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Abstract Recent experiments by Chopin and Kudrolli [PRL 111:174302, 2013]
showed that a thin elastic ribbon, when twisted into a helicoid, may wrinkle in
the center. We study this from the perspective of elastic energy minimization,
building on recent work by Chopin, Démery, and Davidovitch [J Elasticity 119,
2015, 137-189] in which they derive a modified von Kármán functional and solve
the relaxed problem. Our main contribution is to show matching upper and lower
bounds for the minimum energy in the small-thickness limit. Along the way, we
show that the displacements must be small where we expect that the ribbon is
helicoidal, and we estimate the wavelength of the wrinkles.

1 Introduction

Consider a thin elastic ribbon, clamped firmly on both ends and twisted into
a helicoid, as seen in Figure 1. A flat sheet is not related to a helicoid by an
isometry, so we need to apply some force on the clamps in order to maintain the
helicoidal shape. It is a curious fact that, for not too extreme values of the force,
the ribbon develops small-scale wrinkles down the center, perpendicular to the
axis of rotation. In fact, a twisted ribbon exhibits a range of morphologies: for
example, if stretched with small enough force the ribbon forms triangular facets
separated by creases, and with large enough force it might not wrinkle at all. In
the present work we focus on the wrinkled ribbon regime.

We approach this system from the perspective of elastic energy minimization.
The starting point of our analysis is a small-slope, small-displacement elastic en-
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Fig. 1: A. E. Green’s sketch of a twisted steel ribbon. First appeared in [19]; now
in the public domain.

ergy functional (Equation 2), which is reminiscent of von Kármán plate theory. In
Theorem 1 we prove matching upper and lower bounds for the minimum energy in
the regime where the non-dimensional thickness h is small. Of course, to prove an
upper bound it suffices to find an ansatz that achieves the desired energy scaling,
but to find a lower bound we need to use an ansatz-free argument.

The idea that we can study pattern formation by proving upper and lower
bounds on an energy functional with a small parameter is not new; see, for in-
stance, [21] for an overview. Similarly, the study of wrinkling as an example of
energy-driven pattern formation has provoked recent interest in both the physics
and mathematics literature. A general feature of these problems is that wrinkling
arises as an energetically preferable alternative to compression [2]. There seem
to be two broad categories: “tensile wrinkling” and “compressive wrinkling.” The
former arises when there is tension in one direction and compression in the other;
the tension determines the direction of the wrinkling, and induces an energetic
preference for small-amplitude wrinkling, see e.g. [9]. In compressive wrinkling, on
the other hand, the wrinkles serve to avoid biaxial compression; examples include
the herringbone pattern seen in a compressed thin film on a compliant substrate
(see e.g. [22] and other work cited therein) and the configuration adopted by a
compressed thin film when it blisters from its substrate (see e.g. [20] [8], as well
as [4] and other work cited therein). In the compressive setting the wrinkling pat-
terns are often not very regular; local minima of the elastic energy can be very
important; and folds or other types of singularities can occur instead of wrinkling
[30].

A growing literature is developing concerning the “scaling law of the elastic
energy” – i.e. its dependence on sheet thickness – for problems involving wrin-
kling. The point is that the scaling law is closely related to the character of the
wrinkling. This viewpoint has been especially fruitful in tensile problems, where
the overall direction of the wrinkling is not in doubt. It has also been explored in
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Fig. 2: Twisted mylar ribbons: experimental results from [11]. Used with permis-
sion.
Top: a wrinkled helicoid.
Bottom: a creased helicoid.

some compressive problems, for example compressed thin film blisters [20] [4] and
the herringbone pattern [22]. However, in other compressive settings the spatial
complexity seen in experiments is not associated with a scaling law, but rather
with local minima, defects, or history, see e.g. [17].

The problem considered in this paper lies more or less at the boundary between
the “tensile” and “compressive” regimes. Indeed, there is no tension in the wrinkled
zone to set the direction of the wrinkles. But the outer part of our twisted ribbon
is in tension, and as a result its configuration is more or less fixed. The rigidity of
the outer part permits us to analyze the wrinkling of the inner part using methods
reminiscent of the tensile setting. Our lower bound on the elastic energy draws
inspiration from a recent paper on metric-driven wrinkling [5]. We note, however,
that the rigidity of the outer part was as assumption in [5], whereas it something
we prove in the present setting.

We remark that besides analysis of the energy scaling law, there are also other
approaches to understanding the local length scale of wrinkling. In particular,
important progress has recently been achieved using a more ansatz-based approach
[27][23], for problems where the macroscopic curvature of the deformed shape plays
an important role.

