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Abstract

In a thin-film ferromagnet, the leading-order behavior of the magnetostatic energy
is a strong shape anistropy, penalizing the out-of-plane component of the magnetiza-
tion distribution. We study the thin-film limit of Landau-Lifshitz-Gilbert dynamics,
when the magnetostatic term is replaced by this local approximation. The limiting
2D effective equation is overdamped, i.e. it has no precession term. Moreover if the
damping coefficient of 3D micromagnetics is a then the damping coefficient of the 2D
effective equation is a + 1/a; thus reducing the damping in 3D can actually increase
the damping of the effective equation. This result was previously shown by Garcia-
Cervera and E using asymptotic analysis; our contribution is a mathematically rigorous
justification.

1 Introduction

Landau-Lifshitz-Gilbert dynamics governs the evolution of magnetization in a ferromagnetic
body. It is a damped Hamiltonian system, describing the combined effect of gyromagnetic
precession and damping.

Our attention is on ferromagnetically soft thin film elements. Such films — made for
example of permalloy — are relatively easy to manufacture. They are used in many devices,
and have been explored at length experimentally and numerically.
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There are three distinct parameters with the dimensions of length, namely

t = the film thickness,
[ = the in-plane diameter, and

w = the exchange length of the ferromagnetic material.

Thus there are two nondimensional parameters,
t . w .
€=7= aspect ratio, d= 7= normalized exchange length,

and a variety of different thin-film regimes [2, 8, 4, 5, 11, 13]. Since the aspect ratio is a small
parameter, it is natural to seek a 2D effective equation, expressing the asymptotic dynamics
in the limit as the aspect ratio tends to 0.

The magnetostatic energy is nonlocal, but in certain parameter regimes its leading-order
behavior is local. We focus on one such regime, namely

elloge| < d* < 1, (1)

and we consider only the simplified problem where the magnetostatic energy is replaced by a
penalization term proportional to [, m2 dzdy. We assume moreover that the nondimensional
Gilbert damping parameter « is of order 1.

This regime — more precisely, a closely related one — was recently addressed by Garcia-
Cervera and E using asymptotic analysis [7]. They showed that the 3D Landau-Lifshitz-
Gilbert (LLG) equation

my=mx H—amx (mx H)

yields a 2D effective equation

1
m, = —(a+ —)m' x (m' x H').
a

Here H = —V,,E is the effective field; 7 is the time-scale of the effective dynamics; and
m' = (my, mg) since the effective equation has mz = 0. We shall review their argument in
Section 2. The conclusion is remarkable: it says that the 3D precessional term m x H gets
converted, in the thin-film limit, to a 2D damping term proportional to 1/a. In particular,
if @ < 1 then a decrease of the 3D damping actually increases the 2D effective damping.
Briefly, the intuition is as follows: in the thin-film limit the energy strongly prefers m to
be in-plane. Precession pushes it out-of-plane, while damping brings it back. Since mg3 ~ 0
these two effects must roughly balance, so precession becomes a damping term.

The goal of the present paper is a rigorous study of this phenomenon. The task is subtle,
because solutions of the LLG equation are not known to be regular. We must deal with weak
solutions, satisfying relatively weak energy-based estimates. This makes it difficult to find
the limit of a nonlinear term like m x H. The resolution of this difficulty uses the specific
form of the equation.

We wish to study the observation of Garcia-Cervera and E in the simplest possible setting.
That is why we study only a simplified problem, where the magnetostatic energy is replaced
with a penalization term proportional to [, mZ. In doing so, we capture the essential physics
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of the regime (1), where exchange energy is dominant and the thin-film-limit does not involve
vortices [11]. It would be interesting to prove similar results for € ~ d? < 1, the scaling
considered in [7]. This problem seems more subtle, however, since the associated thin-film-
limit involves vortices [13].

Our regime is different from the one considered in [2, 4]. Those authors consider the
thin-film limit of LLG when ¢ — 0 with d held fixed, of order 1. In this case the ex-
change and (leading-order) magnetostatic terms interact, i.e. the asymptotic energy looks
like € [,|Vm|? + €[, m3. So the evolution of m is not mainly in-plane, and the effective
equation is entirely different.

