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Abstract

We return to a classic problem of structural optimization whose solution requires
microstructure. It is well-known that perimeter penalization assures the existence
of an optimal design. We are interested in the regime where the perimeter penal-
ization is weak, i. e. in the effect of perimeter as a selection mechanism in struc-
tural optimization. To explore this topic in a simple yet challenging example, we
focus on a 2D elastic shape optimization problem involving the optimal removal
of material from a rectangular region loaded in shear. We consider the minimiza-
tion of a weighted sum of volume, perimeter, and compliance (i. e. the work done
by the load), focusing on the behavior as the weight ε of the perimeter term tends
to zero. Our main result concerns the scaling of the optimal value with respect to
ε . Our analysis combines an upper bound and a lower bound. The upper bound is
proved by finding a near-optimal structure, which resembles a rank-two laminate
except that the approximate interfaces are replaced by branching constructions.
The lower bound, which shows that no other microstructure can be much bet-
ter, uses arguments based on the Hashin–Shtrikman variational principle. The
regime being considered here is particularly difficult to explore numerically, due
to the intrinsic nonconvexity of structural optimization and the spatial complex-
ity of the optimal structures. While perimeter has been considered as a selection
mechanism in other problems involving microstructure, the example considered
here is novel because optimality seems to require the use of two well-separated
length scales. c© 2000 Wiley Periodicals, Inc.

1 Introduction

It is a classic problem to ask what geometry or shape of an elastic body best
supports a load while using a minimum amount of material [1]. This question has
typically been phrased as the variational task of finding geometries which mini-
mize a weighted sum of volume and compliance (the work done by the load). It has
been known for a long time that this problem in many cases requires microstruc-
ture, i. e., there are no optimal geometries in the classical sense, but instead an
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infinitely fine microstructure is required to achieve the optimal behavior. In par-
ticular, so-called laminates (infinitely fine alternating layers of material and void,
sometimes arranged in different hierarchies) can always reach that infimum [1].
This situation is somewhat unsatisfactory since infinitely fine microstructures are
rather of a theoretical nature and can for instance not be manufactured. As a rem-
edy, a regularizing term can be added to the objective. For strong regularization,
there is a broad corresponding literature, which provides the variational analysis
as well as numerical implementations using level set formulations [3], phase field
approaches [7, 23, 21], multiple materials [7, 23], design-dependent loads [3, 7],
nonlinear elasticity [21], and topological regularization [8].

In this article we are instead interested in the case of small regularization, in
which very finely structured geometries are optimal. In essence, we ask which
structures are selected when perturbing the non-regularized problem by a slight
regularization involving the perimeter of the geometry. We approach this question
by proving a scaling law for the minimum cost, a nowadays widely used technique
in the analysis of variational pattern formation that has already been successfully
employed to better understand finely structured configurations in martensitic met-
als [17, 9], ferromagnets [11], superconductors [10] and other physical situations.
In particular, we will prove that the minimum cost for a 2D geometry supporting
a shear load on a rectangular boundary (Figure 1.1) scales like

√
ε where ε is the

weight of the perimeter regularization.
While regularization involving perimeter has been considered in a number of

other problems requiring microstructure, most such studies have considered mi-
crostructures with a single internal length scale. Our work is different, because
the problem we consider requires a microstructure with two well-separated length
scales—a so-called rank-two laminate, whose material strips are aligned with the
two principal stress directions (at 45◦ angles with the Euclidean axes). Allaire and
Aubry have already observed that this is the only optimal microstructure for a shear
load [2] (whereas other loads such as hydrostatic pressure allow various kinds of
optimal microstructures). As ε → 0, our construction of a near-optimal geometry
will thus have to approach this microstructure. Our analysis shares some elements
with that of [15], which is only natural since the problem considered there also
requires two microstructural length scales.

The rest of this introduction discusses the exact form of our objective func-
tional, which is devised to optimize a structure under a fixed shear load, then briefly
summarizes results from [16] for the simpler case of compliance optimization un-
der a uniaxial load, and puts forward a brief heuristic argument explaining the
observed energy scaling.

1.1 Problem formulation
We consider the minimization of the objective functional

Jα,β ,ε,µ,F,`,L[O] = αCompµ,F,`,L(O)+βVol(O)+ εPer(O)
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FIGURE 1.1. Left: Load geometry considered in this article. Right:
Sketch of a near-optimal geometry as constructed in Section 2. The gray
structures are only shown in part of the image.

among all geometries O ⊂Ω = [0, `]×[0,L], where α,β ,ε > 0 are positive weights,
`,L > 0 are the geometric parameters, and µ > 0,F represent a shear modulus and
a stress value, respectively (Figure 1.1). Per(O) denotes the perimeter of the set
O , Vol(O) its volume, and the so-called compliance Compµ,F,`,L(O) stands for the
mechanical work done by a shear load of magnitude |F | applied at ∂Ω,

Compµ,F,`,L(O) =
1
2

∫
∂Ω

(σ̄n) ·uda with σ̄ =
(

0 F
F 0

)
,

where n is the unit outward normal and u : O→R2 is the equilibrium displacement
of the loaded structure and thus minimizes the free energy

Eµ,F,`,L[u] =
∫

O
µ|ε(u)|2 dx−

∫
∂Ω

(σ̄n) ·uda with ε(u) = 1
2(∇uT +∇u) .

Note that for simplicity we here assumed the structure O to consist of a homoge-
neous, isotropic material with zero Poisson’s ratio so that the elasticity tensor re-
duces to the single scalar µ . The existence of minimizing geometries O for ε > 0
is standard (see e. g. [5, 13, 1, 6]).

The compliance is a measure of the inverse structural stiffness with respect to
the imposed load, hence minimization of the compliance yields a structure as rigid
as possible. The structure volume and perimeter can for instance be interpreted as
material and production costs, respectively.

As already mentioned previously, we are interested in the limit of small perime-
ter penalization ε . In that limit optimal geometries typically exhibit fine-scale
structures which cannot be resolved numerically. Instead we try to provide some
understanding by analyzing how the minimum energy scales in ε as ε → 0. Our
analysis involves the construction of a family of near-optimal geometries that give
insight into how optimal geometries probably behave. From the viewpoint of vari-
ational pattern analysis this problem is very interesting since unlike most others it
requires two different fine length scales. Further motivation comes from viewing
this variational model as a prototype problem to better understand pattern selection
in biological structures, which also often exhibit very fine scales, such as e. g. the
spongiosa in bones. Though for instance bone formation is certainly not governed
by the variational principle examined in this article, it seems not unreasonable to
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assume an evolutionary pressure towards rigid, but light-weight structures. The
small perimeter penalization here just limits the possible structural complexity.

It is well-known that the compliance can also be expressed in terms of the equi-
librium stress σ rather than the equilibrium displacement u (see e. g. [1]). In detail,
by the principle of minimal complementary energy we may write

Compµ,F,`,L(O) = min
σ∈ΣO

ad

∫
O

1
4µ
|σ |2 dx

where the set ΣO
ad of statically admissible stress fields is given by divergence-free

symmetric tensor fields satisfying the prescribed stress boundary conditions,

Σ
O
ad = {σ : Ω→ R2×2

sym |divσ = 0 in Ω,σ = 0 in Ω\O,σn = σ̄n on ∂Ω} .

Finally, a non-dimensionalization yields

(1.1) Jα,β ,ε,µ,F,`,L[LO] = βL2J
1,1, ε

βL , 1
4 ,F
√

α

4µβ
, `

L ,1
[O]

so that it suffices to consider the optimization problem of minimizing

(1.2) Jε,F,`[O] = CompF,`(O)+Vol(O)+ εPer(O)

with CompF,`(O) = min
σ∈ΣO

ad

∫
O
|σ |2 dx

for O ⊂Ω, where Ω = [0, `]× [0,1].
For the non-dimensionalized problem, it is known that for |F | ≥ 1

2 the optimal
shape O is the full domain Ω (see e. g. [22]), so the interesting case requires |F |<
1
2 . The purpose of this article is to show the following energy scaling law, the upper
and lower bound of which are given in Sections 2 and 3, respectively.

Theorem 1.1 (Optimal energy scaling for shear load). In the regime ` ≥ 1, ε <
|F |< 1

2 , there exist c,C > 0 (depending only on ` and F) with

cε
1
2 ≤ min

O⊂Ω

Jε,F,`[O]− J∗,F,`
0 ≤Cε

1
2

for J∗,F,`
0 = 2`|F |(2−|F |). Here Ω = [0, `]× [0,1] and Jε,F,` is defined by (1.2).

Above, J∗,F,`
0 is the infimum of the energy for zero perimeter penalization,

J∗,F,`
0 = infO⊂Ω J0,F,`[O]. The minimum ceases to exist for ε = 0, and the infimum

is realized by a finer and finer sequence of laminates [2]. The infimum value can
be obtained as the minimum of the lower semi-continuous envelope of J0,F,`[O]
with respect to weak L1-convergence of the characteristic function of O , which
has long been known [18, 19, 20]. Identifying O with the set of points where the
equilibrium stress is nonzero, we can write

J∗,F,`
0 = inf

σ∈ΣΩ
ad

∫
Ω

g(σ)dx with g(σ) =

{
0 if σ = 0 ,

|σ |2 +1 else.



OPTIMAL FINE-SCALE STRUCTURES FOR A SHEAR LOAD 5

�

-

?

6F
F

F
F

or

�
�
�
�
�
�
�
�
�
��@

@
@
@
@
@
@
@
@
@

material
fraction θ1

material
fraction θ2

�

-

?

6F
F

F
F

FIGURE 1.2. The optimal microstructure to support a shear load is a
two-rank laminate aligned with the two orthogonal principal stress direc-
tions. The material strips of the finer scale make up a material fraction
θ1 = |F | and bear a longitudinal stress of magnitude 1, while the strips
of the coarser scale make up a material fraction θ2 = |F |

1−|F | and bear a
biaxial load of magnitude 1− |F | in longitudinal and |F | in transversal
direction. The total material fraction is θ = (1−θ2)θ1 +θ2 = 2|F |.

Quasiconvexification of g now yields the lower semi-continuous envelope of the
integral [18, 19, 20],

J∗,F,`
0 = min

σ∈ΣΩ
ad

∫
Ω

g̃(σ)dx with g̃(σ)=

{
2(|σ1|+ |σ2|− |σ1σ2|) if |σ1|+ |σ2| ≤ 1,

1+σ2
1 +σ2

2 else,

where σ1 and σ2 denote the two eigenvalues of the symmetric matrix σ . The
minimum is achieved by σ = σ̄ . The corresponding microstructure is a rank-two
laminate [22] as sketched in Figure 1.2. In our construction of near-optimal geome-
tries for nonzero ε we also have to use two different scales, and we will replace the
material strips on both scales by branching constructions.