1.1 Experimental results

There are at least two sets of experiments on the wrinkling of a twisted ribbon;
first in 1936 with steel ribbons [19], and recently with mylar ribbons [11]. Both
experiments clamped the ribbon firmly on both ends, twisted it into a helicoid,
and pulled on the clamps with prescribed force F . For any value of F > 0 the outer
edges are stretched vertically (that is, in the direction of the axis of rotation). For
small enough F the center would be compressed if the ribbon were a helicoid.
We define a ‘critical force’ Fcrit, which determines whether or not the ribbon is
wrinkled; it is the smallest F such that the helicoid is not under compression
anywhere. In this article we are interested in the regime 0 < F < Fcrit. The zones
which would be compressed, if the ribbon were helicoidal, wrinkle instead.

We briefly discuss some of the possible morphologies of a twisted ribbon found
in [11] (see Figure 2). If the clamps on the ends of the ribbon are pushed too close
together then there is no reason for the ribbon to be under tension anywhere (F =
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0), and we have no reason to think that such a deformation is helicoidal. In fact,
the ribbon looks as though it wraps around an imaginary cylinder. Alternatively,
if the clamps are too far apart (F > Fcrit) then the entire ribbon is under tension.
In practice we see either no wrinkles or, if F is very large, ‘transverse buckling’.
We do not have a definitive physical explanation of transverse buckling.1

For small enough force, Chopin and Kudrolli observed that the mylar ribbon
did not wrinkle [11]. Instead, it formed flat, triangular facets separated by creases,
as shown in Figure 2. Informally, we expect that the triangular facets are found in
the regime 0 < F � Fcrit; meaning that to explain the creased ribbon one should
consider at least two small parameters; the thickness h and the force F . A recent
paper modeling this is [24].

1.2 Connections to previous work on the twisted ribbon

Green analyzed the wrinkling of his steel ribbons as a bifurcation from the un-
wrinkled state [19]. Chopin et al. used a quite different approach: they studied the
minimizer of a relaxed energy [10].2 These two techniques differ dramatically in
both the level of detail of their results and their range of validity. The bifurcation
theory approach provides detailed information about the length scale of wrinkling,
but it is only applicable when the sheet thickness is sufficiently large (so F is close
to Fcrit). Minimization of the relaxed energy is appropriate in the opposite “far
from threshold” limit, when the thickness is sufficiently small (so F is well below
Fcrit and a bifurcation-based analysis would have to look deep in the bifurcation
diagram). However the relaxed energy does not provide information about the
length scale of wrinkling; as a result, the analysis of Chopin et al. involves mainly
the macroscopic shape of the ribbon and the extent of the wrinkled zone.

1.3 A summary of the main result

Our approach follows [10]. We seek to minimize the same elastic energy functional,
called E(h) and described in Equation (2), as the thickness h vanishes. In Theo-
rem 1 we show that the excess energy due to positive h scales as h4/3: there are
constants C, C′ such that

E0 + Ch4/3 ≤ minE(h) ≤ E0 + C′h4/3. (1)

Before discussing the significance of Equation (1), we first describe the struc-
ture of E(h). The energy E(h) is taken to be a sum of two terms: the membrane

(or stretching) energy and the bending energy. It is intuitively clear that the bend-
ing energy is small in h: stretching a thin sheet ought to take much more energy
than bending it. On the other hand, the membrane energy alone is non-convex

1 There are at least two candidates. Firstly, this buckling may be related to the Poisson ratio-
driven wrinkling of a stretched but untwisted sheet, as analyzed by Cerda and Mahadevan [9].
Alternatively, these could have to do with the fact that, using a nonlinear energy functional
such as Equation (5), the helicoid is not the relaxed solution. Our model sees neither effect: we
exclude the first by assuming Poisson ratio 0, and the second by using a small-displacement,
small-slope energy functional.

2 This is called tension field theory in the physics literature.
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(more generally, not quasiconvex), so if we ignore the bending energy then there
might not exist a minimizer. The bending energy is convex in the highest-order
derivatives present, so E(h) has a minimizer for any h > 0.3

Chopin et al. [10] identified the constant E0 in Equation (1) by minimizing the
relaxed energy E(0) (we do something similar in Section 2.3). In an appropriate
topology the minimizers of E(h) tend (up to a subsequence) to a minimizer of E(0)

as h tends to 0. Thus minimizing E(0) gives partial information about the mini-
mizers of E(h), which are the objects of interest. This information is important but
incomplete: any features that vanish in the limit h→ 0 are invisible to the relaxed
problem. For instance, it is natural to ask about the wavelength or amplitude of
the wrinkles, and minimizing the relaxed energy cannot easily estimate either of
those quantities. We prove energy scaling laws such as Equation (1) to find more
quantitative bounds (in an Lp sense). For example, in the proof of Proposition 4 we
show that the wrinkles should have amplitude of at most order (minE(h)−E0)1/4

in L2 (Equation 22). The energy scaling law shows us that the wrinkles in fact
have amplitude of at most h1/3.

