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Abstract

A classicdynamic asset allocation problemoptimizes the expected final-time utility of
wealth, for an individual who can invest in a risky stock and a risk-free bond, trading con-
tinuously in time. This problem was solved by Merton in 1969. Recently, several authors
considered the correspondingstatic asset allocation problemin which the individual cannot
trade but can invest in options as well as the underlying. The optimal static strategy can never
do better than the optimal dynamic one. Surprisingly, however, for some market models the
two approaches are equivalent. When this happens the static strategy is clearly preferable,
since it avoids transaction costs. This paper examines the question: when, exactly, are the
static and dynamic approaches equivalent? We give an easily-tested necessary and sufficient
condition, and many nontrivial examples. Our analysis assumes that the stock follows a scalar
diffusion process, and uses the completeness of the resulting market model.

1 Introduction

The optimization of asset allocation is a central task of modern finance. A classic model is the

Dynamic Asset Allocation Problem: Consider an individual who can invest in a risky stock and
a risk-free bond, trading continuously in time. Suppose the stock price follows a known diffusion
processdS = µ(S, t)S dt + σ(S, t)S dw, and assume there is no consumption. What trading
strategy optimizes the investor’s expected final-time utility of wealth?

Merton found the answer in 1969, using the method of dynamic programming[21, 22]. Pliska and
Cox & Huang gave an alternative route to the same answer in the 80’s using the martingale method
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[5, 25]. The ideas in these papers have been very influential, giving rise to a huge literature; see
e.g. [18]. Recently two important papers [3, 12] considered the corresponding

Static Asset Allocation Problem: Consider an individual whose investment opportunities include
not only a risk-free bond and a risky stock, but also (European-style) derivatives on the stock.
However this individual cannot trade – he is a buy-and-hold investor, who assumes an initial
portfolio then holds it to maturity. What portfolio maximizes his expected final-time utility of
wealth?

The equilibrium-based analysis by Carr and Madan [3] assumes option prices are determined by
a risk-neutral measure. Different investors may have different utility functions, and also different
subjective probability distributions for the final-time price of the stock. Carr and Madan determine
the optimal buy-and-hold portfolio in a wide variety of situations. Their analysis includes both
the “partial equilibrium” problem in which the risk-neutral measure is given, and also the “full
equilibrium” problem in which the risk-neutral measure is determined by the interaction of buy-
and-hold investors with different utilities and expectations.

Our work is closer to the analysis of Haugh and Lo [12], who assume the stock follows a
scalar diffusiondS = µ(S, t)S dt + σ(S, t)S dw. The market is complete, and option prices are
determined by the absence of arbitrage. In this case it is natural to compare the dynamic and static
problems. By completeness, every option can be replicated by a trading strategy involving just the
stock and the risk-free bond. Therefore the optimum achievable by static asset allocation (using
options) cannot be better than the optimum achieved by dynamic asset allocation (without options).
Indeed, thinking dynamically, the static problem maximizes the expected final-time utility over a
restricted class of trading strategies – namely, those that replicate options.

This restricted class of trading strategies is fairly small. Therefore one might expect the static
optimum to be much worse than the dynamic one. Surprisingly, that is not always the case. As
Haugh and Lo point out, it is even possible for the static and dynamic problems to beequivalent.
This occurs whenever the final-time wealth of the optimal dynamic strategy (Merton’s final time
wealth, so to speak; let’s call itWT ) is equal to the payoff of a European option. In other words,
the static and dynamic problems are equivalent precisely whenWT is path-independent, in the
following sense:

Definition 1. WT is path independent if and only if there exists f such thatWt = f(t, St), for
everyt ∈ [0, T ].

This is the case – by direct inspection of Merton’s solution – when the stock price is a geomet-
ric Brownian motion, i.e. whendS = µS dt + σS dw with µ andσ constant.

When the static and dynamic problems are equivalent or nearly so, the static strategy is clearly
preferable. Indeed, it avoids exposure to market frictions such as transaction costs and limited
liquidity. Such frictions were ignored in formulating and solving the dynamic asset allocation
problem, but their effect can be significant in practice. Thus it is natural to ask the

Question: For which market models are the static and dynamic problems equivalent?
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This paper provides the answer. Our results include

(a) a simple necessary and sufficient condition for the problems to be equivalent; and

(b) new families of examples where they are indeed equivalent.

Theorem 1 gives our necessary and sufficient condition. It is easy to test, so the condition per-
mits one to determine, for any given stock price model, whether the associated static and dynamic
problems are equivalent – without having to solve either one. Our condition also shows that equiv-
alence is the exception, not the rule. But such exceptions do occur! We shall show, among other
examples, that if the risk-free rate isr (assumed constant) then the static and dynamic problems
are equivalent

(1) whenµ andσ are functions of time alone with

µ(t)− r

σ2(t)
= constant

(see Section 3.2);

(2) whenσ is constant and

µ = a +
1

(σ2 − 2a)−1 + cS
2a
σ2−1

wherea andc are constants such thatc > 0 and2a < σ2 (see Section 4.3); and

(3) whenµ is constant withµ + r > 0 and

σ =

√
µ + r

a
+ cS−a

wherea > 0 andc ≥ 0 (see Section 4.5).