Remark 1.2. Our proof of the upper bound in fact establishes

min
O⊂Ω

Jε,F,`[O]− J∗,F,`
0 ≤ C̃`|F |

1
2 ε

1
2

for a constant C̃ independent of ` or F under the additional constraint ε ≤ |F |3 (i. e.,
the dependence of C from Theorem 1.1 on ` and F is made explicit). It is not clear,
though, whether this scaling in ` and F is sharp, since our proof of the lower bound
does not provide any information on how ` and F enter the prefactor in front of ε

1
2 .

Remark 1.3. Undoing the non-dimensionalization, we obtain a dimensional version
of Theorem 1.1: Consider the domain Ω = [0, `]× [0,L] and the functional defined
in (1.1), then in the regime ` ≥ L, 2ε < |F |L

√
αβ/µ < βL, there exist c,C > 0

depending only on `
L and F

√
α

µβ
with

c
(

`
L ,F

√
α

µβ

)
β

1
2 L

3
2 ε

1
2 ≤ min

O⊂Ω

Jα,β ,ε,µ,F,`,L[O]−Jα,β ,∗,µ,F,`,L
0 ≤C

(
`
L ,F

√
α

µβ

)
β

1
2 L

3
2 ε

1
2



6 R. V. KOHN AND B. WIRTH

for Jα,β ,∗,µ,F,`,L
0 = `L|F |

√
αβ

µ
(2−|F |

√
α

4µβ
). The more precise upper bound from

the previous remark becomes

min
O⊂Ω

Jα,β ,ε,µ,F,`,L[O]− Jα,β ,∗,µ,F,`,L
0 ≤C`

√
|F |Lε

4
√

αβ/µ

for C independent of the model parameters.

Remark 1.4. We apply a very particular shear load σ̄ at the domain boundary ∂Ω.
We chose this shear load so that the domain Ω has roughly the same extension in
both principal stress directions, giving the problem some additional symmetry. If
the applied shear stress is slightly rotated to R(ϕ)σ̄R(ϕ)T for some small ϕ , where
R(ϕ) ∈ SO(2) denotes rotation by an angle ϕ , the energy scaling will most likely
persist, requiring only slight adaptations of the optimal constructions. However,
as the rotation angle ϕ approaches π

4 , the extension of Ω in one principal stress
direction will be much larger, of order `, than in the other direction, where it is
of order 1. In that case the horizontally aligned structures will be able to coarsen
to a larger degree, thus resulting in a different energy scaling which also involves
a power of `. The single construction elements, notably the elementary cells, are
expected to stay very similar, though.

1.2 A simpler case: Compliance minimization for a uniaxial load
A shear load represents a biaxial stress state with a compressive and a ten-

sile principal stress in orthogonal directions. A simpler compliance optimiza-
tion problem is obtained if the shear load on ∂Ω is replaced by the uniaxial load
σ̄unin =

(
0 0
0 F

)
n, i. e.

min
O⊂Ω

Jε,F,`
uni [O] with Jε,F,`

uni [O] = min
σ∈ΣO

ad,uni

∫
O
|σ |2 dx+Vol(O)+ εPer(O) ,

where ΣO
ad,uni = {σ : Ω→R2×2

sym |divσ = 0 in Ω,σ = 0 in Ω\O,σn = σ̄unin on ∂Ω}.
The energy scaling law for this functional is determined in [16].

Theorem 1.5 (Optimal energy scaling for uniaxial normal load). In the regime
|F | ≤ 1

2 , ε ≤min(`3|F |, |F |4), there exist c,C > 0 (independent of ` and F) with

c`|F |
1
3 ε

2
3 ≤ min

O⊂Ω

Jε,F,`
uni [O]− J∗,F,`

0,uni ≤C`|F |
1
3 ε

2
3

for J∗,F,`
0,uni = 2`|F |.

The successful construction is given by a truss-like structure which refines from
the center to the boundary via branching as illustrated in Figure 1.3. Each level
consists of an array of unit cells with a triangular structure inside, where the unit
cell width w halves from level to level and the unit cell height scales like w3/2. We
will employ such a construction as a structural element in the proof of the upper
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FIGURE 1.3. Left: Load geometry for Theorem 1.5 (uniaxial load) with
a uniform normal tension F at the top and bottom. The optimal design
O is sought inside Ω. Right: Sketch of optimal construction (here with
three branching levels), which is composed of several unit cells.

bound for the shear load case. We will need a version with L 6= 1, which is given
by

c`L
1
3 |F |

1
3 ε

2
3 ≤ min

O⊂Ω

Jε,F,`,L
uni [O]− J∗,F,`,L

0,uni ≤C`L
1
3 |F |

1
3 ε

2
3

in the regime |F | ≤ 1
2 , ε/L≤min(`3|F |/L3, |F |4) and with J∗,F,`,L

0,uni = 2`L|F |.
Let us briefly provide the details of the construction for later usage. We have

to specify a geometry together with a stress field and compute its energy. It is
convenient to proceed in steps.

Specify unit cell and compute its energy. The employed unit cell of width w and
height h is given in Figure 1.4. Its excess energy over the infimum energy for ε = 0
can straightforwardly be computed as [16]

∆Jcell,uni = Compcell,uni +Volcell,uni + εPercell,uni−2|F |wh∼ |F |w3

h + ε(h+w) ,

which becomes ∆Jcell,uni(w)∼
√
|F |w3ε for the optimal h∼

√
|F |w3/ε . Here and

in the following, ∼ denotes equality up to a constant factor independent of `, L, F ,
and ε .

Determine coarsest unit cell width and compute total bulk energy. Let us num-
ber the levels from 1 (coarsest) to N (finest). Considering only the upper half of the
structure (the bottom half is symmetric), the total height L

2 has to equal the sum of

the heights hi of the levels, L
2 = ∑

N
i=1 hi. Using hi =

√
|F |w3

i /ε and wi = w1/2i−1,

we arrive at L
2 ∼

√
|F |w3

1/ε so that w1 ∼ 3
√

L2ε/|F |. The requirement w1 ≤ ` then

implies the condition L2ε ≤ |F |`3. The total bulk excess energy is

∆Jbulk,uni = 2
N

∑
i=1

`

wi
∆Jcell,uni(wi)∼ `L

1
3 |F |

1
3 ε

2
3 .

Introduce boundary layer. The layering of finer and finer levels has to stop when
the unit cell height becomes comparable to the unit cell width, i. e. hN ∼ wN or
equivalently wN ∼ ε/|F |. Between this finest level of unit cells and the top and bot-
tom boundary ∂Ω, respectively, a material layer of thickness ε/|F | is introduced,
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FIGURE 1.4. Sketch of a unit cell for Theorem 1.5; the domains of con-
stant stress are numbered. The right graph serves to indicate the geomet-
ric parameters. We take tanα = w/4h, a = |F |w

2 tanα , and b = |F |w
2cosα

.

which can be shown not to impair the total energy scaling [16]. Furthermore, since
N ≥ 1 or equivalently wN ≤ w1, we obtain the condition ε/|F | ≤ w1 or ε/L≤ |F |.

1.3 A heuristic argument for energy scaling with and without branch-
ing

Before proceeding to the details of proving Theorem 1.1, let us provide a brief
heuristic argument for the energy scaling with and without branching. For simplic-
ity and as in the previous section, let us call the quantity of interest, Jε,F,`[O]−J∗,F,`

0 ,
the excess energy ∆J of the geometry O .

Without branching, the geometry will look as in Figure 1.2. Denote by l1 the
length scale or periodicity of the finer struts and by l2 the period between any two
of the coarse struts. The excess energy over the infinitely fine rank-2 laminate has
three contributions:

• At ∂Ω, the stresses will deviate from the optimum by an amount of order
1 within a boundary layer of thickness l2, yielding excess energy ∼ `l2.
• Likewise, there is a boundary layer of width l1 where the fine struts meet

the coarse bars. Since there are ∼ `/l2 such boundary layers, the corre-
sponding excess energy contribution is ∼ ` l1

l2
.

• The perimeter contribution comes mostly from the fine struts and thus
scales like ε`/l1.

Summarizing, ∆J∼ `l2 +` l1
l2

+ε`/l1, which is minimized by l1∼ ε2/3 and l2∼ ε1/3

to yield ∆J∼ `ε1/3.
Above, the length scales of the fine and the coarse structures stay spatially con-

stant. This is subobtimal since perimeter energy can be saved by making the length
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scales coarser away from ∂Ω. This can for instance be achieved via branching as
in Figure 1.1. Let z = x1+x2√

2
be the coordinate parallel to the coarser layers, and

let l(z) be the local length scale of the coarser structure. There are two dominant
contributions to the excess energy:

• The effect of the finer-scale structures looks to the coarser-scale structure
like an effective surface energy. From the previous section and [16] we
know that the corresponding excess energy scales like ε2/3l(z)1/3|F |1/3

per unit length along z. Since there are ∼ `/l(z) coarse layers, the total
contribution of the finer-scale structures is

∆Jfine-scale ∼
∫ 1

0
ε

2/3l(z)1/3|F |1/3 `

l(z)
dz .

• The excess compliance from branching on the coarser scale behaves like

∆Jcoarse-scale ∼ `|F |
∫ 1

2

0
(l′(z))2 dz .

Both contributions balance when l′(z)2 ∼ ε2/3l(z)−2/3|F |−2/3, i. e. when

l(z)∼ ε
1/4|F |−1/4z3/4 ,

which produces the expected scaling

∆J∼ ∆Jfine-scale +∆Jcoarse-scale ∼ `|F |1/2
ε

1/2 .

2 Upper bound by two-level branching construction

In this section we will provide a construction which satisfies the upper bound
from Theorem 1.1. As mentioned in the introduction, an optimal microstructure
for ε = 0 is a rank-two laminate with coarse material strips along one principal
stress direction (at a 45◦ angle with the Euclidean axes) and fine material strips
connecting the coarse strips in the orthogonal direction (Figure 1.2). Up to the
symmetry of swapping the roles of the two diagonal directions, this rank-two lam-
inate is known to be the unique optimal microstructure for a shear load (as proven
in a periodic setting in [2]), and our construction of a near-optimal geometry will
thus have to approach this microstructure as ε → 0. Hence, we will also need two
different length scales in the two principal stress directions that both become finer
and finer as ε→ 0, but whose scale difference also becomes larger and larger. Also,
in order to save perimeter, we will replace the simple material strips by branching
constructions similar to the uniaxial case in Section 1.2.