2 The energy of a twisted ribbon

We will work with a small-displacement, small-slope energy functional, which is
reminiscent of but not identical to the von Kármán energy. Additionally, we con-
sider only isotropic materials with Poisson ratio 0. The key idea is that whereas
von Kármán plate theory considers small-slope deformations of a flat plate, our
analysis considers deformations of the strip whose image is a small-slope pertur-
bation of a helicoid. Recall that in von Kármán plate theory the elastic energy
depends on an in-plane displacement u and an out-of-plane displacement v; in our
setting, the analogous objects are the tangential displacement u and the normal

displacement v.

2.1 An elastic energy functional for a twisted ribbon

We start by making the verbal description of the energy in Section 1 somewhat
more precise. We consider an energy functional of the form

E(h) =

∫
Ω

|M(x)|2 + h2|B(x)|2 dx,

where M and B are symmetric tensors. The physical interpretation is that, if a is a
unit vector, 〈a,M(x)a〉 (respectively, 〈a,B(x)a〉) determine the amount of stretch-
ing (respectively, bending) at a point x and in the direction of a. The Frobenius
norms |M|2 and |B|2 are reasonable, but by no means canonical, measures of the
total amount of bending or stretching at a point. Physically, we have assumed that
the material is isotropic and has Poisson ratio 0.

The ribbon’s energy is given by

E(h)(u, v) =

∫
Ω

|M(u, v)|2 + h2 |B(v)|2 dx (2)

3 Note the similarity to Landau theories: a small but convex term regularizes a non-convex
minimization problem.
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where

M = e(u) +
1

2

(
∂1v

∂2v + ωx1

)⊗2

− 1

2

(
0 ωv

ωv ω2ξ2

)
, (3)

B = ∇∇v +

(
0 ω

ω 0

)
, and (4)

Ω =

(
−1

2
,
1

2

)
× (0, l).

The ribbon is twisted by an amount ω around the x2 axis, and allowed to compress
by an amount 1

2ω
2ξ2. The tangential and normal displacements (from the twisted

and slightly compressed state) are u and v, respectively. We will see that the
ribbon should wrinkle for |x1| < ξ and be flat outside that region.

The tensors M (for membrane) and B (bending) have the standard physical
meaning. We give a non-rigorous derivation in Section 2.2, but in order to convince
the reader that this energy functional is reasonable, we check that several geometric
properties of the helicoid are present.

– A helicoid has negative Gaussian curvature. With v = 0, the Gaussian curva-
ture is det(B) = −ω2.

– A compressed helicoid is described by u = 0, v = 0. This should (for small
enough values of compression) stretch vertical lines on the outside of the
ribbon and compress those on the inside. The membrane term is given by
M = 1

2ω
2
(
x21 − ξ2

)
e(2) ⊗ e(2), which has these properties.

The main result of this work, stated imprecisely in Section 1.3, follows.

Theorem 1 (Energy scaling for a twisted ribbon with small thickness) For

any l > 0, ω > 0 and ξ ∈
(
0, 12

)
there exist constants E0, C and C′ such that for all

h1/3 ≤ 2πl,

E0 + Ch4/3 < min
u,v

E(h)(u, v) < E0 + C′h4/3

where the minimum is over the class

1. u ∈W 1,2(Ω,R2) with u(x1, 0) = u(x1, l) = 0, and

2. v ∈W 2,2(Ω,R2) with v(x1, 0) = v(x1, l) = 0.

Remark 1 (Other asymptotic regimes) The functional E(h) of Equation (2) depends
on the thickness h, twist ω, length l and size of the wrinkled zone ξ. We have
nondimensionalized so that the remaining natural length scale, the width of the
ribbon, is taken to be 1 (and all other lengths, including ω−1, are dimensionless).
In this work we focus our attention on small h, with all other parameters held
constant. The regime where h and 1

2 − ξ are simultaneously small is especially
interesting, but beyond the scope of this work: instead of wrinkling, we believe
that the ribbon can form flat faces connected by creases. See [24] for a physics
paper discussing the creased ribbon.

For the sake of clarity we will bury the dependence on these parameters in
constants in most of our results, but because we expect the dependence of the
lower bound on parameters other than h to be useful in future work we will keep
track of these parameters in the proof of Proposition 3. We will adopt the following
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convention: the implicit constant in a(u, v) . b(u, v) may depend on l, ω and ξ.
The implicit constant in a(u, v) / b(u, v) may depend on only ω.

The energy depends on the twist in a trivial fashion: E
(h)
ω (ω2u, ωv) = ω4E

(h/ω)
1 (u, v).

