications website at

DOI:

29



Videos S1 — S3 show typical simulation runs of steps moving through arrays of stoppers.
Video S1: ¢ = 0.5, 7, = oo; Video S2: ( = 0.5, 7, = 1; Video S3: ( =4, 7, = 1.
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Crystal growth inhibition by mobile randomly distributed stoppers
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Synopsis: To refine the classical Cabrera-Vermilyea step pinning model, a semi-implicit
front tracking algorithm was used to simulate growth inhibition by randomly distributed
stoppers with finite lifetimes. It was shown that compared to periodic placement, a random
distribution of stoppers results in a much more gradual decrease of the average step velocity

to its asymptotic value, zero in the case of permanent stoppers and some non-zero value for

stoppers with finite lifetimes.
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