The basic idea of the construction is sketched in Figure 2.1. As a preparation,
we first introduce a variation of the construction from Section 1.2 for the uniax-
ial load case (Section 2.1) as well as an alternative construction for small domain
heights (Section 2.2). Those structures will then finally be used inside the con-
struction of near-optimal geometries for the shear load case (Section 2.3). Note
that during our construction we will also track the dependence of the resulting
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FIGURE 2.1. Sketch of a near-optimal geometry. It exhibits two scales,
a coarse one (black) and a finer one in between (gray, not shown every-
where). On the coarser scale the construction is based on several levels
that each consist of an array of unit cells (one is framed by a dashed line).
The fine scale is based on the construction for a uniaxial load from Sec-
tion 1.2.

upper energy bound on the parameters ` and F , which allows to derive how the
constant C in Theorem 1.1 scales in those parameters.

2.1 Construction for a uniaxial load in a non-rectangular domain
Here we consider a variation of the geometry from Section 1.2 in which the

upper and lower boundary are not straight, but given as the graph of two Lipschitz-
continuous functions q1,q2 : [0, `]→ R with Lipschitz constants Lq1 ,Lq2 ≤ 1 (see
Figure 2.2, left). We will use the same notation as in Section 1.2, only keeping in
mind that this time Ω is no longer rectangular. We show the following:

Proposition 2.1 (Upper bound for uniaxial load in non-rectangular domain). Let
L+ and L− denote the maximum and minimum of q1 − q2, respectively. In the
regime |F | ≤ 1

2 , ε ≤min(`3|F |/L2
−,L+|F |4, 1

16 |F |L−) there exists C > 0 with

min
O⊂Ω

Jε,F,`,q1,q2
uni [O]− J∗,F,`,q1,q2

0,uni ≤C`L
1
3
+|F |

1
3 ε

2
3

for J∗,F,`,q1,q2
0,uni = 2|F |

∫ `
0 q1(x1)−q2(x1)dx1.

Proof. We have to provide a geometry and corresponding stress field satisfying the
upper bound. We shall use a variation of the construction from Section 1.2. For a
better overview, we proceed in steps.

(1) Segment domain into vertical slabs. We recursively define the position
xn

1 and height Hn of the nth slab’s left side as well as the slab width Wn by

x1
1 = 0 , Hn = q1(xn

1)−q2(xn
1) , Wn = 3

√
H2

n ε/4|F | xn+1
1 = xn

1 +Wn ,
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where the width of last slab may be chosen slightly larger so as to fully seg-
ment the domain (Figure 2.2, middle). Note that Wn is chosen as the coars-
est unit cell width obtained in Section 1.2 for a domain height of Hn/2. The
reason is that each slab will contain exactly one single tree of a branching
construction similar to that of Section 1.2.

(2) Adapt old branching construction. Due to the constraints we have Wn ≤
1
4 Hn so that the domain height q1(x1)−q2(x1) in the nth slab lies uniformly
between Hn−2Wn ≥ 1

2 Hn and Hn +2Wn ≤ 3
2 Hn. In this slab we now insert

one tree of height 1
2 Hn and width Wn from Section 1.2 (Figure 2.2, right).

The tree does not yet reach the upper or lower boundary. This is remedied
by introducing additional vertical struts as indicated in Figure 2.2, right.
For simplicity we consider just the upper half of the tree, the lower half is
treated analogously. Let r0

1 denote the central root and rm
s , s = 1, . . . ,2m,

the roots of the subtrees on hierarchy level m. We first shift the full tree
vertically up until it touches the upper boundary in some point, and then
we introduce a vertical strut in between the old and the new root position
r0

1. We then continue with the first level subtrees, that is, we shift up the
tree in r1

1 as well as the tree in r1
2 until both touch the upper boundary (one

of them actually already touched the upper boundary due to the first step)
and introduce a vertical strut between their old and their new root positions.
This procedure is repeated iteratively over levels 2,3, . . . until every subtree
reaches the upper boundary.

(3) Compute excess energy in the bulk. Each slab is now tiled by rectangular
unit cells (each containing a triangle truss) and rectangles containing only
a vertical strut. Here, the vertical strut width is chosen as w|F | so as to
achieve a uniform longitudinal stress of magnitude 1 inside. The excess
energy ∆Jcell,uni of the unit cells is identical to the excess energy computed
in Section 1.2, while the excess energy of a vertical strut cell C of width w
and height h is given by

∆JC,uni = CompC,uni +VolC,uni + εPerC,uni−2|F |wh = 2εh

and thus is of at most the same order as the excess energy of the attached
unit cell (note that the height always satisfies h≤ w and the width w≥ ε

|F | ,
cf. Section 1.2). Hence, the total bulk excess energy in the nth slab is of
the same order as the excess energy of the construction from Section 1.2 in
a rectangular domain of width Wn and height Hn/2, and the accumulated
bulk excess energy is given by

∆Jbulk,uni ∼
#slabs

∑
n=1

WnH
1
3

n |F |
1
3 ε

2
3 . `L

1
3
+|F |

1
3 ε

2
3 .

(4) Add a boundary layer. From Section 1.2 we know that the finest unit cells
at the top and bottom boundary have width∼ ε/|F |. At the top and bottom
boundary, we now introduce a material layer of thickness ε/|F | as shown
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L− L+

`

Ω

q1

q2

σ̄unin

σ̄unin
x1x1

1 x2
1 x3

1 · · ·

H1 H2 H3 · · ·

W1 W2 W3 · · ·

r0
1

r1
2r1

1

FIGURE 2.2. Left: Load geometry considered in Section 2.1. Middle:
Domain decomposition into vertical slabs. Right: Optimal geometry:
Each slab is replaced by a truss structure of triangular unit cells; a ver-
tical strut is introduced in between some cells (e. g. in the gray box).
Furthermore, a thick material layer is added at the boundary.

in Figure 2.2, right. Its volume scales like ` ε

|F | , its perimeter like `ε , and
its compliance is smaller than the volume since the stress never exceeds
magnitude 1. The overall energy scaling thus is not impaired.

�

2.2 Construction for a uniaxial load in a wedge
This time consider a wedge-shaped domain as in Figure 2.3, left. Again using

the same notation as in Section 1.2, only exchanging the domain Ω by a wedge, we
show the following.

Proposition 2.2 (Upper bound for uniaxial load in wedge domain). For `2 ≥ εL
there exists C > 0 with

min
O⊂Ω

Jε,F,`,L
uni [O]− J∗,F,`,L

0,uni ≤C`
√

εL

for J∗,F,`,L
0,uni = 2`L

2 |F |.

Proof. We take the following ansatz: We traverse the region between the two load
boundaries by N equispaced strips of width F`/N and add a boundary layer of
thickness `

N at the load boundaries (Figure 2.3, right). The volume and compliance
of the boundary layer behave like ` `

N , the volume and compliance of the strips
accumulate to J∗,F,`,L

0,uni , and the total perimeter behaves like NL. Altogether, the

excess energy over J∗,F,`,L
0,uni scales like ` `

N +εNL, which is minimized by N ∼ `√
εL
≥

1, yielding the desired bound. �
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L

`

Ω

σ̄unin

σ̄unin

FIGURE 2.3. Left: Load geometry considered in Section 2.2. Right:
The proposed geometry consists of vertical struts and a thick material
layer at the boundary.

w

h
2h
3

h
3

d b

aα

d
2

w/2

1

2

3

3
3

4
5

A
A

A
BB B

B B

C

-6 x1

x2

FIGURE 2.4. Sketch of the unit cell for the upper bound in Theorem 1.1.
The left sketch indicates the geometric parameters, the right sketch the
regions of constant stress. The white regions are full material, the gray
regions represent a fine scale branching construction according to Sec-
tion 2.1 (A) or Section 2.2 (B,C), all rotated counter-clockwise by π

4 . The
size of the wedges (B,C) is chosen such that their side parallel to

(−1
1

)
has length ∼ ε

|F |4 .

2.3 A two-scale, unit cell based construction for a shear load
Now we return to the construction of a geometry satisfying the upper bound

in Theorem 1.1. The construction is based on the unit cell of width w and height
h sketched in Figure 2.4. Ignoring the left and right boundary of Ω for the time
being, the construction uses multiple levels, each of which consists of an array of
unit cells whose width halves from level to level (Figure 2.1).

As in the construction from Section 1.2, we shall proceed in steps. Without
loss of generality let us assume F > 0 (changing the sign of F only implies a sign
change of the equilibrium stress and thus has no influence on the compliance or the
energy scaling).

Specify unit cell and compute its energy. The unit cell is given in Figure 2.4,
where the white regions are full material and the gray regions represent a fine scale
branching construction according to Section 2.1 (regions A) or Section 2.2 (regions
B and C), all rotated counter-clockwise by π

4 . The white material strips correspond
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to the coarse strips in the rank-two laminate from Figure 1.2, hence we choose the
geometric parameters

d = F
1−F

w√
2
, α = tan−1(3w

8h ) , a = d
2 tanα , b = d

2cosα
.

Abbreviating v1 = 1√
2

(
1
1

)
, v2 = 1√

2

(−1
1

)
, and σ̃ =−Fv2⊗v2 (a uniform compres-

sive stress of magnitude F in direction v2), the stresses in regions 1 to 5 are then
given by

σ1 = (1−F)
(

cos( π

4−α)
sin( π

4−α)

)
⊗
(

cos( π

4−α)
sin( π

4−α)

)
+ σ̃ , σ2 =−(1−F)v2⊗ v2 + σ̃ ,

σ3 = (1−F)v1⊗v1 + σ̃ , σ4 = (1−F)id+ σ̃ , σ5 = (1−F)cosα
(

sinα cosα
cosα −sinα

)
+ σ̃ .

The gray regions in Figure 2.4 all exhibit a uniaxial boundary stress of σ̃n on all of
their boundaries so that the constructions from Sections 1.2 to 2.2 can be applied
after a rotation by π

4 . Note that while the wedges of type B always have a fixed
aspect ratio, the wedges of type C may be very elongated.

A lengthy but straightforward calculation, using Propositions 2.1 and 2.2, now
yields the excess energy

∆Jcell = Compcell +Volcell + εPercell−wh2F(2−F)

∼ hw
1
3 F

1
3 ε

2
3 + ε2

F6 + hε2

wF6 +(F w3

h + ε(w+h)) ,

where the summands correspond to the contributions from the regions A, B, C, and
the white region, respectively. Assuming w & ε

F19/4 (which we will later ensure),

the dominant terms are hw
1
3 F

1
3 ε

2
3 +F w3

h . Minimizing in h now yields the optimal
unit cell height and excess energy,

h(w)∼ 3
√

Fw4/ε , ∆Jcell(w)∼ 3
√

F2w5ε .

Determine coarsest unit cell width and compute total bulk energy. Numbering
the refinement levels from 1 (coarsest) to N (finest), the sum of all level heights
must equal the total domain height 1, thus

1∼
N

∑
i=1

h(wi) =
N

∑
i=1

h(w1/2i−1)∼ 3
√

Fw4
1/ε .

From this we obtain that the coarsest unit cell width scales like

w1 ∼ 4
√

ε/F .