Here E
(h)
ω is the energy E(h) found in Equation (2), but with the dependence on

the rate of twist ω made explicit.

2.2 The derivation of the energy

The energy E(h) of Equation (2) is not standard. We briefly and informally describe
its origin, following a procedure described verbally in [10]. We emphasize that the
problem has already been non-dimensionalized: the width of the ribbon is 1, and
all variables with units of length are interpreted as length per unit width.

For the sake of brevity we start with a specific nonlinear energy for an elastic
sheet:

I(h) (ϕ) =

∫
Ω

∣∣∣∣√∇ϕ(x)T∇ϕ(x)− Id

∣∣∣∣2 + h2 |IIϕ(x)|2 dx, (5)

where ϕ : Ω → R3 represents the position (as opposed to the displacement) of
the sheet, and IIϕ is the second fundamental form of the surface defined by ϕ. As
in E(h), we call the first term the membrane energy and the second the bending

energy, with the same interpretation. Our derivation does not depend critically on
the exact form of the energy, but the behaviour for ∇ϕ near SO(3) is important:
we have assumed that the elastic stiffness tensor is isotropic and has Poisson ratio
0.

We pause to recall an informal derivation4 of von Kármán’s energy functional
for an elastic plate. Define the displacements u and v by ϕ(x) = (x1+u1, x2+u2, v),
and assume that these have small slope. One can then write down the leading-
order dependence of the membrane and bending terms on u and v, and discard
the higher-order terms to find the von Kármán energy. It is important to note that
we do not assume that u and v are the same order; for instance, the leading order
part of the membrane term is e(u) + 1

2∇v ⊗∇v.
We proceed with our derivation of Equation (2), which is similar in spirit to

the derivation of the von Kármán plate theory outlined above. The key difference
is that we expand around a twisted and slightly compressed helicoid rather than a
flat sheet. We assume from the start that ω is a small parameter, and that v scales
as ω, and that u scales as ω2. Furthermore, we assume that the first and second
derivatives of the displacements u and v scale in the same manner. The thickness
h is also small, but we make no assumptions about the relative sizes of h and ω.

Let
{
r1, r2, r3

}
be a positively oriented orthonormal frame of unit vectors that

depend on x2 through the following rules:

1. r2 is constant,
2. ∂2r

1 = ωr3, and
3. ∂2r

3 = −ωr1.

We consider the energy as a function of displacements from a slightly compressed
helicoid, rather than absolute position. To this end, we define u and v by

ϕ(x) = (x1 + u1)r1(x2) + (ζx2 + u2)r2(x2) + vr3(x2),

4 This is not a proof: for that, see [16] [12].
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where ζ = 1 − 1
2ω

2ξ2 measures the amount by which the ribbon is compressed.
This also depends on ω: we would like a theory in which part of the ribbon (but
not all) is under tension, and therefore almost helicoidal in the lowest-energy state.
If the ribbon is only slightly twisted, then naturally it should also be only slightly
compressed.

The first derivatives of ϕ are given by

∂1ϕ = (1 + ∂1u1)r1 + (∂1u2)r2 + (∂1v)r
3

∂2ϕ = (∂2u1 − ωv)r1 + (ζ + ∂2u2)r2 + (∂2v + ωx1 + ωu1)r3,

so the induced metric is approximated by

∇ϕT∇ϕ = Id +2 e(u) +

(
(∂1v)

2 (∂2v + ωx1)∂1v − ωv
· · · (∂2v + ωx1)2 − ω2ξ2

)
+O(ω4). (6)

We turn to the second fundamental form. The normal is given by

n =
∂1ϕ× ∂2ϕ
|∂1ϕ× ∂2ϕ|

= O(ω)r1 +O(ω)r2 + (1 +O(ω2))r3,

and the second fundamental form (IIϕ)ij = n · ∂ijϕ is approximately

IIϕ = ∇∇v +

(
0 ω

ω 0

)
+O(ω3). (7)

By substituting our approximations of the membrane term (Equation 6) and bend-
ing term (Equation 7) into the nonlinear energy (Equation 5) we see that

I(h)(ϕ) =

∫
Ω

|M|2 + h2|B|2 dx +O(ω6, h2ω4),

which is the small-displacement, small-slope energy E(h), plus a small error.

Finally, we note that both Green [19] and Chopin and Kudrolli [11] clamped
the top and bottom of the ribbon, then twisted the clamps. In the present setting,
this yields boundary data at the top and bottom: u(x1, 0) = u(x1, l) = 0 and
v(x1, 0) = v(x1, l) = 0.