2 Motivation and heuristics

This section gives a brief introduction to thin-film micromagnetics, reviews the asymptotic
analysis of Garcia-Cervera and E, and explains why our local approximation to the micro-
magnetic energy captures the essential physics of the regime (1).

2.1 Landau-Lifshitz-Gilbert dynamics

The evolution of the magnetization vector m is described by the Landau-Lifshitz-Gilbert
(LLG) equation
om

E:mxH(m)—amx(mxH(m)) in Q (2)
with boundary condition
%—Z =0 on 0f.

The right side of (2) has two terms: gyromagnetic m X H(m) and damping m X (m X
H(m)). The gyromagnetic term describes the precession induced by the “effective field”
H(m); it can be obtained from quantum-mechanical principles. The damping term is more
phenomenological — in other words, it is not derived from an atomic-scale model — but it
is widely accepted, based on the match between experimental observations and numerical
simulation. The sign convention of the precession term is arbitrary — some authors use
—m X H(m) rather than m x H(m) — since the physics does not distinguish between a right-
handed and left-handed cross-product; the sign of the damping term, however, is essential.
The dimensionless parameter « in front of the damping term is material-dependent, and
usually rather small — on the order of .01-0.1.

The effective field H(m) = —§E/dm is, up to sign, the first-variation of the micromag-
netic energy

Bm)= L [ 1vmP+Q [ om)+ L [V~ [ heiom. @

The four terms are known as the exchange, anisotropy, magnetostatic, and external (or Zee-
man) energies respectively. The domain 2 C R? is the region occupied by the ferromagnet;
m: Q1 — R3 is the direction of magnetization, constrained by

Im(z)] =1 forz e (4)
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and understood to equal 0 outside €2; and h.,; is the external, applied field. The function u,
defined on all R3, is defined by

div(Vu+m) =0 in R3 (5)

in the sense of distributions. Thus the magnetostatic energy is nonlocal in m. Its physical
interpretation involves the long-range interaction of magnetic dipoles; mathematically it can
be viewed as a penalization favoring divm = 0, since Vu is the Helmholtz projection of m
onto gradients. It can be expressed as an integral over () alone, since

/Ra|Vu|2:—/Qm-Vu:/thnd-m,

hind =—Vu

where

is the magnetic field induced by m. The nonlocal character of this term makes it onerous
to evaluate, and a major stumbling block to numerical simulation. For more information on
micromagnetics see [1], [9].

2.2 The analysis of Garcia-Cervera and E

In this section we review the asymptotic analysis done by Garcia-Cervera and E in [7]. They
focus on the regime d? ~ €, where the exchange energy is comparable to the magnetostatic
energy associated with nonzero divm. The distinction between their regime and ours will
be explained in Section 2.3.

When discussing thin films, it is convenient to scale all spatial variables by the in-plane
diameter [ of the film. After this nondimensionalization, the domain of the ferromagnet is
Qe = w x (0,€) where w is the rescaled cross-section and ¢ = ¢/l is the aspect ratio.

We need the leading-order behavior of the magnetostatic energy. To explain it we assume
— for this section only—that m = (my, ma, m3) is independent of the thickness variable. (Our
rigorous analysis, presented in Section 3, makes no such hypothesis.) Then the magnetostatic
energy can be written as

[vul =e [ ST R () dn + e [ mdEn)dn %)

B |nf?

A

where m' = (mq, m3), f is the Fourier transform of f, and

£ (jnl)) = L= czp(=2melnl)

2me|n|

(This formula is well-known; a brief derivation can be found in Appendix B of [11].)
If the magnetization is smooth enough (specifically: if its Fourier transform lives pre-
dominantly at || < 1) then the leading-order behavior of each term in (6) is

)2
/RS|VU|2%7TGQ/RQ(77|:|1)d77+e/szn§d77. (7)
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With this approximation the full micromagnetic energy becomes

2

_ % 1,12 e (n - v')? € 2
E'(m)—7/w|Vm| +Q6‘/w¢(m)+7 R2|17|d77+2/wm3_6/wh‘31tm (8)

If we assume d2 = ed?, Q = €Q?, heys = €hegr then the exchange, anisotropy, nonlocal, and
applied-field terms interact, while the term [, m?2 is more singular. So m3 should be small
compared to m/, specifically ms = erms. Rescaling time by ¢ = et and the effective field by
H = eH, the LLG equation with the simplified magnetostatic energy (7) becomes