Finally, the total bulk excess energy is given by

∆Jbulk ∼
N

∑
i=1

`
wi

∆Jcell(wi)∼ `
w1

∆Jcell(w1)∼ `
√

Fε .
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D D̃

D̃′′′ Ω D̃′

D̃′′

FIGURE 2.5. In the top left and bottom right corner of Ω the con-
struction has to be adapted to the geometry of Ω, using constructions
D̃, D̃′, D̃′′, D̃′′′. D̃′ is the reflection of D̃ across the diagonal pointing to
the bottom right, and D̃′′ and D̃′′′ are reflections of D̃′ and D̃ across the
other diagonal. The geometry of D̃ will look very similar to a copy of
region D.

Introduce boundary layer. The branching has to stop before the unit cell height
becomes comparable to the unit cell width. We shall stop a little earlier, as soon
as wN ∼ ε

F19/4 . The final branching level is connected to ∂Ω via a material layer of
thickness ε

F19/4 , introducing an additional volume, compliance, and perimeter term
of ∼ ` ε

F19/4 . If ε . F21/2, this is smaller than the bulk energy and thus does not
interfere with the overall energy scaling.

Treat left and right end domain ends. At the left and right end of Ω, the coarse
level branching trees no longer reach the same height as at the center, since they hit
the left or right side of ∂Ω. Using an approach analogous to Section 2.1, in which
the left and right end are divided into diagonal slabs, each containing one coarse
level branching tree (as in Figure 2.1), it is tedious but straightforward to show
that the scaling is not impaired. That this must indeed be so can be understood
quite intuitively by noting that the constructions in the domain corners may be
viewed as copies (up to slightly stretching or compressing the unit cells to achieve
compatibility with the wedge geometry) of a wedge from the bulk construction
(Figure 2.5). Thus they do not contribute a larger excess energy than the bulk.

Remark 2.3. In the previous calculation we have shown

min
O⊂Ω

Jε,F,`[O]− J∗,F,`
0 . `

√
|F |ε ,

where the feasibility constraints for the construction are ε . |F |21/2 (so that the
boundary layer contribution scales like the bulk energy), ε . |F |`4 (so that w1 ≤
`), and ε . |F |6 (so that there is at least one layer of unit cells, i. e. w1 ≥ wN).
Of course, if F and ` are taken as constants which are fixed a priori, this result
immediately implies the upper bound in Theorem 1.1.

Remark 2.4. The previous construction is relatively simple to describe, but imposes
relatively strong constraints on the relation between ε and F , if one does not con-
sider F as fixed. One can weaken those feasibility constraints by slightly improving
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the construction in a way that is no longer based on true unit cells, but looks more
like actually shown in Figure 2.1. In detail, the changes are the following.

(1) The coarse-scale branching construction (black in Figure 2.1) stays the
same as above, but the fine-scale construction (gray) in between no longer
respects the unit cell boundaries. Instead, the gray branching construction
extends from one black material strip to the next so that wedges of type B
are no longer needed.

(2) In the construction based on Figure 2.4 the gray branching construction of
type A refines towards the unit cell boundary as well as towards the white
regions, and it is coated on either side with a thin material layer of thick-
ness ε

F which serves to evenly distribute the stress. In the new refined con-
struction, these material layers are removed so that the finest layer of the
branching construction in the gray regions directly touches the white re-
gion (in which the stress then distributes evenly over a length scale of ε

|F | ).
In effect, this changes the constraints of Proposition 2.1, since in its proof
the boundary layer contribution to the excess energy no longer scales like
` ε

F , but instead (due to Corollary A.2 in the appendix) like `ε|F | log 1
|F | so

that the bulk energy scaling is not impaired even for ε ≤ L+
F2| log |F ||3 (instead

of ε ≤ L+|F |4).
(3) As a result of the previous step, the base length of the wedges of type C can

now be chosen as ε

F instead of ε

|F |4 . Furthermore, also in those wedges the
thin boundary material layer from the construction in Proposition 2.2 is re-
moved (so that the material strips across the wedge directly touch the white
region in Figure 2.4). This changes the energy scaling in Proposition 2.2:
The perimeter term is still εNL, but the excess energy contribution from
the boundary layer becomes `2

N |F |
2 log 1

|F | (due to Corollary A.2) so that

the optimal N now is given by `F
√
− log |F |

εL and the excess energy of a

wedge scales like `F
√

εL| log |F ||.

Summarizing, in essence, the new construction has the same effect as if we had
changed the excess energy per unit cell from Figure 2.4 to

∆Jcell ∼ h
w ε

2
√
| log |F ||

F +hw
1
3 F

1
3 ε

2
3 +(F w3

h + εw+ εh) ,

where the summands correspond to the contributions from region C, all other gray
regions, and the white region, respectively. This time, the condition w≥ ε

F suffices
to achieve ∆Jcell(w)∼ 3

√
w5F2ε . Hence, the branching can now be stopped at wN ∼

ε

F with a boundary material layer of width ε

F and energy contribution ∼ ` ε

F , which
does not impair the overall scaling as long as ε ≤ F3. The other two constraints
(w1 ≤ ` and w1 ≥ wN) turn into ε . F`4 and ε . F .
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3 Lower bound by refinement of Hashin–Shtrikman bounds

The Hashin–Shtrikman bounds are bounds on effective elastic moduli of com-
posite materials [14]. In particular they can also be used to bound the compliance
of a mixture of void and material under a given macroscopic stress field. A Fourier-
based discussion in the context of our 2D shape optimization problem can be found
e. g. in [4]. That discussion connects the proof of the bound to the identification of
an optimal rank-two laminate. This connection was used in [2] to show that for a
shear load as considered here, the Hashin-Shtrikman bound is not achieved by any
single-scale periodic composite. We will refine the calculation of [4, 2] to obtain
quantitative estimates of

• the cost associated with a misalignment of the geometry with the two prin-
cipal stress directions (Lemma 3.1),
• the cost associated with a non-optimal material fraction (Lemma 3.1),
• the cost associated with a non-equal distribution of material between the

structural parts supporting either of the two principal stresses (Lemma 3.2),
and
• the cost associated with an unbalanced spatial distribution of the structural

parts supporting either of the two principal stresses (Lemma 3.3).

These estimates will be complemented with

• a Fourier estimate of the geometry perimeter (Lemma 3.5) and
• a Fourier estimate that accounts for the finite size of the geometry and

the fact that a uniform shear load has to be fully supported at the domain
boundary (Lemma 3.4).

Finally, the non-convexity of the space of possible geometries enters via the simple
fact χ ·χ = χ for the characteristic function of the optimal geometry. The preceding
points will be combined into a proof of the lower bound using an argument by
contradiction.

Note that the lower bound for the uniaxial load case from Section 1.2 can be
performed in a similar way [16]. However, that case is much simpler since there is
only one principal stress direction instead of two so that the estimates concerning
the balance between both principal directions are not needed.

3.1 Fourier estimates on compliance, volume, and perimeter
We shall first collect the basic estimates and then combine them into the desired

proof. Let χ : Ω→ {0,1} denote the characteristic function of the optimal geom-
etry O , and let θ = −

∫
Ω

χ dx denote the corresponding material fraction. We adapt
the derivation of the Hashin–Shtrikman bounds from [2] for our purposes. Since
we have Neumann rather than periodic boundary conditions for the equilibrium
displacement, we will perform the calculation in continuous rather than discrete
Fourier space, for which purpose we also require the function

γ = χ−θ ,
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extended to R2 \Ω by zero. Note that the L2-norms of χ and γ can be explicitly
computed,

‖χ‖2
L2(Ω) = `θ , ‖γ‖2

L2(R2) = `θ(1−θ) .

For a function f : R2→ R denote by

f̂ (k) =
∫

R2
f (x)e−2πik·x dx

its Fourier transform (the inverse transform is given by ǧ(k) =
∫
R2 g(x)e2πik·x dx).

Finally, for k ∈ R2 abbreviate k̄ = k
|k| and introduce the set B = {v1,−v1,v2,−v2}

for the two principal directions v1 = 1√
2

(
1
1

)
, v2 = 1√

2

(−1
1

)
of the imposed shear

stress. k̄⊥ shall stand for the counter-clockwise rotation of k̄ by π

2 .
We decompose the stress field into the constant σ̄ and a perturbation η which

has zero normal component on ∂Ω (and which for convenience we extend by zero
outside Ω). Introducing

Σ
0
ad = {η : R2→ R2×2

sym |divη = 0 in R2,η = 0 in R2 \Ω} ,

we can thus rewrite the structure compliance and volume as follows,

CompF,`(O)+Vol(O)(3.1)

= min
η∈Σ0

ad
(σ̄+η)(1−χ)=0 on Ω

∫
Ω

|σ̄ +η |2 + χ dx

≥ limsup
K→0

min
η∈Σ0

ad

∫
Ω

|σ̄ +η |2 + χ +(1−χ)K−1|σ̄ +η |2 dx

= limsup
K→0

min
η∈Σ0

ad

∫
Ω

|σ̄ +η |2 + χ +(1−χ) max
τ∈R2×2

sym

[
2(σ̄ +η) : τ−K|τ|2

]
dx

≥ Vol(Ω)(|σ̄ |2 +θ)+ min
η∈Σ0

ad

∫
Ω

|η |2 +(1−χ)
[
2(σ̄ +η) : τ

]
dx

using Fenchel duality in the second last step and restricting to a fixed, bounded test
field τ in the last step. Note that we have also exploited the fact

(3.2)
∫

Ω

η dx = 0 for all η ∈ Σ
0
ad .

All estimates for the elastic compliance and material volume are now derived by
testing (3.1) with different choices of τ . Note that the test field τ plays a role dual
to the stress field, similarly to a strain. However, we are not restricted to choosing
τ as the strain of a deformation, and we will later make use of this freedom.
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Estimates for material fraction and structure orientation. The simplest choice
of τ is a constant. In that case (3.1) can be further simplified to

CompF,`(O)+Vol(O)(3.3)

≥Vol(Ω)(|σ̄ |2 +2(1−θ)σ̄ : τ +θ)+ min
η∈Σ0

ad

∫
R2
|η |2−2γη : τ dx

≥`(|σ̄ |2 +2(1−θ)σ̄ : τ +θ)+ min
η̂(k)∈R2×2

sym s.t. η̂(k)k=0∀k∈R2

∫
R2
|η̂ |2−2γ̂ η̂ : τ dk

=`(|σ̄ |2 +2(1−θ)σ̄ : τ +θ)−
∫

R2
|γ̂|2|k̄⊥ · τ k̄⊥|2 dk

=`(|σ̄ |2 +2(1−θ)σ̄ : τ +θ −θ(1−θ)max(τ2
1 ,τ2

2 ))

+max(τ2
1 ,τ2

2 )
∫

R2
|γ̂|2
[
1− |k̄⊥·τ k̄⊥|2

max(τ2
1 ,τ2

2 )

]
dk ,

where in the second step we used Parseval’s identity and in the third step we chose
the minimizing η̂ = γ̂(k̄⊥ · τ k̄⊥)k̄⊥⊗ k̄⊥. Here, τ1 and τ2 are the eigenvalues of
τ . To obtain a tight bound, one can maximize in τ (ignoring the non-negative
integral), which leads to an estimate for the elastic excess energy

∆JF,`
elast(O) = Comp(O)+Vol(O)− J∗,F,`

0

with J∗,F,`
0 = 2`|F |(2−|F |).