It is reasonable, given that the justification of Equation (2) above is far from
a proof, to ask why we do not work directly with a nonlinear energy. Indeed, the
wrinkling of a thin sheet can be studied from either a fully nonlinear perspective
or in a small-slope framework. Both approaches have advantages: a fully nonlinear
theory is more physically compelling, but the small-slope setting allows us to
describe wrinkling via the same mechanism with simpler arguments. We seek a
better understanding of the physical causes of wrinkling, so we choose the simplest
setting in which these causes are present.
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2.3 The relaxed energy and the identification of E0

An immediate consequence of Theorem 1 is that limh→0 minE(h) = E0. A natural
guess is that we should simply set h = 0 in the definition of E(h) (Equation 2),
and minimize the resulting energy. This is almost correct, but with a wrinkle: the
minimum is not achieved. It is true that E0 = inf E(h=0) subject to the boundary
conditions of Theorem 1, but it is useful to consider an energy functional which
achieves its minimum. This is called the relaxed energy functional, which we denote
by E(h).

It is a familiar physical fact that we can stretch a thin elastic sheet by pulling on
the ends, but we cannot easily compress the sheet by pushing the ends together: the
sheet can avoid large compressive strains by buckling out of plane. This suggests
that, in order to approximate the energy in the limit h→ 0, we consider an energy
functional that penalizes stretching but assigns 0 energy to compression. Thus, we
define the relaxed energy:

E(0) =

∫
Ω

∣∣(M)+
∣∣2 dx. (8)

By (M)+ we mean the the positive semidefinite part of M. Specifically, if M has
eigenvalues λi, then (M)+ has eigenvalues max {0, λi} corresponding to the same
eigenvectors.

It is immediate that E(0)(u, v) ≤ E(h)(u, v) for any u, v and h. This is all
that we need; we use the idea of relaxation in a crucial way, but we do not make
use of the general theory.5 We note for the interested reader that the fact that
E(0) is indeed the relaxation of E(h=0) follows from the analogous fact for the von
Kármán energy functional for an elastic plate ([13] Equation 1.2) and the integral
representation of quasiconvexification ([14] page 424).

Proposition 1 (Minimizing E(0)) The relaxed energy E(0)(u, v) achieves its min-

imum at u = 0, v = 0, where the minimum is taken over all u and v satisfying the

conditions of Theorem 1.

Proof This fact follows from a short computation. The key idea is to apply Jensen’s
Inequality to the integral in x2 alone.

E(0)(u, v) ≥
∫
Ω

(m22(u, v))
2
+ dx

= l

∫ 1/2

−1/2

1

l

∫ l

0

(m22(u, v))
2
+ dx2 dx1

≥ l
∫ 1/2

−1/2

(
1

l

∫ l

0

m22(u, v) dx2

)2

+

dx1

5 For a general introduction to the relaxed energy functional see [14], and for theorems on
the relaxation for a two-dimensional sheet in three dimensions see [25].
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We substitute in m22 = ∂2u2 + 1
2 (∂2v)

2 + ωx1∂2v + 1
2ω

2
(
x21 − ξ2

)
. The ∂2u2 and

∂2v terms vanishes when integrated due to the boundary conditions.

E(0)(u, v) ≥ l
∫ 1/2

−1/2

(
1

l

∫ l

0

1

2
(∂2v)

2 dx2 +
1

2
ω2
(
x21 − ξ2

))2

+

dx1

≥ l
∫ 1/2

−1/2

(
1

2
ω2
(
x21 − ξ2

))2

+

dx1

≥ E(0)(0, 0)

Motivated by this result, we define the minimum energy E0 = E(0)(0, 0) and
the excess energy, defined as

ε(u, v) = E(h)(u, v)− E0. (9)

The fact that E(0) ≤ E(h) and the above proposition show that ε ≥ 0. Note that
Theorem 1 asserts that we can find a deformation that makes ε . h4/3.

Our next task is to characterize ε in a way that is amenable to upper and lower
bounds. For instance, we would like to draw conclusions about u and v given that
ε is small. It is therefore fruitful to write ε as a sum, rather than a difference, of
positive quantities.

Proposition 2 (An expression for the excess energy) For any u and v satisfying

the boundary data of Theorem 1,

ε =

∫
Ω

∣∣∣M(ex)
∣∣∣2 + h2 |B|2 +

1

2
ω2(x21 − ξ2)+ (∂2v)

2 dx (10)

where M(ex) is interpreted as the excess strain, defined by

M(u, v) = M(ex)(u, v) +
1

2
ω2
(
x21 − ξ2

)
+
e(2) ⊗ e(2).

By ‘excess’ strain, we mean the additional strain not accounted for in the minimizer of

the relaxed energy. The quantity is also given by

M(ex) = e(u)+
1

2
∇v⊗∇v+ω sym

(
∇(x1v)⊗ e(2)

)
+

(
0 −ωv
−ωv 1

2ω
2(x21 − ξ2)−

)
. (11)

For scalars x we define (x)+ = max{x, 0} and (x)− = min{x, 0}.