P . . . . .
€ ggl = —*mgHy + emyHs + a(eHy — e(m' - H)my — é®imzHym,)
omsy . > 2 ~ 7 % 1Ty 2~ 7]
€ (9t~ = —emng +e€ m3H1 + a(eH2 — e(m -H )m2 — € mgHgmg)
26T7L3 _ 7 7 r7 20, 1 TTN\A 3~ IT .~
(9t~ = —emng + emng + a(eH3 — € (m -H )m3 — € m3H3m3)

After collecting the leading order terms and assuming € < a we have

~ 1 ~ ~
H3 = a(m2Hl - m1H2)
om, . Jag H "
5 Mmooty + a( 1— (m . )ml) (9)
8 ~ ~ ~
ggz = —m1H3 + Ol(HQ - (ml : Hl)m2) (10)

Obviously |m’| = 1 to leading order, so we have
1] 1 - 1ot
m2H3 = a(Hl — (m -H )ml)
1 - 1!
Plugging this back to (9) and (10) we obtain

miHz =

’ 1 5
aantf = —(a+ a)m' X (m'x H(m')) inw
where H(m') = — ff, and
. 42 - T (n - /)2 -
n_ % 12 ! " _ o)
By = [1Vm +@ [ o0m) + 5 [ S dn = [ et ()

Thus the gyroscopic term becomes, in this thin-film-limit, a damping term proportional to
1/a.

What happened? The main point is that the energy associated with nonzero ms is more
singular than the other terms. So m3z &~ 0 and m ~ (m',0). Therefore (to summarize the
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argument less formally, but perhaps more transparently) the out-of-plane component of LLG
gives
Or(mxH)z—a(mx (mx H))s~ (H,m' )+ aH;

where m/, = (—mga, m). In other words, Hz ~ —(H’,m/,). It follows that

(mx H) =~ m' x Hzes

~ —Hym,

1
~ Lmom,
1
~ a(H' — (H',m")ym/)
1
~ ——m' x (m' x H').
o

Thus the in-plane gyroscopic term is asymptotically a damping term.

2.3 Alternative regimes

In writing (7) as an approximation of the magnetostatic energy, we assumed that m’ was
sufficiently smooth. This assumption fails if m' - n’ # 0 at dw, since in this case m' has a
jump discontinuity across the boundary and divm’ has a singular contribution at dw. The
associated energy scales like €?|log €| times the boundary integral of (m'-n')? [4, 11]. If we
include this term, then (8) becomes

d’e 1,12 e 2
B(m) = 5 [ 19'mf*+ Qe [ ¢(m) + SI1(divm)smooinlf-v2

21
-I-i6 |4(;g6| /(9w(m'-n')2+%/wmg—e/whewt-m.

The scaling of the anisotropy and Zeeman terms can be adjusted by letting ) and hy;
depend on e. But the other four terms have no free parameters. When we choose to focus on
a specific regime, we are effectively choosing which of these terms are important, and which
are negligible.

Garcia-Cervera and E take d> ~ ¢. In this case the terms involving [, m3 and [, (m' -n’)?
appear to become constraints, leaving the terms involving |Vm/|? and divm as leading-order
terms. But this cannot be quite right: if w is simply-connected then there is no magnetization
distribution satisfying m3 = 0, m’ -n’ = 0 and [, |Vm|? < co. Instead, m should develop
vortices, and they should carry the leading-order contribution to the energy. Rigorous results
are just beginning to emerge concerning energy minimization in this regime [13]. We expect
— by analogy with other problems involving vortices (see e.g. [12, 10, 14]) — that rigorous
analysis of the dynamics will be a fairly subtle matter.

But the conversion of the gyroscopic term to a damping term has nothing to do with
with vortices. Rather, what matters is that the term involving [, m3 act asymptotically as a
constraint. Our regime ¢|loge| < d? < 1 has this property, without any incentive for vortex
formation. Indeed, since ¢|loge| < d?, the terms involving divm and m' - n' are negligible



compared to exchange energy, so they can safely be ignored. But since d?> < 1, the term
involving m3 is still singular, becoming asymptotically a constraint.