Lemma 3.1 (Material volume and orientation). For B = {v1,−v1,v2,−v2} with
v1 = 1√

2

(
1
1

)
, v2 = 1√

2

(−1
1

)
we have

∆JF,`
elast(O)≥ ` (2|F |−θ)2

θ
+ 4F2

θ 2

∫
R2
|γ̂|2dist2(k̄,B)dk .

Proof. Upon inserting the maximizing τ = 2σ̄

θ
into (3.3) and subtracting J∗,F,`

0 on
both sides, we obtain

∆JF,`
elast(O)≥ ` (2|F |−θ)2

θ
+ 4F2

θ 2

∫
R2
|γ̂|2
[
1−|k̄⊥ ·

(
0 1
1 0

)
k̄⊥|2

]
dk .

Now the result follows from 1− |k̄⊥ ·
(

0 1
1 0

)
k̄⊥|2 ≥ dist2(k̄,B), which can be seen

by writing k̄ = (cosϕ,sinϕ)T and then noting

1−|k̄⊥ ·
(

0 1
1 0

)
k̄⊥|2 = 1−4sin2

ϕ cos2
ϕ = cos2(2ϕ) = sin2(2ϕ̃) ,

dist2(k̄,B) = (1− cos(ϕ̃))2 + sin2(ϕ̃) = 2(1− cos(ϕ̃)) = 4sin2(ϕ̃)≥ sin2(2ϕ̃)

for ϕ̃ = (ϕ + π

2 )mod π

2 ∈ [0, π

2 ). �

This estimate expresses how much excess energy is paid if the volume fraction
θ deviates from θ = 2|F | or if the Fourier transform of the characteristic function
has support away from the preferred directions ±v1,±v2.
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Separating the two principal directions. Next let us separate the structural com-
ponents which mainly support stress in direction v1 or v2. Let s : S1→{0,1} be the
characteristic function on the unit circle of the upper right and lower left quadrant.
We define

f̂1(k) = s(k̄)γ̂(k) , f̂2(k) = (1− s(k̄))γ̂(k)
and take the inverse Fourier transform to obtain f1, f2 : R2 → R. We would like
to show that f1 and f2 approximately have the same L2-mass. To this end, we test
(3.3) with a constant τ that slightly prefers one direction, i. e., we will perturb τ

from Lemma 3.1 by a strain that cannot be supported by the struts encoded in f2 or
f1, respectively.

Lemma 3.2 (Material distribution between orientations). For i = 1,2 we have

∆JF,`
elast(O)≥ 4F2

θ 2 max(‖ f1‖2
L2 ,‖ f2‖2

L2 )

(
‖ fi‖2

L2− `θ(1−θ)
2

)2
.

Proof. Assume first ‖ f1‖2
L2 ≥ `θ(1−θ)

2 . This time we use (3.3) with

τ =
2σ̄

θ
+

4αF
θ

v2⊗ v2

for some α ∈ [0, 1
3 ]. We obtain

∆JF,`
elast(O)≥ `4F2−4|F |θ+θ 2−8α(1−θ)F2

θ
+ 4F2

θ 2

∫
R2
|γ̂|2
[
1−|k̄⊥ ·

(
α 1−α

1−α α

)
k̄⊥|2

]
dk

≥ ` (2|F |−θ)2−8α(1−θ)F2

θ
+ 4F2

θ 2

∫
R2
| f̂1|2

[
1−|k̄⊥ ·

(
α 1−α

1−α α

)
k̄⊥|2

]
dk

≥−`8α(1−θ)F2

θ
+ 16F2

θ 2 ‖ f̂1‖2
L2(α−α

2) .

Picking the maximizing α = 1
2 −

`θ(1−θ)
4‖ f̂1‖2

L2
(which satisfies 0≤ α ≤ 1

3 ), we obtain

∆JF,`
elast(O)≥ 4F2

θ 2‖ f1‖2
L2

(
‖ f1‖2

L2− `θ(1−θ)
2

)2
.

In the alternative case ‖ f1‖2
L2 < `θ(1−θ)

2 , the relation

‖ f1‖2
L2 +‖ f2‖2

L2 = ‖ f̂1‖2
L2 +‖ f̂2‖2

L2 = ‖γ̂‖2
L2 = ‖γ‖2

L2 = `θ(1−θ)

implies ‖ f2‖2
L2 ≥ `θ(1−θ)

2 . We repeat the above calculation with τ = 2σ̄

θ
− 4αF

θ
v1⊗

v1 and in the end arrive at ∆JF,`
elast(O) ≥ 4F2

θ 2‖ f2‖2
L2

(
‖ f2‖2

L2 − `θ(1−θ)
2

)2. Combining

both cases yields the desired result. �

So far we have estimates expressing that the structure should be composed of
struts aligned with the preferred directions v1 and v2, that the struts in both direc-
tions should have equal material fraction, and that the total material fraction should
be 2|F |. This does not yet rule out a structure in which the domain Ω is e. g. split
into a left and a right half and all the struts in the left are aligned with v1 while all
struts in the right are aligned with v2. An estimate about the spatial distribution of
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the struts in the two directions can be obtained by taking τ piecewise constant. In
particular, we will partition Ω into two regions and take the first and second test
field from Lemma 3.2 in the first and second region, respectively.

Lemma 3.3 (Spatial distribution of orientations). Let χ1,χ2 be the characteristic
functions of Ω1,Ω2 with Ω1∩Ω2 = /0, Ω1∪Ω2 = Ω, and let γi = (χ−1)χi−−

∫
Ω
(χ−

1)χi dx, extended outside Ω by zero. For any α ∈ R we have

∆JF,`
elast(O)≥ `4F2( 1

θ
−1)(1−2α)

− 4F2

θ 2

∫
R2

∣∣∣(γ̂1 + γ̂2)(1−α)k̄⊥ ·
(

0 1
1 0

)
k̄⊥+(γ̂1− γ̂2)α

∣∣∣2 dk .

Proof. This time we test (3.1) with

τ = 2σ̄

θ
− 4αF

θ
(χ1τ1 + χ2τ2) with τ1 =−v2⊗ v2 , τ2 = v1⊗ v1 and some α ∈ R .

Subtracting J∗,F,`
0 = 2`|F |(2−|F |) on both sides of (3.1), we arrive at

∆JF,`
elast(O)≥ Vol(Ω)(4F2−4|F |+θ)+ min

η∈Σ0
ad

∫
Ω

|η |2 +(1−χ)
[
2(σ̄ +η) : τ

]
dx

≥ `4F2(1− 1
θ
)+ min

η∈Σ0
ad

∫
Ω

|η |2+2(1−χ)σ̄ :τ

+2
[
(1−χ)χ1(2σ̄−4αFτ1

θ
)+(1−χ)χ2(2σ̄−4αFτ2

θ
)
]

:η dx

= `4F2(1− 1
θ
)+ `8F2( 1

θ
−1)

− 4αF
θ

∫
Ω

(1−χ)
[
χ2
(

0 F
F 0

)
:
(

1 1
1 1

)
−χ1

(
0 F
F 0

)
:
( 1 −1
−1 1

)]
dx

+ min
η∈Σ0

ad

∫
Ω

|η |2 +2
[
(1−χ)χ1(2σ̄−4αFτ1

θ
)+(1−χ)χ2(2σ̄−4αFτ2

θ
)
]
:η dx

= `4F2(1
θ
−1)(1−2α)+min

η∈Σ0
ad

∫
Ω

|η |2−2[γ1(2σ̄−4αFτ1
θ

)+γ2(2σ̄−4αFτ2
θ

)]:η dx .

Passing to Fourier space we obtain

∆JF,`
elast(O)≥ `4F2( 1

θ
−1)(1−2α)

+ min
η̂(k)∈R2×2

sym s.t. η̂(k)k=0∀k∈R2

∫
R2
|η̂ |2−2[γ̂1(2σ̄−4αFτ1

θ
)+γ̂2(2σ̄−4αFτ2

θ
)]:η̂ dk

= `4F2(1
θ
−1)(1−2α)−

∫
R2

∣∣∣γ̂1k̄⊥·(2σ̄−4αFτ1
θ

)k̄⊥+γ̂2k̄⊥·(2σ̄−4αFτ2
θ

)k̄⊥
∣∣∣2 dk ,

where we chose the minimizing η̂(k) = k̄⊥ ·
[
γ̂1

2σ̄−4αFτ1
θ

+ γ̂2
2σ̄−4αFτ2

θ

]
k̄⊥ k̄⊥⊗ k̄⊥.

Reordering the different terms we arrive at the desired result. �

We will later employ this result for a very particular partition of the domain. In
essence, we will use f1 and f2 to identify regions Ω1 and Ω2 in which mainly struc-
tures along the first and along the second principal direction occur, respectively; Ω1
and Ω2 will then serve as the domain partition.
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Accounting for compactness of O . Next we employ a continuous Fourier ver-
sion of a lemma from [11], which captures the fact that the geometry is confined to
Ω. For g : R→ R with support in the unit interval and a monotonically increasing
function ρ : [0,∞)→ [0,∞), [11] observes that∫

R
ρ(|k|)|ĝ(k)|2 dk ≥

∫
|k|> 1

4

|ĝ(k)|2ρ(|k|)dk ≥ ρ(1
4)
(∫

R
|ĝ|2 dk−

∫
|k|≤ 1

4

|ĝ|2 dk
)

≥ ρ(1
4)
(∫

R
|ĝ|2 dk− 1

2 sup
k
|ĝ(k)|2

)
≥ 1

2 ρ(1
4)
∫

R
|ĝ|2 dk ,

where in the last step we have used |ĝ|2 ≤ ‖g‖2
L2([0,1]) = ‖ĝ‖2

L2(R) by Hölder’s in-
equality. Essentially, this estimate shows that the Fourier transform of a function
with bounded support has a major part of its L2-mass beyond a frequency k of order
1. In our adapted version, the rôle of g is played by

F1γ(k1, ·) =
∫

R
γ(x1, ·)e−2πix1k1 dx1 ,

the Fourier transform of γ in the x1-direction (whose support lies in x2 ∈ [0,1]),
and the function ρ is replaced by an approximation of dist2(k̄,B). Our result is the
following:

Lemma 3.4 (Compact domain estimate). For any b > 0 and i = 1,2 we have

∆JF,`
elast(O)≥ 2F2

θ 2

∫
{k : |k·vi|≤ 1

b}
| f̂i|2 dk

1+32‖γ‖4
L2/(b

∫
{k : |k·vi|≤ 1

b }
| f̂i|2 dk)2

.