Proof By expanding the membrane term in E(h),

E(h) =

∫
Ω

∣∣∣∣M(ex) +
1

2
ω2
(
x21 − ξ2

)
+
e(2) ⊗ e(2)

∣∣∣∣2 + h2 |B|2 dx

=

∫
Ω

∣∣∣M(ex)
∣∣∣2 + 2

〈
M(ex),

1

2
ω2
(
x21 − ξ2

)
+
e(2) ⊗ e(2)

〉
+

1

4
ω4
(
x21 − ξ2

)2
+

+ h2 |B|2 dx.
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Let a =
∫
Ω

〈
M(ex), 12ω

2
(
x21 − ξ2

)
+
e(2) ⊗ e(2)

〉
dx. Using the boundary data and

the fact that (x)+ (x)− = 0 for any scalar x, we see that

a =

∫
Ω

1

2
ω2
(
x21 − ξ2

)
+

(
∂2u2 +

1

2
(∂2v)

2 + ωx1∂2v +
1

2
ω2
(
x21 − ξ2

)
−

)
dx

=

∫
Ω

1

4
ω2
(
x21 − ξ2

)
+

(∂2v)
2 dx.

The result follows from the above and our expression for E(h).

We would like to use the minimizer of E(0) to understand the minimizers of
E(h), in the limit h → 0. The guiding principle is that, in order to avoid large
compressive strains predicted by the relaxed problem, a thin ribbon can introduce
extra arc length by buckling away from the relaxed solution. In the present setting,
we know that vertical material lines x2 = const are compressed if |x1| < ξ, and
stretched if |x1| > ξ, and so we expect that vertical lines with |x1| < ξ should
buckle away from the helix. The excess strain, evaluated at the relaxed solution
(u, v) = (0, 0), reflects this fact:

M(ex)(0, 0) = −1

2

(
ξ2 − x21

)
+
e2 ⊗ e2,

which we interpret to mean that material lines in the e2 direction need to wrinkle
so as to introduce extra arc length proportional to −1

2

(
ξ2 − x21

)
+

. The ‘extra arc

length’ introduced locally via normal displacement is ∂2u2 + 1
2 (∂2v)

2. Because our
boundary data implies that ∂2u2 is mean 0, we draw conclusions about the mean
value of 1

2 (∂2v)
2.

Lemma 1 (Wasting the correct amount of arc length) Let ε > 0 be defined via

Equation (9), and let (u, v) satisfy the conditions of Theorem 1. The excess energy

ε(u, v) satisfies ∫ 1
2

− 1
2

(∫ l

0

1

2
(∂2v)

2 − ω2

2

(
ξ2 − x21

)
+

dx2

)2

dx1 ≤ εl. (12)

Proof From Equation (10), we see that
∫
Ω

(
m

(ex)
22

)2
dx ≤ ε. The result follows

immediately from Jensen’s Inequality and the boundary conditions of Theorem 1:∫ l
0
∂2u2 dx2 =

∫ l
0
∂2v dx2 = 0.

Experimentally, we see that the ribbon wrinkles in a certain parameter regime.
This is consistent with our discussion, but not an easy consequence of it: there
are many deformations that introduce extra arc length, some of which ‘wrinkle’ in
that they oscillate with a small length scale.

3 The lower bound

This section proves the lower bound found in Theorem 1. This proof has two
parts. Firstly, in Proposition 3 we show that the outside of the ribbon {|x1| > ξ}
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is stretched, which should imply that the excess energy ε controls the size of the
displacements u, v in that region. To explain the idea, we first outline a simple
but unsuccesful attempt. Intuitively, if the displacement (u(x), v(x)) at some point
x1 > ξ is non-zero, then the vertical line connecting the top and the bottom of
the sheet must be stretched. As we will see in the proof of Proposition 3, it is
straightforward to show that ∂2v must be small in L2 (meaning that, on average,
the point cannot be greatly displaced in the normal direction). The idea that
vertical lines are stretched if the displacements are large suggests that we consider
the 22 component of the membrane term. This intuition is partially correct: it
shows that ∂2u2 must be small (meaning that the point cannot be displaced much
in the vertical direction). The major difficulty lies in showing that the point cannot
be displaced horizontally, either: u1 must also be small.