Our analysis uses the martingale method. The derivation of the necessary and sufficient condi-
tion is relatively easy. Most of the paper is devoted to simplifying that condition in special cases,
and finding examples.

The static problem permits the investor to buy any option. In other words, he can buy an option
with any payoff.This is of course an idealization, since the only options with liquid markets are
puts and calls. The idealization is acceptable, because an arbitrary payoff can be approximated
by a portfolio consisting of puts or calls, stock, and the risk-free bond [1, 3, 11, 24]. For most
payoffs, just a few puts or calls are needed to give a relatively good approximation [4, 12].

When the static and dynamic problems are equivalent or nearly so, we prefer the static strategy
because it avoids exposure to market frictions. When the static optimum is significantly worse,
however, the choice is less clear. Perhaps one could choose by modelling the impact of market
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frictions, for example by considering a version of the dynamic problem that includes the effect of
transaction costs (see e.g. [9]).

But why consider just the static and dynamic strategies? Going beyond the static approach,
it is natural to consider strategies involving just a little trading. For example, we could permit
trading (i) at a well-chosen intermediate time, or (ii) when the stock price hits a well-chosen
threshold. These strategies still limit the investor’s exposure to market frictions. We consider their
optimization in [15, 16].

Our analysis is restricted to stocks that solve diffusion processes. The asset allocation problem
is of course also interesting for other market models – e.g. when the stock price is described by
a stochastic volatility or jump-diffusion model. Then options cannot be replicated, so they are
not redundant for the dynamic investor, and it is natural to include them among the admissible
investments. Two recent papers have considered dynamic asset allocation problems of this type
[2, 20]. It is natural to ask whether the static and dynamic asset allocation problems can be
equivalent in this more general setting. This question is presently open.

We have noted that the static problem amounts to considering the dynamic one with a re-
stricted set of trading strategies: those that replicate options. Thus, asking whether the static and
dynamic problems are equivalent amounts to asking whether the optimal trading strategy happens
to replicate an option. As Merton notes in [23], optimal asset allocation is not the only source of
interesting trading strategies. It is therefore natural to ask: for any given trading strategy, how well
can it be approximated by buying and holding an appropriate option? This problem is entirely
open.

The paper is organized as follows: We begin, in Section2, with a brief review of the martin-
gale approach for solving the dynamic asset allocation problem (which we sometimes refer to as
Merton’s problem). Then, in Section3, we give our necessary and sufficient condition for equiva-
lence. Theorem 1 gives the condition in its most general form, when the driftµ and the volatility
σ are deterministic functions of stock price and time; Theorem 2 examines the special case when
µ andσ are functions oft alone; and Theorem 3 considers the case whenµ andσ are functions of
the stock price alone.

Section 4 looks for examples of market models for which the dynamic and static problems are
equivalent. We find numerous classes of examples, including some in whichµ is constant and
σ = σ(S), and others in whichσ is constant andµ = µ(S). We also give some examples in which
µ andσ are both functions ofS.

For any given market model, it is natural to ask whether the associated static and dynamic
problems are equivalent or not. Theorem 1 provides an easy method for answering this question.
To demonstrate this technique, we show in Section5 that the problems are not equivalent when
the logarithm of the stock proce follows an Ornstein Uhlenbeck process.
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2 The martingale approach

This section establishes basic notation, and reviews the martingale approach to dynamic portfolio
optimization. We’ll be working throughout the paper with just one stock. Its price, denoted byS
follows the It̂o process:

dSt = µ(t, St)St dt + σ(t, St)St dBt,

whereB is a one-dimensional Brownian motion under the subjective measure, andµ andσ are
deterministic functions oft andSt. The initial stock priceS0 is always positive, and we assume
the solution of the SDE satisfies∫ T

0
|µ(t)| dt < ∞

∫ T

0
σ2(t) dt < ∞ (1)

almost surely. For simplicity, we assume throughout the paper that the interest rater is constant.

2.1 Conditions for completeness of the market

Our analysis requires that the market be complete. This places certain conditions onµ andσ, r,
see e.g. Chapter 1 of [14]. The main conditions involve the market price of risk, defined by

θt =
µ(t, St)− r

σ(t, St)
.

It must satisfy ∫ T

0
θ2
t dt < ∞ (2)

almost surely; moreover the associated local martingale

Z0(t) = exp
[
−

∫ t

0
θs dBs −

1
2

∫ t

0
θ2
s ds

]
must be a martingale. A well-known sufficient condition is the Novikov criterion:

E

[
exp

(
1
2

∫ T

0
θ2
t dt

)]
< ∞.