Proof. For any a,b > 0 we have

∆JF,`
elast(O)≥ 4F2

θ 2

∫
R2

dist2(k̄,B)|γ̂|2 dk ≥ 4F2

θ 2

∫
R2

(k·v2)2

(k·v2)2+(k·v1)2 | f̂1|2 dk

≥ 4F2

θ 2
1

1+a2/b2

∫
R

∫
{k2 : |k·v2|≥ 1

a ,|k·v1|≤ 1
b}
| f̂1|2 dk2 dk1

≥ 4F2

θ 2
1

1+a2/b2

∫
R

[∫
{k2 : |k·v1|≤ 1

b}
| f̂1|2 dk2− 2

√
2

a sup
k2

| f̂1(k1,k2)|2
]

dk1 .

Now we would like to estimate the square-bracketed term by
∫
R | f̂1|2 dk2 in a simi-

lar manner as in the previous estimate from [11]. However, unlike γ , the support of
f1 is not necessarily bounded so that the supremum in the square-bracketed term
cannot be bounded above by the L2-type term. Hence, let us divide the above
inequality by

Cb =
∫
{k : |k·v1|≤ 1

b}
| f̂1|2 dk

/
‖γ‖2

L2

to obtain

∆JF,`
elast(O)
Cb

≥ 4F2

θ 2
1

1+a2/b2

∫
R

[∫
R
|γ̂|2 dk2− 2

√
2

Cba sup
k2

| f̂1(k1,k2)|2
]

dk1 .
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Choosing a = supk1
4
√

2
Cb

supk2
| f̂1(k1,k2)|2∫

R |γ̂|2 dk2
≤ 4
√

2
Cb

supk1

supk2
|γ̂(k1,k2)|2∫

R |γ̂|2 dk2
≤ 4
√

2
Cb

supk1

‖F1γ(k1,·)‖2
L1

‖F1γ(k1,·)‖2
L2

≤ 4
√

2
Cb

, where the last step follows from the bounded support of F1γ(k1, ·), we fi-
nally arrive at

∆JF,`
elast(O)≥ 2F2

θ 2

Cb‖γ‖2
L2

1+32/(bCb)2 ,

which after inserting Cb yields the desired inequality for f1. The analogous calcu-
lation can be performed for f2. �

Intuitively, if b is chosen small, the above estimate basically turns into a bound

on
∫
{k : |k·vi|≤ 1

b}
| f̂i|2 dk of the form

∫
{k : |k·vi|≤ 1

b}
| f̂i|2 dk . 3

√
∆JF,`

elast(O)/b2.

Perimeter estimate. The perimeter can be estimated in Fourier space as in [15,
Lemma 4.3, step 2]. We reproduce the brief argument for the sake of completeness.

Lemma 3.5 (Perimeter estimate). For any L > 0 we have

Per(O)≥ 1
L

∫
{L|k|≥1}

|γ̂|2 dk .

Proof. For any L > 0,

Per(O)≥ 1
2πL

∫
∂BL(0)

1
|c|
‖γ− γ(·+ c)‖2

L2 dc

=
1

2πL2

∫
∂BL(0)

∫
R2
|γ̂(k)(1− e2πic·k)|2 dk dc

≥ 1
2πL2

∫
{L|k|≥1}

|γ̂(k)|2
∫

∂BL(0)
|1− e2πic·k|2 dcdk ,

where the integral
∫

∂BL(0) |1−e2πic·k|2 dc is greater than L due to L|k| ≥ 1 [15]. �

3.2 Proof of lower bound by contradiction
As a guidance, we may think of the construction from the previous section.

Figure 3.1 shows a sketch of its major features and of what this implies for the
Fourier transform of γ .

Before proceeding to the details, let us introduce some notation. Throughout
this section, O denotes the optimal geometry and is understood to depend on ε

without explicitly indicating this dependence. Likewise, the characteristic function
χ of O and its variants such as γ , f1, f2 also depend on ε . We will use the small
O notation f (ε) = o(g(ε)) to indicate f (ε)

g(ε) →ε→0 0. Furthermore, ∼ shall denote
equality up to a constant factor independent of ε (but potentially depending on `
and F), and similarly, ., & shall denote less than or greater than up to a constant
factor.
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ε

FIGURE 3.1. Left: Zoom into the optimal geometry from Figure 2.1.
Right: Corresponding idealized sketch of the optimal geometry in
Fourier space; the black dots are where we expect the major mass to
be. The gray trapezoids indicate the regions outside which the support is
shown to be negligible.

We shall prove the lower bound by contradiction; assume the excess energy to
be o(

√
ε),

(3.4) Jε,F,`[O]− J∗,F,`
0 = ∆JF,`

elast(O)+ εPer(O) = o(
√

ε) .

A short sketch of the argument is as follows. Using the estimates from the previ-
ous section, we will first show that f̂i, i = 1,2, essentially lie within the wedges
of Figure 3.1 (Proposition 3.7). From this and the fact χ̂ = χ̂ ∗ χ̂ (which roughly
means that ( f̂1 + f̂2) approximately equals ( f̂1 + f̂2)∗( f̂1 + f̂2)) we infer that f̂1 ∗ f̂2
or equivalently f1 f2 has negligible L2-norm (Lemma 3.9; for technical reasons, f1
and f2 are replaced here by approximations g1 and g2). Finally, based on f1 and
f2 we decompose the domain Ω into the region where material struts are more or
less aligned with v1 and the region where struts are aligned with v2. Using these
domains in Lemma 3.3 and also the estimate that f1 f2 ≈ 0 then finally yields a
contradiction.

Specifying all volume fractions. Lemmas 3.1 and 3.2 now provide the L2-mass
of χ , f1, and f2.

Proposition 3.6 (Volume fractions). Under assumption (3.4) and for i = 1,2 we
have

θ = 2|F |+o( 4
√

ε) ,

‖γ‖2
L2 = `2|F |(1−2|F |)+o( 4

√
ε) ,

‖ fi‖2
L2 = `|F |(1−2|F |)+o( 4

√
ε) .

Proof. Lemma 3.1 yields the estimate

∆JF,`
elast(O)≥ ` (2|F |−θ)2

θ
= `2|F |(2|F |

θ
−1)(1− θ

2|F |) ,
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which can be solved for 2|F |
θ

to yield 2|F |
θ

= 1+o( 4
√

ε) and thus the desired estimate
for θ . The second estimate now is a direct consequence of ‖γ‖2

L2 = `θ(1−θ).
Likewise, the estimate from Lemma 3.2,

∆JF,`
elast(O)≥ 4F2

θ 2 max(‖ f1‖2
L2 ,‖ f2‖2

L2 )

(
‖ fi‖2

L2− `θ(1−θ)
2

)2

together with max(‖ f1‖2
L2 ,‖ f2‖2

L2)≤ ‖γ‖2
L2 = `θ(1−θ)∼ 1 and θ ∼ 2|F | implies

‖ fi‖2
L2

` = θ(1−θ)
2 +o( 4

√
ε) ,

which produces the final estimate. �

Localizing the Fourier support of γ . We now use Lemmas 3.1, 3.4, and 3.5 to
show that the Fourier support of f1 and f2 (and thus of γ) is restricted to the wedges
shown in Figure 3.1 (right).

Proposition 3.7 (Fourier support of γ). Under assumption (3.4) and for i = 1,2 we
have ∫

R2\Wi

| f̂i|2 dk = o(1)

for the wedge

Wi =
{

k ∈ R2 : dist(k̄,{±vi}) < 4
√

ε, |k|< 1√
ε
, |k · vi|> 4

4√
ε

}
.

Proof. The estimate from Lemma 3.1 together with Proposition 3.6 implies

∆JF,`
elast(O)≥ 4F2

θ 2

∫
R2
|γ̂|2dist2(k̄,B)dk & ∑

i=1,2

∫
{dist(k̄,{±vi})≥ 4√

ε}

√
ε| f̂i|2 dk

so that the L2-mass of f̂1 and f̂2 outside a wedge of angle 4
√

ε around the preferred
directions must be negligible. Also, Lemma 3.5 for the choice L =

√
ε implies

that the L2-mass of γ̂ and thus f̂1 and f̂2 beyond the frequency 1/
√

ε is negligible.
Finally, γ̂ , f̂1, and f̂2 have negligible L2-mass at frequencies with |k|1 = |k1|+
|k2| < 4/ 4

√
ε . Indeed, assume the opposite, i. e.

∫
{|k|1≤ 4

4√
ε
} | f̂1|2 dk & 1, then the

choice b = 4
√

ε/4 in Lemma 3.4 yields ∆JF,`
elast(O)& 2F2

θ 2 1/[1+32‖γ‖4
L2/b2]∼

√
ε ,

a contradiction. The analogous result holds for f2. �

Note that each bound in the definition of Wi may actually be multiplied by an
arbitrary constant, since only the asymptotic behavior for ε→ 0 is considered. The
above choice, in particular the factor 4 in the last bound, will become clear in the
proof of Lemma 3.9, where it leads to a disjoint Fourier support of a number of
functions.

For later purposes it is convenient to replace f̂1 and f̂2 by approximations ĝ1 and
ĝ2 whose support completely lies in W1 and W2, respectively. If chosen properly,
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these functions enjoy useful boundedness properties as summarized in the subse-
quent proposition. For a compact notation, we also introduce the characteristic
function of Ω,

X(x) =

{
1 if x ∈Ω ,

0 else,

with X̂(k) = `e−2πi 1
2 k·
(

`
1

)
sinc(k1`)sinc(k2).

Proposition 3.8 (Decomposition of γ). Under assumption (3.4), there exist func-
tions g1, g2, and g satisfying, for any p ∈ (1,∞) and a constant C > 0,

χ = θX +g1 +g2 +g ,

supp ĝi ⊂Wi , i = 1,2 ,

‖ f1−g1‖L2 , ‖ f2−g2‖L2 , ‖g‖L2 = o(1) ,

‖g1‖Lp , ‖g2‖Lp , ‖g‖Lp ≤C .

Proof. It is easy to see that the proof of Proposition 3.7 can be modified to show
that f̂1 and f̂2 have negligible L2-mass outside the wedges

W̃i =
{

k ∈ R2 : dist(k̄,{±vi}) < 1
4

4
√

ε, |k|< 1
2
√

ε
, |k · vi|> 8

4√
ε

}
.