Instead, we consider two diagonal lines connecting the top and the bottom of
the sheet, and that are contained entirely in the zone {|x1| > ξ} under vertical
tension. Let a+ and a− be the tangent vectors for these diagonal lines. The above
argument, using the tension in each of our diagonal directions, gives control on
u · a+ and u · a−. This is sufficient to control u.6

The conclusion of the proof, Proposition 4, is more standard. In the inner
region {|x1| < ξ} the relaxed problem predicts some known, O(1) compression; so

by Lemma 1 we must waste some known amount of arc length:
∫ l
0

(∂2v(x1, x2))
2 dx2

is a known function of x1, up to a small error. Since the displacements near the
edges of the ribbon are small, the membrane term prefers that the amplitude v of
the wrinkles be small, because otherwise horizontal lines across the wrinkles would
be stretched. Conversely, the bending energy penalizes small, rapid wrinkles. The
competition between membrane and bending energy sets the scale of the minimum
energy.

Finally, we remark that this argument makes repeated use of the idea that
stretching lines in the ribbon should cost energy. Of course, we are not in a position
to say much about every material line. The above arguments, more carefully stated,
start with the assumption that the membrane tensor M is small in an Lp sense,
meaning that material lines are not stretched much on average.

Proposition 3 (Rigidity of the outer edges) Let u and v be as in Theorem 1,

and let ε = E(h)(u, v)− E0. There exists some ξ′left ∈
(
−1

2 ,−ξ
)

and ξ′right ∈
(
ξ, 12
)
,

‖v(ξ′, ·)‖L∞ . ε1/2, and (13)∣∣∣∣∣
∫ l

0

u1(ξ′, x2) dx2

∣∣∣∣∣ . ε1/2, (14)

for both ξ′ = ξ′left and ξ′ = ξ′right.

We remind the reader of the distinction between / and . (Remark 1). On first
reading, we suggest treating ξ and l as constants, keeping only the dependence on
h and ε.

Proof Let ξ0 = 1
2

(
ξ + 1

2

)
.

6 This argument is due to M. Strauss [26], who used it to show that control on e(u) in L1

yields control on u.
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Fig. 3: A sketch of Ω±.
Ω+: regions filled with positively sloped diagonal lines (blue online).
Ω−: regions filled with negatively sloped diagonal lines (red online).
Ω0: Two hexagons Ω+ ∩Ω−. Outlined with thick lines (purple online).

From Equation (10) we see that ε ≥ 1
2ω

2(ξ20 − ξ2)
∫
{|x1|>ξ0} (∂2v)

2 dx, so

‖∂2v‖L2({|x1|>ξ0}) ≤
21/2ε1/2

ω (ξ20 − ξ2)
1/2

/
ε1/2(

1
2 − ξ

)1/2 . (15)

We are now able to prove Equation (13), but because we must find some ξ′left and
ξ′right that work for both parts of the proposition we will hold off.

Step 1: control of ∇v. We proceed with the ‘diagonal lines’ argument outlined
at the beginning of this section. Let α = 1

5l

(
1
2 − ξ0

)
, and let a± be a unit vector in

the direction (±α, 1).7 We define the sets Ω+, Ω− and Ω0 = Ω+ ∩Ω− as shown in
Figure 3. Specifically, Ω± are the maximal open sets with the following properties:

– Ω± is the union of two parallelograms in Ω, one of which satisfies x1 ∈
(
−1

2 , ξ
)

and the other x1 ∈
(
ξ, 12
)
, and

– two sides (of each parallelogram) are parallel to a±, and
– the other two sides are contained in the top {x2 = l} and bottom {x2 = 0} of

the ribbon.

The key geometric properties of these definitions follow.

1. Consider some point x with ξ0 < |x1| < 1
2 . This point is in Ω± if and only if

the line segment passing through x, parallel to a± and connecting the top of
the ribbon (x2 = l) with the bottom (x2 = 0) is contained entirely in the outer
region {|x1| > ξ0}.

2. The slope α−1 is large enough that intersection Ω0 contains a rectangle con-
necting the top of the domain to the bottom.

7 In the sequel we will make many statements that hold for both a+ and a−. Any statement
containing ± should be interpreted as two statements, one with ± everywhere replaced with
+, and a similar one with −.
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We are now ready to prove Equation (13). In fact we will choose ξ′left and ξ′right
near the center of the hexagons Ω0, which will help in the proof of Equation (14).
Let ξ1 = ξ0 + 2αl and ξ2 = 1

2 − 2αl. Recalling our control on ∂2v (Equation 15),
we have that ∫ ξ2

ξ1

‖v(x1, ·)‖2L∞(0,l) dx1 ≤ l‖∂2v‖2L2((ξ1,ξ2)×(0,l))

≤ 2εl

ω2 (ξ20 − ξ2)
/

εl
1
2 − ξ0

. ε.

We conclude that there exists some ξ′right ∈ (ξ1, ξ2) such that

‖v(ξ′right, ·)‖L∞ /
ε1/2l1/2

1
2 − ξ

. ε1/2. (16)

Similarly, there is some ξ′left ∈ (−ξ2,−ξ1) such that v(ξ′left, ·) satisfies the same
bounds.