Let us take d2 = 6d%, Q = 0Q, and hegt = Ohezr. Then our regime corresponds to
elloge|] < 6 < 1. Droppmg the terms that should be negligible, we see that the energy
divided by €d is equivalent at leading order to

T [ 19w+ [ om) + o [ 3= [ B

(with no condition that m’-n' vanish at Ow). As we shall prove in the next section, the thin-
film limit of LLG with this choice of energy has the expected behavior: the gyromagnetic
term becomes, in the limit, a damping term with coefficient 1/a.

3 Rigorous analysis

We assume for simplicity that d = 1, Q = 0 and hey; = 0. It is easier to deal with a fixed
domain, so we rescale 0, = w x (0,¢€) in the z direction, working instead on the domain
2 =w x (0,1). For the reasons explained above, we work with the (normalized) energy

/ Viml 212/ 6z 26/

We will investigate the Landau-Lifshitz-Gilbert dynamics associated with this micromagnetic
energy. Note that we no longer require m to be independent of z. The same analysis may
be carried out for the full micromagnetic energy (3) in the regime under consideration.

It is well-known that the Landau-Lifshitz-Gilbert equation (2) can be written in the
equivalent form

€ = (14 a®)me x H(m,); (12)

n om

am,

ot ot

this version is more convenient for our analysis. The boundary and initial conditions are
Ome __

me(0,z) = ge(z)

Here Q = w x (0,1), m. : Q — S? and g.(z) is a suitable initial condition. The effective
field H(m.) = —6E/ém, is

(13)

H(m,) =A'm.+ =
€
where Pym,. = (m¢)se3. We are interested in passing to the limit as €,6 — 0.

Theorem 1 Consider the solution m. of (12)-(13), with initial data g. € H*(Q,S?), such
that E.(g.) < C and g — g weakly in (H'())3. As € and § tend to 0, there exists a
sequence (also denoted {m.} for simplicity) and a limit m such that m. — m weak* in



L*(R*; HY(Q; 5?)) and strongly in (L*((0,T) x Q))

, 3. Moreover m = m(z,y), mz = 0 and
m satisfies
0 1
8_7? —(a+ a)m X (mxAm) inw (14)
with boundary and initial conditions
%—m =0 onow
" (15)
m(0,z) = g(z).

Proof. By the results of Alouges and Soyer [3] (see also Carbou [4]) we have the existence
of weak solutions satisfying

8me
0+ [ 15 < B

om 1
! 6 - P. 2
0= [ IVmPO) + 5 [15<160) + 5 [ 1Pm)

Since E.(0) < C we obtain

where

IVme]| poo(rtr2()) < C
om.
|| az ||Loo R+L2 Q) S CG

om,
| ot |2 (r+xa) < C

| Pyme| poo(r+,n2()) < CV.
Hence we have, for a subsequence,

me —*m  weakly in L®(RT, (H'(Q))?)
me —m in (L*([0,T] x Q))? for any T > 0
om,

P —0 in L®(R*Y,(L*(Q))%)

Pym.— 0 in L®(R",(L*(Q))?)
om. om

5% " o weakly in (L*([0,T] x ))? for any T > 0.

It follows that
me—m  in (LP([0,T] x Q))® for any p > 1 and any T > 0
me—m ae (r,t) € RT x Q
6m€,3

ot

Vme,g -0

and m.(0) — m(0) weakly in (L?*(Q))3

weakly in L*([0, 7] x ) and any T > 0

weakly in L2([0,T] x Q) and any T > 0.



We conclude, in particular, that
m| =1, m3=0, m=m(z,y), m(0)=g.

Obviously, from energy estimate on g. and convergence of g, to g we have g3 =0, g = g(z,y)
and |g| = 1. From the above estimates and convergence results we see that there are two
main difficulties in passing to the limit:

&me. and

e the absence of a bound on 612 52

e the absence of a bound on %P;;me.

The first difficulty is relatively easy to deal with: in the following argument, all test functions
¢ will be independent of z. To overcome the second difficulty we will show that even without
control of ™22 we still have a bound on m, x "?(f)e 2. this permits passage to the limit in
the equations. Then, using the structure of the equations we will can find an expression for

the limit of m, x m;(‘)e % in terms of the limiting magnetization m.