We will define ĝ1 and ĝ2 by restricting f̂1 and f̂2 to subsets of W1 and W2. In order
to still have boundedness of the gi in Lp, we will thus have to apply a multiplier
theorem. To this end, for i = 1,2 and m,n ∈ Z consider the sets

Qm,n =
(
(−2m+1,−2m]∪ [2m,2m+1)

)
×
(
(−2n+1,−2n]∪ [2n,2n+1)

)
,

Q̃m,n = 1√
2

(
1 1
−1 1

)
Qm,n ,

Vi =
⋃

Q̃m,n∩W̃i 6=0

Q̃m,n .

We have Vi ⊂Wi. Let us now define g1, g2, and g via

ĝi(k) =

{
f̂i(k) if k ∈Vi

0 else

and γ = χ − θX = g1 + g2 + g. By the Marcinkiewicz Multiplier Theorem [12,
Theorem 5.2.4], for any p ∈ (1,∞) we have

‖g1‖Lp,‖g2‖Lp,‖g‖Lp≤C max(p, 1
p−1)12‖γ‖Lp = C max(p, 1

p−1)12 p
√

(1−θ)θ p+θ(1−θ)p

for a fixed C > 0 (note that the coordinate system has to be rotated by π

4 to apply
[12, Theorem 5.2.4]). Furthermore, by definition, the L2-norms of f1−g1, f2−g2,
and g or equivalently the L2-norms of their Fourier transforms are bounded above
by ‖γ̂‖L2(R2\(W̃1∪W̃2)) = o(1). �
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In the next paragraph we will try to obtain a more explicit characterization of the
functions g1 and g2, using the fact that they essentially represent a decomposition
of the characteristic function χ (or rather of γ).

Exploiting the properties of characteristic functions to characterize the decom-
position of γ . Now we will exploit the fact that χ is a characteristic function, i. e.
χ = χ · χ . By inserting χ = θX + g1 + g2 + g and comparing the supports of the
different terms on either side of χ̂ = χ̂ ∗ χ̂ , we will see that g1g2 is negligible, a fact
which should be wrong intuitively: it is easily conceivable that non-negligible ĝ1
and ĝ2 with support as in Figure 3.1 will not produce negligible ĝ1 ∗ ĝ2. This will
ultimately lead to the desired contradiction.

Lemma 3.9 (Characterization of Fourier decomposition). Under assumption (3.4)
and for g1,g2 from Proposition 3.8 we have

‖g1g2‖L2 = o(1) ,

g2
1 = (1−2θ)g1 +

‖g1‖2
L2

` X +ξ1 ,

g2
2 = (1−2θ)g2 +

‖g2‖2
L2

` X +ξ2

for two functions ξ1 and ξ2 satisfying, with i = 1,2,

‖ξ1 +ξ2‖L2 = o(1) ,∫
R2

ξi dx = 0 ,∫
{k :max(|k·v1|,|k·v2|)≥ 1

4√
ε
}
|ξ̂i|2 dx = o(1) .

Proof. The relation χ̂ = χ̂ ∗ χ̂ implies

χ̂ = χ̂ ∗ χ̂ = 2ĝ∗ χ̂− ĝ∗ ĝ+2θ X̂ ∗ χ̂−θ
2X̂ ∗ X̂−2θ X̂ ∗ ĝ+(ĝ1 + ĝ2)∗ (ĝ1 + ĝ2) .

Using X̂ ∗ X̂ = X̂ , X̂ ∗ χ̂ = χ̂ , ‖ĝ∗ χ̂‖L2 = ‖gχ‖L2 ≤ ‖g‖L2 , ‖ĝ∗ X̂‖L2 = ‖gX‖L2 ≤
‖g‖L2 , and ‖ĝ∗ ĝ‖L2 = ‖g2‖L2 ≤

√
‖g‖L2‖g‖3

L6 .
√
‖g‖L2 , we arrive at

(1−2θ)χ̂ +θ
2X̂ = ĝ1 ∗ ĝ1 + ĝ2 ∗ ĝ2 +2ĝ1 ∗ ĝ2 + r̂

or equivalently

θ(1−θ)X̂ +(1−2θ)(ĝ1 + ĝ2 + ĝ) = ĝ1 ∗ ĝ1 + ĝ2 ∗ ĝ2 +2ĝ1 ∗ ĝ2 + r̂ ,

where the remainder r̂ is o(1) in L2. The basic idea now is the following: All terms
involving g or r can be neglected. Among the remaining terms in the equation,
none intersects the support of ĝ1 ∗ ĝ2, hence no term balances ĝ1 ∗ ĝ2. This implies
that ĝ1 ∗ ĝ2 must also be negligible. Let us proceed to the details:

The supports of ĝi, ĝ j ∗ ĝ j, and ĝ1 ∗ ĝ2 do not intersect for i 6= j. In particular,
supp(ĝ1 ∗ ĝ2)⊂ {k : |k ·v1|, |k ·v2| ≥ 2

4√
ε
} only intersects the support of r̂, ĝ, and X̂
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so that the above equality implies

‖ĝ1 ∗ ĝ2‖2
L2 ≤ 1

2

∫
{k : |k·v1|,|k·v2|≥ 2

4√
ε
}
|(1−2θ)ĝ+θ(1−θ)X̂− r̂|2 dk = o(1) .

To better characterize ĝ1 ∗ ĝ1 and ĝ2 ∗ ĝ2, define the two residual functions ξ1,ξ2
via

ĝ1 ∗ ĝ1 = (1−2θ)ĝ1 +
‖g1‖2

L2
` X̂ + ξ̂1 ,

ĝ2 ∗ ĝ2 = (1−2θ)ĝ2 +
‖g2‖2

L2
` X̂ + ξ̂2 .

The residuals ξ1,ξ2 satisfy∫
R2

ξi dx =
∫

R2
g2

i−(1−2θ)gi−
‖gi‖2

L2
` X dx =−(1−2θ)

∫
R2

gi dx =−(1−2θ)ĝi(0)= 0 ,

‖ξ̂1 + ξ̂2‖L2 = ‖ĝ1 ∗ ĝ1 + ĝ2 ∗ ĝ2− (1−2θ)(ĝ1 + ĝ2)−
‖g1‖2

L2+‖g2‖2
L2

` X̂‖L2

= ‖(1−2θ)ĝ− r̂−2ĝ1 ∗ ĝ2 +(θ(1−θ)−
‖γ−g‖2

L2
` )X̂‖L2 = o(1)

as well as ∫
{k :max(|k·v1|,|k·v2|)≥ 1

4√
ε
}
|ξ̂i|2 dx = o(1) ,

since in the region max(|k ·v1|, |k ·v2|)≥ 1
4√

ε
, the only terms with non-negligible L2-

mass are ĝi ∗ ĝi and (1−2θ)ĝi, i = 1,2, so that in this region ĝi ∗ ĝi−(1−2θ)ĝi = 0
up to an L2 negligible error. �

Remark 3.10. Note that the above information can be used to see that the L4- and
L2-mass of g1 and g2 outside Ω are negligible. Indeed, for i = 1,2 we have

o(1) = ‖g1g2‖2
L2(R2) ≥

∫
R2\Ω

g2
1g2

2 dx =
∫

R2\Ω
g2

i (g
2
i +2gig+g2)dx

= ‖gi‖4
L4(R2\Ω) +

∫
R2\Ω

g2
i (2gig+g2)dx≥ ‖gi‖4

L4(R2\Ω) +2
∫

R2\Ω
g3

i gdx ,

where the integral is bounded in absolute value via Hölder’s inequality by 2‖g‖L2‖gi‖3
L6

≤C‖g‖L2 = o(1), using Proposition 3.8. Also,

‖gi‖2
L2(R2\Ω) ≤ ‖gi‖L4(R2\Ω)‖gi‖

L
4
3 (R2\Ω)

= o(1) ,

again using Proposition 3.8 for the L
4
3 -norm.
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Deriving a contradicting spatial separation of g1 and g2. We would like to bet-
ter understand ξ1 and ξ2. We first change g1 and g2 slightly to make ‖ĝ1 ∗ ĝ2‖L2

exactly zero. To this end, introduce the characteristic functions

χg1(x) =

{
1 if x ∈Ω and |g2(x)|< |g1(x)| ,
0 else,

χg2 = X−χg1 .

Intuitively, χg1 indicates the region in which the struts are roughly aligned with v2
and χg2 the region in which the struts are aligned with v1. Now we can define

G1 = γχg1 , G2 = γχg2 , Ξ1 = ξ1 +g1−G1 , Ξ2 = ξ2 +g2−G2 ,

and we obtain the following characterizations.

Lemma 3.11 (Characterization of domain decomposition). Under assumption (3.4),
letting ≈ denote equality up to a remainder with L2-norm of o(1) we have, for
i = 1,2,

Gi ≈ giχgi ≈ gi ≈ giX ≈ fi

as well as

χ = G1 +G2 +θX ,

G1G2 = 0 ,

Ξi ≈ ξi ,

Ξ1 +Ξ2 ≈ 0 ,

χgi ≈ 1
2 X− 1

θ(1−θ)Ξi .

Proof. gi ≈ giX follows from Remark 3.10. Note that for i = 1,2 and j 6= i we have

‖giχg j‖2
L2 ≤

∫
{x∈Ω : |gi(x)|≤|g j(x)|}

|gi(x)|2 dx≤
∫

Ω

|g1g2|dx≤
√

Vol(Ω)‖g1g2‖L2 = o(1)

from Lemma 3.9. This directly implies

‖gi−giχgi‖L2 ≤‖gi−Xgi‖L2 +‖Xgi−giχgi‖L2 = ‖gi−Xgi‖L2 +‖giχg j‖L2 = o(1) ,

from which we finally obtain

‖gi−Gi‖L2 ≤ ‖gi−giχgi‖L2 +‖g jχgi‖L2 +‖gχgi‖L2 = o(1)

and thus Ξi ≈ ξi as well as Ξ1 +Ξ2 ≈ ξ1 +ξ2 ≈ 0 via Lemma 3.9.
The relations χ = G1 + G2 + θX and G1G2 = 0 follow directly from the defi-

nition of the Gi. This now implies Gi(x) ∈ {−θ ,0,1−θ} for almost all x as well
as {x ∈ R2 : χgi(x) = 0} = {x ∈ R2 : Gi(x) = 0} or equivalently (Gi + θX)(x) ∈
{0,θ ,1} with {x ∈ R2 : χgi(x) = 0} = {x ∈ R2 : (Gi + θX)(x) = θ}. Thus, for
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j 6= i,

χg j = (Gi+θX)−(Gi+θX)2

θ(1−θ) = X + Gi−G2
i−2θGi

θ(1−θ)

= X + gi+ξi−Ξi−G2
i−2θGi

θ(1−θ) = X +
g2

i +2θgi−‖gi‖2
L2 X/`−Ξi−G2

i−2θGi

θ(1−θ)