The martingaleZ0 is the density of the risk-neutral measure with respect to the subjective measure.
In particular, the initial value of an option with payofff at timeT is e−rT E[Z0(T )f(S(T ))]. For
a more detailed discussion, and a proof that the preceding conditions imply completeness, see for
example Theorem 6.6 in Chapter 1 of [14].

We shall refer to the conditions summarized above – (1), (2), and the requirement thatZ0 be a
martingale – asthe usual conditions.

Important remark. Throughout this paper,µ andσ have to satisfythe usual conditions.
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2.2 Characterization of the optimal final-time wealth

We noted in the Introduction that the static and dynamic problems are equivalent if and only if
Merton’s final time wealthWT is path-independent. To understand when this happens we need
a representation ofWT . A convenient representation is provided by the martingale approach,
which we now review as it applies to our relatively simple setting (with just one stock and no
consumption).

The state price density. Define the state price density by

H(t) = exp (−rt) ∗ exp
(
−

∫ t

0
θs dBs −

1
2

∫ t

0
θ2
s ds

)
.

As noted above, discounting by this process gives the price of a European option. But we can also
make a stronger statement, and this is crucial to the martingale method: for any time-T -measurable
random variableW , there is a self-financing trading strategy with initial valueE [H(T )W ] that
replicatesW at timeT .

The martingale approach to Merton’s problem. Consider, for any utility functionU , the prob-
lem

max
π

E[U(Wπ(T ))] (3)

whereπ ranges over all admissible (self-financing) trading strategies with fixed initial wealthW0,
andWπ(T ) is the time-T wealth achieved byπ. (See e.g. Definition 5.3 in Chapter 5 of [17] for
a careful discussion, including the definition of an admissible trading strategy.) The martingale
approach splits (3) into two sub-problems:

(1) find the optimal final-time wealth by solving

max
E[H(T )W ]=W0

E[U(W )] (4)

over all time-T -measurable random variablesW ; then

(2) find an admissible trading strategyπ that achieves the optimalW identified in step 1.

Since the market is complete, the second subproblem always has a solution. Therefore to find the
optimal final-time wealth we need only consider the first subproblem.

Finding the optimal final time wealth. Our goal is to find “Merton’s final-time wealthWT ”, the
optimal W for (4). The following argument is informal but entirely correct; for a more careful
treatment see for example Theorem 16 in Chapter 3 of [18].

We use the method of Lagrange multipliers. The Lagrangian corresponding to (4) is

L(W,λ) = E [U(W )− λ (H(T )W −W0)] .
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The optimalW and the Lagrange multiplierλ are characterized by the first order optimality con-
ditions of the Lagrangian. Taking the first variation with respect toλ gives, as usual, the constraint
we started with:

Lλ(W,λ) = W0 − E [H(T )W ] = 0. (5)

Taking the first variation with respect toW gives

〈LW (W,λ), δW 〉 = E
[(

U ′(W )− λH(T )
)
δW

]
= 0, (6)

for every perturbationδW ; this impliesU ′(W ) = λH(T ). There exists a unique solution of
U ′(W ) = λH(T ), namelyW = (U ′)−1(λH(T )). This formula gives the optimalWT . It remains
only to specify the Lagrange multiplierλ; it is determined by (6) since

W0 = E
[
H(T )(U ′)−1(λH(T ))

]
:= F (λ) ⇒ λ = F−1(W0).

In solving forλ, we have used the fact that the inverse ofF exists. One can see that this is true by
taking the derivative ofF with respect toλ, using the fact thatH(T ) is positive and the hypothesis
thatU (being a utility function) is strictly concave. In conclusion: the optimal final time wealth is
given by:

WT = (U ′)−1(F−1(W0)H(T )). (7)

3 Necessary and sufficient conditions for equivalence

This section presents our necessary and sufficient conditions for equivalence of the static and dy-
namic problems. The conditions are applicable to any stock process for which the usual conditions
hold. Our main result is Theorem1, presented in3.1.

When the drift and the volatility depend exclusively on either time or stock price, our condi-
tions simplify considerably. These cases are discussed in Subsections3.2 and3.3 respectively.

3.1 General conditions for equivalence

Our starting point is the (trivial) observation that the static and dynamic problems are equivalent
if and only if Merton’s final-time wealthWT is path-independent. Our goal is thus to understand
when the right hand side of (7) is a path-independent function of the final-time stock priceST

for everyT . By inspection, this amounts to asking when the state price densityH(t) is a path-
independent function ofSt for all t.

It will be convenient to work with the logarithm of the stock price

Pt = ln St.