Let’s multiply the equations by ¢ € (C*(wr))? (here wy = w x [0,7T]). Integrating over
Qr =Q x [0,T] we get

0mE om, B
o ¢+a/ meX Gy 9=
8m6 6¢ 6me 8¢
—(1 2 22— € - ) € a_ € P. €’ -
( +a )[ z—l/QT(m X 8.’171) 81:1 + 62(m X 92 ) 92 + 5m X I3m, (ZS]

Taking the limit as € — 0 we obtain

om om o\ 2 om 8¢
) 1
—(1+a”)lim o 5Me X Pyme - ¢ = wTA )

for some distribution A.

We see that for A, = [} $me x Pym, we have | [, A ¢| < C|||| g1 (uy) for any € > 0 and
any ¢ € (C*(wr))®. Hence by the density of this space in (H'(wr))® we obtain | [, Ac-¢| <
C||¢|| 1 (wy) for any € > 0 and any ¢ € (H'(wr))?. Therefore Ac — A in the dual space of
H'(wr))?® and [, A- ¢ makes sense for any ¢ € (H'(wr))?.

Our plan is to show that A = m X e3 for some scalar-valued 3, then to evaluate 3. Let
us briefly explain why we must proceed this way. As e — 0 we have no control over the term
—Pg,m6 (since our a priori estimates do not bound it in any space). As a consequence we are
not allowed to say that 1 $Me X Pyme —> m x H for some H. However we may recover this
statement by proving that —(1+« ) ime x Psmedz — A and A = Bm x e3 for some f.
This is what we are doing below.

First we show that A is orthogonal to e3. Consider the choice ¢ = ez with ¥ € C*®(wr).
It satisfies

)

/ me X Psm, - e3yp =0 for all € > 0,
Qr

SO

, 1
0=—(1+0?lim [ §mex Pomeex = /MTA-eg,Q/) for all 4.
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It follows that A - e3 = 0.
Now we show that A is orthogonal to m. Consider the choice ¢ = my with ¢ € C®(wr).
This is admissible, since m € (H'(wr))3. Using test functions of this form, we easily obtain

A-mayp =0 for any ¢ € C*°(wr).
Therefore A is orthogonal to m.
Since e3, m and m x e form an orthonormal basis in R?® at almost all points (z,t), we
conclude that A = 8m x e3. Let us find 3. Since m x ez € (H'(wr))® we obtain

om om _— om, 0O(m x e3)y
- -(mxe;:,)gb—l—a/wq’mx oy (mxe)+(1+a )Eizl/w(mx 8361‘)-76%
=/ By
From this equation we obtain
om
/LUT(E Xm)'€3¢—/wT5¢
and hence 8 = (2% x m) - e3.
Now we have
om om 2\ 2 om, 0¢
o eraf mxy ok ety [ mx Gy o=
om
= wT[(E x m) - es](m X e3) - ¢
and hence for any ¢ € H*(wr)
aml o 6m1 6m2
o OtV /wT ma( gy ma = T Y
3m2 - 8m1 amQ
o 0t V7 _/wT m(gy me = gy MY

0 0
[ o= s =~ [ 0 -

Taking 1 = ma¢, ¢ € C°°(wr) in the third equation, ¢ = ¢ in first equation, we obtain

0 1
. % =—(a+ a) /WT ma(miAmy — maAmy)o.
On the other hand, for any ¢ € C*®°(wy) we may take ¢y = my¢ in the third equation and
1 = ¢ in the second equation; this gives

0 1
%¢ = (a+ a) /wT mi(miAmy — meAmy)o.

wr

It follows that 5 1
8—7? :—(a—i-a)mx (m x Am)

in the sense of distributions. This completes the proof.
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4 Conclusion

We have studied a simplified model of micromagnetic dynamics, which captures the essential
physics of a ferromagnetic thin film in the regime ¢|loge| < d?> < 1. We proved that for
this model, the gyromagnetic term of the 3D Landau-Lifshitz-Gilbert equation acts asymp-
totically as an additional damping term for the in-plane components of the magnetization.
The effective equation is overdamped, with viscosity coefficient o + (1/«). In particular, if
a < 1 then a decrease of the 3D damping actually increases the 2D effective damping.
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