= (1−
‖gi‖2

L2

`θ(1−θ))X−
Ξi

θ(1−θ) + 2θ(gi−Gi)+g2
i−G2

i
θ(1−θ) ≈ 1

2 X− Ξi
θ(1−θ) ,

using ‖Gi − gi‖L2 = o(1), ‖gi‖2
L2 = ‖ fi‖2

L2 + o(1) = `θ(1−θ)
2 + o(1), and ‖G2

i −
g2

i ‖2
L2 =

∫
R2 |Gi− gi|2|Gi + gi|2 dx ≤ ‖Gi− gi‖L2‖Gi− gi‖L6‖Gi + gi‖2

L6 (where Gi

is bounded and gi is bounded in L6 by Proposition 3.8). �

The previous lemma shows that Ξ1 and Ξ2 or equivalently ξ1 and ξ2 are inti-
mately connected with the characteristic functions χg1 and χg2 . Recall that ξ̂1 and
ξ̂2 are supported at frequencies smaller than 1/ 4

√
ε . In other words, the predomi-

nant length scales of ξ1 and ξ2 and thus of χg1 and χg2 are larger than 4
√

ε , which
itself is the largest significant length scale occuring in χ . This would mean that the
regions with struts supporting stress in direction v1 and struts supporting stress in
direction v2 are spatially separated, which cannot be optimal. To quantify the sub-
optimality, we now finally apply Lemma 3.3 for the two regions indicated by χg1

and χg2 . To this end, let γi = γ̃i−X −
∫

Ω
γ̃i dx for γ̃i = (χ − 1)χgi = Gi− (1−θ)χgi

(recall χ(x) = 0 and χgi(x) = 1⇔ Gi(x) =−θ ) and observe

γi = Gi−(1−θ)χgi−
∫

Ω
Gi−(1−θ)χgi dx

Vol(Ω) X ≈ gi−(1−θ)χgi−
∫

Ω
gi−(1−θ)( X

2−
Ξi

θ(1−θ) )dx
Vol(Ω) X

= gi− (1−θ)(χgi− X
2 )−

∫
Ω

ξi+(gi−Gi)
θ

dx
Vol(Ω) X ≈ gi +(1−θ)(X

2 −χgi)≈ gi + Ξi
θ

,

where ≈ stands for equality up to a function with L2-norm of o(1). Inserting this
relation in Lemma 3.3 now yields

∆JF,`
elast(O)≥ `4F2( 1

θ
−1)(1−2α)

− 4F2

θ 2

∫
R2

∣∣∣ĝ1k̄⊥·
(

α 1−α

1−α α

)
k̄⊥+ ĝ2k̄⊥·

( −α 1−α

1−α −α

)
k̄⊥+(1−θ)α(χ̂g2−χ̂g1)

∣∣∣2 dk+o(1) .

Note that ‖χ̂g1− χ̂g2‖2
L2 = ‖χg1−χg2‖2

L2 = ` and furthermore that ĝ1, ĝ2, and

χ̂g2− χ̂g1 ≈
Ξ1−Ξ2

θ(1−θ)
≈ ξ1−ξ2

θ(1−θ)
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all have different support (up to an L2-negligible overlap, see the definition of gi
and Lemma 3.9). Hence, assuming 0≤ α ≤ 1

3 , we obtain

∆JF,`
elast(O)≥ `4F2( 1

θ
−1)(1−2α)

− 4F2

θ 2

∫
R2
|ĝ1|2(k̄⊥ ·

(
α 1−α

1−α α

)
k̄⊥)2 + |ĝ2|2(k̄⊥ ·

( −α 1−α

1−α −α

)
k̄⊥)2 dk

− 4F2

θ 2 (1−θ)2
α

2‖χ̂g2− χ̂g1‖2
L2 +o(1)

≥ `4F2( 1
θ
−1)(1−2α)− 4F2

θ 2

∫
R2
| f̂1|2(1−2α)2 + | f̂2|2(1−2α)2 dk

− 4F2

θ 2 `(1−θ)2
α

2 +o(1)

= `
4F2

θ 2

[
θ(1−θ)[(1−2α)− (1−2α)2]− (1−θ)2

α
2]+o(1)

∼ `F2(1−2|F |)

after maximizing over 0 ≤ α ≤ 1
3 (note that for α = 0 the square bracket is zero

with positive derivative of order one). This yields the desired contradiction so that
we must have Jε,F,`[O]− J∗,F,`

0 &
√

ε as ε → 0.
So far we have shown that for fixed F and ` there are an ε0 > 0 and a con-

stant C > 0 such that minO⊂Ω Jε,F,`[O]− J∗,F,`
0 ≥ C

√
ε for all ε < ε0. However,

minO⊂Ω Jε,F,`[O]−J∗,F,`
0 is monotonously increasing in ε so that minO⊂Ω Jε,F,`[O]−

J∗,F,`
0 ≥C

√
ε0 for all ε ≥ ε0. Combining both inequalities we arrive at the desired

result, minO⊂Ω Jε,F,`[O]− J∗,F,`
0 ≥C

√
ε0/|F |

√
ε for all ε ≤ |F |.

Appendix: Compliance associated with diffusing a uniaxial stress

Here we provide a detailed compliance estimate for a boundary layer in which
the impact of a localized load diffuses over a larger material area. This estimate is
merely needed for the refined construction in Remark 2.4, which allows to weaken
the conditions on how small ε has to be relative to F for the upper bound on the
energy scaling to hold. The load situation occurring in Remark 2.4 is of the type as
in Figure A.1, right, where a thick material layer is under a uniform stress parallel
to the layer (horizontal in Figure A.1) and is additionally loaded on either side
(here top and bottom) with a stress normal to the layer and localized along a small
segment of length d. The fact that the normal stress is applied locally, instead
of evenly distributed over the whole width, results in an excess compliance (the
compliance for the given d minus that for the case d = w), which is the quantity
needed in Remark 2.4. Now the excess compliance in Figure A.1, right, is bounded
above by twice the excess compliance in Figure A.1, center right, which again can
be reduced to the excess compliance in Figure A.1, left, via Corollary A.2. The
compliance in Figure A.1, left, is estimated in Proposition A.1.

Consider a rectangular piece of material with side lengths w and w
2 , respectively,

loaded as shown in Figure A.1, left. As mentioned above, this load geometry may
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w
2

w

d

x2

x1

F

F w
d

F̃

F

F w
d

Ω Ω

FIGURE A.1. The load geometry considered in Proposition A.1 (left)
can be interpreted as a segment of a larger rectangular geometry over
which the tensile stress diffuses (center left). The same holds for the
load geometry from Corollary A.2 (center right and right).

be thought of as a segment of a larger rectangular domain at both sides of which
a tensile stress is applied in a small region of width d (Figure A.1, center left).
The tensile stress then diffuses over the whole width of the rectangle. Let Σad
denote the set of admissible stresses, i. e. those symmetric tensor fields which are
divergence-free and satisfy the given boundary conditions.

Proposition A.1 (Compliance of stress diffusion). The compliance minσ∈Σad

∫
Ω
|σ |2 dx

of the configuration in Figure A.1, left, is bounded above by w2F2

2 (1+ π

2 ln w
d ).

Proof. It suffices to provide an admissible stress field σ or, via the identification
σ =

(
∂22φ −∂12φ

−∂21φ ∂11φ

)
, a corresponding Airy stress function φ . Note that for d = w,

the equilibrium stress is described by the Airy stress function

φ
w(x1,x2) = F x2

1
2 .

Similarly, an Airy stress function describing a uniform tensile stress within a ver-
tical strip of width d < w is given by

φ̃(x1,x2) =

{
F w

d
x2

1
2 if |x1| ≤ d

2 ,
Fw
2 (|x1|− d

4 ) else.

Now an Airy stress function admissible for the load configuration in Figure A.1 left

can be constructed (abbreviating r =
√

x2
1 + x2

2) as

φ
d(x1,x2) = φ

w(x1,x2)+

{
φ̃(r,0)−φ w(r,0) if r ≤ w

2 ,

φ̃(w
2 ,0)−φ w(w

2 ,0) else.

This yields the stress field

σ
d(x1,x2) =

(
0 0
0 F

)
+


F(w

d −1)I if r ≤ d
2 ,

−FI + Fw
2r (I− e⊥r ⊗ e⊥r ) if d

2 ≤ r ≤ w
2 ,

0 else,
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with e⊥r = (−sinϕ,cosϕ), where (x1,x2) = (r cosϕ,r sinϕ). We can thus bound
the compliance above by∫ w

2

x1=−w
2

∫ w
2

x2=0
|σd |2 dx2dx1 =π

2 (d
2 )2F2((w

d −1)2 +(w
d )2)+ (w2

2 −
π

2 (w
2 )2)F2

+
∫ w

2

r= d
2

∫
π

ϕ=0

∣∣∣(−F+ Fw
2r (1−sin2

ϕ) Fw
2r sinϕ cosϕ

Fw
2r sinϕ cosϕ

Fw
2r (1−cos2 ϕ)

)∣∣∣2 r dϕdr

=π

2 (d
2 )2F2((w

d −1)2 +(w
d )2)+ (w2

2 −
π

2 (w
2 )2)F2

+
∫ w/2

r=d/2

∫
π

ϕ=0

[
(Fw

2r )2 +F2− F2w
r cos2

ϕ

]
r dϕdr

=w2F2

2 (1+ π

2 ln w
d ) .

�

The previous proposition says that if the load at the bottom is concentrated in
a region of width d, then the excess compliance over the situation of a uniform
stress distribution (i. e. d = w) is bounded by π

4 w2F2 ln w
d . This stays true even if an

additional horizontal load is applied on the left and right boundary as in Figure A.1
right.

Corollary A.2. The compliance minσ∈Σad

∫
Ω
|σ |2 dx of the configuration in Fig-

ure A.1, right, is bounded above by w2

2 (F̃2 +F2 +F2 π

2 ln w
d ).

Proof. We decompose the equilibrium stress field according to σ̃ + σ with σ̃ =(
F̃ 0
0 0

)
so that σ must be the equilibrium stress field for the configuration from

Proposition A.1. Now the compliance is given by∫
Ω

|σ̃ +σ |2 dx =
∫

Ω

|σ̃ |2 dx+
∫

Ω

|σ |2 dx+2
∫

Ω

tr(σT
σ̃)dx .

The first term is w2

2 F̃2, the second is bounded by Proposition A.1, and the third is
zero since σ satisfies∫ w/2

−w/2 σ(x1,x2)
(

0
1

)
dx1 =

(
0

Fw

)
∀x2 ∈ [0, w

2 ] ,∫ w/2
0 σ(x1,x2)

(
1
0

)
dx2 =

(
0
0

)
∀x1 ∈ [−w

2 , w
2 ]

so that
∫

Ω
σ dx = Vol(Ω)

(
0 0
0 F

)
. �
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