ClearlyH(t) is a path-independent function ofSt if and only if there exists a deterministic function
g(t, P ) such thatH(t) = g(t, Pt) for all t. The following theorem gives a necessary and sufficient
condition by identifyingg (if it exists) as the solution of a suitable PDE.
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Theorem 1. Assume the market model satisfies the usual conditions summarized in Section 2.1.
Then the static and dynamic problems are equivalent if and only if there exists a functiong(t, Pt)
with g(0, P0) = 0 such that the following relations hold:

µ− r

σ2
= gP (8)

µ− r

σ2

(
−µ− r + σ2

2

)
=

1
2
gPP σ2 + gt. (9)

wheregP = ∂g
∂P , gPP = ∂2g

∂P 2 , andgt = ∂g
∂t .

Proof. Consider

h(t) =
∫ t

0

µ− r

σ
dBs +

1
2

∫ t

0

(
µ− r

σ

)2

ds.

Note thath(0) = 0. From the definition ofh we have

dht =
µ− r

σ
dBt +

1
2

(
µ− r

σ

)2

dt. (10)

As explained above, the static and dynamic problems are equivalent if and only if

h(t) = g(t, Pt) (11)

for some functiong.
Suppose there is such ag. Then we can find an SDE forh by applying It̂o’s lemma to the right

hand side of (11). The SDE forP = ln S is

dPt =
(

µ− σ2

2

)
dt + σ dBt,

so It̂o’s lemma applied tog(t, Pt) gives

dht =
[
gP

(
µ− σ2

2

)
+

1
2
gPP σ2 + gt

]
dt + gP σ dBt. (12)

The SDE associated with a diffusion process is unique, so the corresponding terms in (10) and (12)
must be identical. The condition that the coefficients ofdBt match is precisely (8). The condition
that thedt terms match is

gP

(
µ− σ2

2

)
+

1
2
gPP σ2 + gt =

1
2

(
µ− r

σ

)2

.
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With the aid of (8), we can rewrite this as

µ− r

σ2

(
µ− σ2

2

)
+

1
2
gPP σ2 + gt =

1
2

(
µ− r

σ

)2

,

or equivalently as

1
2
gPP σ2 + gt =

1
2

(
µ− r

σ2

) (
(µ− r)− 2

(
µ− σ2

2

))
.

Thus (9) holds too.
The preceding calculation is reversible. If (8) and (9) hold then the SDE characterizingh is the

same as the one solved byg(t, Pt). If in additiong(0, P0) = 0 then the initial conditions match as
well, and it follows thatht = g(t, Pt) for all t.

Remark. When the static and dynamic problems are equivalent, the proof of Theorem1 gives
a formula for the optimal final-time wealth. Indeed, whenh(T ) = g(T, PT ) we haveH(T ) =
e−rT eg(PT ,T ), so

WT = (U ′)−1(λe−rT eg(PT ,T )).

For many of the examples presented in this paper the functiong has a simple, explicit formula.

3.2 Simplified conditions whenµ and σ depend only ont

Our necessary and sufficient condition simplifies dramatically whenµ andσ depend on time alone.
This leads to a simple, explicit condition for path independence ofWT .

Theorem 2. Suppose the stock price process isdSt = µ(t)Stdt + σ(t)StdBt whereµ andσ are
deterministic functions of time alone. Assume the “usual conditions” hold. Then the static and
dynamic problems are equivalent if and only if

µ(t)− r

σ2(t)
= constant.

Proof. Assume(µ(t) − r)/σ2(t) is constant, and call its valuea. We shall find the associated
solution of (8)-(9) explicitly. Remember that in (8) and (9), the derivatives ofg are taken with
respect toP = ln(S).

From (8) we have thatgP = constant = a which impliesg = aP + c(t). Then from (9) we
have

a

[
−µ

2
+
−r + σ2

2

]
= c′(t) ⇒ a

[
−aσ2 + r

2
+
−r + σ2

2

]
= c′(t)

⇒ c′(t) = a

(
σ2

2
(1− a)− r

)
⇒ c(t) = a

(
σ2

2
(1− a)− r

)
t + constant.
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Using this formula forc, we getg = aP + a

(
σ2

2
(1− a)− r

)
t + constant. Using the initial

conditiong(0, P0) = 0, we find that the constant is−aP0. Thus finally

g =
µ− r

σ2
(P − P0) +

µ− r

σ2

(
−µ− r + σ2

2

)
t.

One verifies by inspection that if(µ(t)−r)/σ2(t) = a then thisg does indeed satisfyg(0, P0) = 0
and our conditions (8) and (9). Thus the static and dynamic problems are equivalent in this case.

Conversely, if the static and dynamic problems are equivalent there must be a functiong which
satisfies (8) and (9). Becauseµ andσ are functions oft alone, (8) implies

g =
µ− r

σ2
P + A(t).

But thengPP = 0 andgt =
(

µ− r

σ2

)′
P + A′(t). Since the left side of (9) depends only ont this

implies that

(
µ− r

σ2

)′
= 0. Thus

µ− r

σ2
is constant, as asserted.

Haugh and Lo observed in [12] that the static and dynamic problems are equivalent when the
stock price process is geometric Brownian motion (with constant drift and volatility). Theorem 2
can be viewed as a generalization of this result.

3.3 Simplified conditions whenµ and σ depend only onS

Our condition also simplifies considerably whenµ andσ depend only on the stock price. The
result is not as dramatic as Theorem 2: we cannot immediately characterize all solutions. But in a
sense the result is richer: there are, in fact, many solutions, as we shall show in Section 4.

Theorem 3. Suppose the stock price isdSt = µ(St)St dt + σ(St)St dBt whereµ and σ are
deterministic functions ofS alone. Assume it satisfies the usual conditions summarized in Section
2.1. Then the static and dynamic problems are equivalent if and only if

(µ− r)− (µ− r)′ + 2(µ− r)
σ′

σ
− µ2 − r2

σ2
= constant, (13)

where the derivatives ofµ andσ are taken with respect toP= lnS.

Proof. If the static and dynamic problems are equivalent then by Theorem1 there exists a function
g which satisfying (8) and (9). We have

µ− r

σ2
= gP ⇒ g(P, t) =

∫ P

P0

µ− r

σ2
dx + g(t, P0).
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The other derivatives ofg can be calculated from this:

gPP =
(µ− r)′σ2 − 2(µ− r)σσ′

σ4
, gt =

∫ P

P0

d

dt

(
µ− r

σ2

)
dx + gt(t, P0)

Sinceµ andσ are functions ofP alone, we conclude thatgt = gt(t, P0). Now (9) gives

µ− r

σ2

[
σ2 − (µ + r)

2

]
=

1
2
(µ− r)′ − (µ− r)

σ′

σ
+ gt(t, P0),

or in other words

gt(P0, t) =
µ− r

2
− µ2 − r2

2σ2
− 1

2
(µ− r)′ + (µ− r)

σ′

σ
=: A(P ).

It follows thatg(t, P0) = A(P )t + constant. Butg(t, P0) cannot depend onP . ThereforeA(P )
must be constant. Using the definition ofA and simplifying a bit, this gives

(µ− r)− (µ− r)′ + 2(µ− r)
σ′

σ
− µ2 − r2

σ2
= constant,

proving the necessity of condition (13).
Conversely, suppose the stock price followsµ = µ(S) andσ = σ(S) satisfy

(µ− r)− (µ− r)′ + 2(µ− r)
σ′

σ
− µ2 − r2

σ2
= c (14)

for some constantc. Consider the function

g(P, t) =
∫ P

P0

µ− r

σ2
dx +

c

2
t.

ObviouslygP = (µ− r)/σ2 so(8) is satisfied. We also have:

gPP =
(µ− r)′σ2 − 2(µ− r)σσ′

σ4
=

(µ− r)′

σ2
− 2(µ− r)σ′

σ3
and gt =

c

2

Combining these formulas with (14) one easily verifies that

µ− r

σ2

[
σ2 − (µ + r)

2

]
=

1
2
σ2gPP + gt,

i.e. (9) holds. We conclude from Theorem 1 that the static and dynamic problems are equivalent
as asserted.
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4 Some examples of equivalence

This section gives examples of market models for which the static and dynamic problems are
equivalent. We focus on the caseµ = µ(S), σ = σ(S), so our main tool is Theorem 3. Our
task is thus to find examples ofµ andσ for which (13) holds. They must also satisfy “the usual
conditions,” i.e. the SDE must have a global-in-time solution and the associated market must be
complete.

We begin with an obvious example, followed by an easy one. Then we turn in Sections 4.3–
4.5 to examples with constant volatility or constant drift. Finally in Section 4.6 we discuss some
examples with nonconstant drift and volatility.

4.1 A trivial example

Whenµ = r, in other words when

dS = rS dt + σ(S, t)S dB, (15)

the static and dynamic problems are equivalent for anyσ = σ(S, t) satisfying the “usual condi-
tions.” This is a consequence of Theorem 1, takingg = 0. Actually it is quite obvious: in this
case the risk-neutral measure is the same as the subjective measure, andθ = 0. Our investor
is risk-neutral, so he has no incentive to invest in stock. Mathematically: the state price density
H(t) = exp(−rt) is a function of time alone. Thus Merton’s final-time wealthWT , given by (7),
is not only path-independent – it is actually a function ofT alone, independent ofST .

4.2 A non-trivial but easy example

The following example is just as easy but less intuitive. The static and dynamic problems are
equivalent whenµ = r + σ2(S, t), in other words when the stock price solves

dS = (r + σ2(S, t))S dt + σ(S, t)S dB, (16)

provided this process satisfies the “usual conditions.” This is the case, for example, ifσ(S, t) is
uniformly positive and bounded, since thenθ = (µ− r)/σ = σ is bounded as well.

Our assertion is an immediate consequence of Theorem 1, with

g(t, P ) = (P − P0)− rt

since thisg satisfies

gP = 1 =
µ− r

σ2
and

1
2
gPP σ2 + gt = −r =

µ− r

σ2

(
−µ− r + σ2

2

)
whenµ = r + σ2.
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4.3 Examples with constant volatility

We now give a large class of examples for whichσ is constant, namely the processes

dS =

 1

(σ2 − 2a)−1 + cS

“
2a
σ2−1

” + a

 S dt + σS dB (17)

wherea and c are constants. We claim that every process of the form (17) gives an example,
provided it satisfies the usual conditions. These conditions impose some restrictions ona andc,
namely

2a < σ2 and c ≥ 0;

the first condition is needed to avoid blowup atS → ∞, the second to make the drift well-
defined for everyS > 0. With these restrictions ona andc, the SDE (17) has the formdS =
µ(S)S dt + σS dB with µ a uniformly bounded function ofS andσ constant. It follows easily
that the usual conditions hold.

The proof that (17) satisfies the conditions of Theorem 3 is a matter of mere algebra. But the
reader will surely wonder how we found this class of examples, and whether there might be others.
To answer these questions, consider the condition of Theorem 3 with constantσ, in other words
the ODE

µ− r − µ′ − µ2 − r2

σ2
= α

whereα is any constant. It is convenient to rewrite this equation as

µ′ +
µ2

σ2
− µ = β (18)

whereβ = −r− α + r2/σ2 is again an arbitrary constant. We shall show that ifβ > −σ2/4 then
every solution of (18) has the form

µ =
1

(σ2 − 2a)−1 + cS

“
2a
σ2−1

” + a (19)

wherea andc are constants. Thus (19) is not the general solution of (18), but rather the most
general solution withβ > −σ2/4.

Equation (18) is a Riccati-type differential equation with constant coefficients. A key property
of Riccati-type equations is that given a single solution, one can find the most general solution
by quadrature [26]. (This fact is elementary, and the application made below is completely self-
contained.) Since (18) has constant coefficients, finding a single solution is easy: it suffices to
look for a constant solution.
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We now implement this program. Fixing the constantβ, we look for a constant solution of
(18) by solving

a2

σ2
− a− β = 0. (20)

The conditionβ > −σ2/4 assures that a solution exists. Actually there are two of them; making
a choice, let

a =
σ2 − σ

√
σ2 + 4β

2
.

Now consider the change of variables

z =
1

µ− a
.

Written as an ODE inz, (20) becomes

−z′ + z

(
2a

σ2
− 1

)
+

1
σ2

= 0.

The general solution is

z = − 1
2a− σ2

+ c exp
((

2a

σ2
− 1

)
P

)
.

Sinceµ = z−1 + a, we are led to (19).

4.4 Examples in the class of CEV processes

A CEV (constant elasticity of variance) process has the form

dSt = µSt dt + σ0S
α+1
t dBt (21)

whereµ > 0 andσ0 > 0 are constants andα < 0, and the initial conditionS0 is positive. Many
authors impose the restriction−1 < α < 0 (see e.g. [6, 7]) but others permitα ≤ −1 (see e.g.
[8]); for our purposes anyα < 0 will do.

We claim that within this class of models, the static and dynamic problems are equivalent if
and only ifµ = r or µ = −r. In particular, we get equivalence when

dSt = rSt dt + σ0S
α+1
t dBt (22)

or
dSt = −rSt dt + σ0S

α+1
t dBt. (23)

The proof is easy. Indeed, for a CEV processµ = constant andσ(S) = σ0S
α = σ0 exp(αP ).

Thereforeµ′ = 0 andσ′ = dσ/dP = ασ0S
α. Thus the necessary and sufficient condition of

Theorem 3 says

(µ− r) + 2(µ− r)α− µ2 − r2

σ2
0S

2α
t

= constant.

14



This is true if and only ifµ2 − r2 = 0, i.e. whenµ = r or µ = −r.
A subtlety arises whenever one considers the CEV process: the stock priceSt can reach0 in

finite time. We take the convention that ifSt reaches0 then it remains equal to0 forever after (the
firm has gone bankrupt). With this convention the associated market model is complete. A proof
can be found for example in [10]; the essential point is thatθ = (µ− r)/σ(S) = (µ− r)σ−1

0 S−α

stays bounded asS → 0 sinceα < 0.
In terms of Feller’s classification of boundary conditions, the situation atS = 0 changes at

α = −1/2 (see e.g. [8]). Indeed, for−1/2 ≤ α < 0 the origin is an exit boundary. For
α < −1/2, on the other hand, the origin is a regular boundary point with a killing boundary
condition (corresponding to bankruptcy).

4.5 Examples with constant drift

We already know some examples with constant drift: any process withµ = r (Section 4.1),
geometric Brownian motion (Section 3.2), and a CEV process withµ = r or µ = −r (Section
4.4). Generalizing the latter two examples, we now show that the static and dynamic problems are
equivalent for any stock process of the form

dS = µS dt +

√
µ + r

a
+ cS−a S dB (24)

with a > 0, c ≥ 0, andµ ≥ −r. Notice that (24) reduces to geometric Brownian motion when
c = 0, and it becomes one of our CEV examples whenµ = −r.

As in Section 4.3, the proof that these processes satisfy the conditions of Theorem 3 is a matter
of mere algebra. But the reader will wonder how we found this example, and whether there might
be others. To answer these questions, consider the condition of Theorem 3 with constantµ, in
other words the ODE

(µ− r) + 2(µ− r)
σ′

σ
− µ2 − r2

σ2
= α

whereα is any constant. With the change of variablef = σ2 this becomes

f ′(µ− r) + f(µ− r − α)− (µ2 − r2) = 0. (25)

Holdingα fixed, this is a linear equation with constant coefficients!
Let’s assume thatα 6= µ − r. (The caseα = µ − r is different and interesting; we address it

at the end of this subsection.) Then the general solution of (25) is

f =
(µ + r)(µ− r)

µ− r − α
+ cS

−µ−r−α
µ−r .

This leads to (24) with the substitutiona = (µ−r−α)/(µ−r). Notice thata 6= 0 sinceα 6= µ−r.

15



Are the static and dynamic problems equivalent for the market associated with (24)? Theorem
3 says yes, provided the SDE has a solution for all time and the associated market is complete.
To avoid explosion asS → ∞ we needa > 0, and to avoid the square root becoming undefined
we needc ≥ 0. The volatility explodes asS → 0 like S−a/2, but this is not a problem. The
situation is similar to case of a CEV process, considered in Section 4.4: we solve the SDE with the
convention that ifSt ever reaches0 then it remains equal to0 forever (the firm has gone bankrupt).
The associated market model is complete, because the market price of risk

θ = (µ− r)/σ(S) =
µ− r√

µ+r
a + cS−a

stays uniformly bounded.
We assumed above that the constantα in (25) was different fromµ − r. The situation when

α = µ− r is surprisingly different. In this case the ODE (25) becomes

f ′(µ− r)− (µ2 − r2) = 0. (26)

The trivial solutionµ = r was considered in Section 4.1. Ifµ 6= r then the general solution of
(26) isf = (µ + r)P + c. Remembering thatP = ln S, this corresponds to the process

dS = µS dt +
√

(µ + r) ln(S) + c S dB. (27)

But now there’s a problem. For our theory to apply, the solution of this SDE must exist for all time
and the market must be complete. We are uncertain whether this is ever true.

There are some choices of the parameters for which (27) has a global-in-time solution. Indeed,
it is sufficient thatµ > r and(µ+r) ln(S0)+c > 0. To explain why, letu = µ+r andP = ln(S),
so the SDE becomes

dS = µS dt +
√

uP + cS dB.

A simple application of It̂o’s lemma gives

dP =
((

µ− c

2

)
− 1

2
uP

)
dt +

√
uP + c dB.

Making the further change of variablesQ = uP + c, applying It̂o’s lemma again, and noticing
thatu > 0 (sinceµ > r ≥ 0) we arrive at the SDE

dQ =
(

uµ− 1
2
uQ

)
dt + u

√
QdB.

Now, from the theory of square root processes (see for example Proposition 6.2.4 [19]),Q does
not reach0 in finite time provideduµ ≥ u2/2. The restrictionµ > r was imposed to make this
true.
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Unfortunately, we do not know whether the restrictions considered in the last paragraph imply
completeness of the market. The answer is not obvious, because the market price of riskθ =
(µ − r)/σ = (µ − r)/

√
Q is not uniformly bounded, since the square-root processQ can get

arbitrarily close to0 (though forµ > r andQ0 = (µ + r) ln(S0) + c > 0 it never reaches0).
Therefore it is not clear (at least, not to us) whether the market model (27) ever satisfies the “usual
conditions.”

4.6 Examples with nonconstant drift and volatility

We have shown the existence of many examples with constant drift or volatility. What about
examples for which bothµ(S) andσ = σ(S) are functions ofS? The processes considered in
Section 4.2 fall in this category. We show here how the method of Section 4.3 can be used to give
additional examples.

Here’s the plan. Recall the necessary and sufficient condition provided by Theorem 3, equation
(13), which we repeat here:

(µ− r)− (µ− r)′ + 2(µ− r)
σ′

σ
− µ2 − r2

σ2
= c (28)

wherec is any constant. Holding the volatility functionσ and the constantc fixed, we can view
this as an ODE to be solved forµ. Since it is a Riccati equation (i.e. it is quadratic inµ), knowing
one solution permits us to find the most general solution by quadrature.

There is one catch: we must know a solution to get started. In Section 4.3 we used a constant
solution. Here we use our “trivial” and “easy” solutions, namely the ones obtained by takingµ = r
andµ = r + σ2. They correspond to different values of the constantc. Turning the crank, we’ll
get expressions for the general solution of the Riccati equation (28) for these two values ofc.

There is also another catch: Theorem 3 applies only if the SDE has a global solution and the
market is complete. This undoubtedly places some restrictions onσ(S). Thus we do not claim
that the static and dynamic problems are equivalent for all the “examples” obtained below. Rather,
we claim that they are equivalent if the associated market is complete.

Examples with c = 0. We observed in Section 4.1 that the static and dynamic problems are
equivalent whenµ = r. Correspondingly, the constant functionµ = r is a solution of (28) with
c = 0. Using this particular solution, we proceed as in Section 4.3 to find the most general solution
of (28) with c = 0. Consider the change of variables

z =
1

µ− r
.

After the substitutionµ = z−1 + r our ODE becomes

1
z

+
z′

z2
+ 2

1
z

σ′

σ
− 1

σ2

1
z

(
1
z

+ 2r

)
= 0 ⇒ z′ + z + 2

σ′

σ
z − 1

σ2
− 2r

σ2
z = 0.
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We thus obtain the following ODE forz:

z′ + z

(
1 + 2

σ′

σ
− 2r

σ2

)
− 1

σ2
= 0.

The general solution is

z =

∫ P
P0

1
σ2(ζ)

exp
(
−

∫ ζ
P0

1− 2r
σ2 + 2 σ

σ′

)
dζ + c1

exp
(
−

∫ P

P0

1− 2r

σ2
+ 2

σ′

σ

) (29)

wherec1 is any constant. The general solution of (28) withc = 0 is µ = z−1 + r, wherez is given
by (29).

Examples with c = −2r. We observed in Section 4.2 that the static and dynamic problems are
equivalent whenµ = r + σ2. Correspondingly, the functionµ = r + σ2 is a solution of (28) with
c = −2r. Using this particular solution, we proceed as above to find the most general solution of
(28) with c = −2r. Let µ0 = r + σ2 and consider the change of variables

z =
1

µ− µ0
=

1
µ− r − σ2

.

After the substitutionsµ = z−1 + r + σ2 andµ′ = −z−2z′ + 2σσ′ the ODE (28) withc = −2r
becomes

1
z

+ σ2 +
z′

z2
− 2σσ′ + 2

(
1
z

+ σ2

)
σ′

σ
−

(
1
z + σ2

) (
1
z + 2r + σ2

)
σ2

= −2r.

This simplifies to the following ODE forz:

z′ − z

(
1 +

2r

σ2
− 2

σ′

σ

)
− 1

σ2
= 0.

The general solution is

z =

∫ P
P0

1
σ2(ζ)

exp
(
−

∫ ζ
P0

1 + 2r
σ2 − 2 σ

σ′

)
dζ + c1

exp
(
−

∫ P
P0

1 + 2r
σ2 − 2σ′

σ

) (30)

wherec1 is any constant. The general solution of (28) withc = −2r is µ = z−1 + r + σ2, where
z is given by (29).
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5 Proving non-equivalence

Theorems 1 and 3 give necessary and sufficient conditions for the static and dynamic problems
to be equivalent. Those conditions are easy to check, making it easy to tell whether equivalence
holds or not for any given stock price model.

To show how this works, let’s demonstrate that whenP = ln(S) solves an Ornstein-Uhlenbeck
process

dPt = −δ(Pt − α) dt + σ dBt (31)

the static and dynamic problems are not equivalent. (This observation is due to Haugh and Lo [12].
They proved it by finding the optimal expected utility in both the static and dynamic settings, and
observing that the answers were different.)

By Itô’s lemma (31) is equivalent to

dSt

St
=

(
−δ(ln(St)− α) +

σ2

2

)
dt + σ dBt.

Therefore the case under consideration is

µ(S) = −δ(ln(S)− α) + σ2/2, σ = constant.

The condition provided by Theorem 3 is

(µ− r)− (µ− r)′ + 2(µ− r)
σ′

σ
− µ2 − r2

σ2
= constant,

where the derivatives are with respect toP = ln S. In the present setting(µ− r)′ is constant and
σ′ vanishes, so the condition becomes

µ− µ2

σ2
= constant.

This is obviously not true, sinceµ is linear inP .

6 Discussion

We have shown that while the static and dynamic asset allocation problems are generically differ-
ent, they coincide in a remarkable number of special cases.

This result is interesting because the static approach avoids transaction costs. Therefore it is
practically superior whenever the two problems are mathematically equivalent or nearly so.

Our method has the unfortunate limitation of giving only a “yes-no” answer. It tells us whether
the problems are equivalent; however if the answer is negative, it gives no information about the
magnitude of the difference. Perhaps with further work such information could be extracted.
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