Using Equation (10), we see that

ε ≥
∫
Ω±

〈
a±,M(ex)a±

〉2
dx

so by Jensen’s Inequality∣∣∣Ω±∣∣∣1/2 ε1/2 ≥ ∫
Ω±

〈
a±,M(ex)a±

〉
dx

≥
∫
Ω±

∂±(u · a±) + (a± · e(2))ω∂±(x1v)

− ±2α

1 + α2
ωv +

1

2

(
a± · ∇v

)2
dx

where ∂± = a± · ∇ is the directional derivative in the direction of a±. By the
boundary conditions, the first two terms integrate to 0 and so we get that∫

Ω±

1

2

(
a± · ∇v

)2
≤
∣∣∣Ω±∣∣∣1/2 ε1/2 + 2αω ‖v‖L1{|x1|>ξ0}

/
∣∣∣Ω±∣∣∣1/2 ε1/2 + α

(
1

2
− ξ
)1/2

l3/2 ‖∂2v‖L2{|x1|>ξ0}

The control on v (Equation 15) implies that∫
Ω±

(
a± · ∇v

)2
/
∣∣∣Ω±∣∣∣1/2 ε1/2 + αl3/2ε1/2 . ε1/2. (17)

We recall that α /
1
2
−ξ
l , so both terms are controlled by

∫
Ω±

(
a± · ∇v

)2
/ l1/2

(
1

2
− ξ
)1/2

ε1/2 . ε1/2.
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Fig. 4: A sketch of the domain N+.
Ω±, Ω0: carried over from Figure 3.
x1 = ξ′left or ξ′right: thick vertical lines (dark green online).

N+: triangular shaded regions (light green online).

Step 2: a trace-like inequality on u. We invoke a similar diagonal lines argu-
ment to control u along vertical lines and so prove Equation (14). 8 Specifically,
we control ∫ l

0

u1(ξ′, x2) dx2 =

∫ l

0

√
1 + α2

2α

(
a+ − a−

)
· u(ξ′, x2) dx2

by controlling
∫
a+ · u(ξ′, x2) dx2 and

∫
a− · u(ξ′, x2) dx2 separately.

We note that u, pointwise, can be expressed by integrating along lines:

a± · u(ξ′, x2) =

∫ x2(1+α
2)1/2

0

∂±
(
a± · u(x + sa±)

)
ds

=

∫ x2(1+α
2)1/2

0

〈
a±, e(u)(x + sa±)a±

〉
ds.

Integrating over x2 and using a change of variables, we see that traces of u are
determined by e(u):∫ l

0

a± · u(ξ′, x2) dx2 =

√
1 + α2

α

∫
N±

〈
a±, e(u)a±

〉
dx. (18)

The domain of integration N± is a right triangle contained in the right half of Ω0,
as shown in Figure 4. One side is {ξ′} × (0, l), and the hypotenuse is parallel to
a±. In particular, note that N± ⊆ Ω0.

By Equation (11), we express e(u) in the following form:

e(u) = M(ex) − 1

2
∇v ⊗∇v − ω sym

(
∇(x1v)⊗ e(2)

)
+ v

(
0 ω

ω 0

)
(19)

8 This argument is closely connected to the trace inequality in BD. We have L1 control
on e(u) and would like control on the trace of u. This does not follow directly from Korn’s
Inequality (which requires Lp control, for p > 1), but it follows from the trace inequality in
BD [28] [3]. Because we would like to know how the constant depends on ξ and l we prove the
result directly.
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Our goal is to bound
∫
N±
〈
a±, e(u)a±

〉
dx by controlling these four quantities.

From Equation (10) we see immediately that

α−1

∫
N±

〈
a±,M(ex)a±

〉
dx / α−1ε1/2

∣∣∣N±∣∣∣1/2 / l3/2
(

1

2
− ξ0

)−1/2

ε1/2

Equation (17) controls ∇v, so

α−1

∫
N±

〈
a±, [∇v ⊗∇v]a±

〉
dx / l3/2

(
1

2
− ξ0

)−1/2

ε1/2.

The next term is, pointwise, too large in ε for our purposes. We invoke the funda-
mental theorem of calculus:

α−1

∫
N±

〈
a±, sym

(
∇(x1v)⊗ e(2)

)
a±
〉

dx =
α−1

√
1 + α2

∫
N±

〈
a±,∇(x1v)

〉
dx

=
|ξ′|

1 + α2

∫ l

0

v(ξ′, x2) dx2 . ε1/2.

Finally, we bound the last term in Equation (19).

α−1

∫
N±

∣∣∣∣〈a±,( 0 ωv

ωv 0

)
a±
〉∣∣∣∣dx =

±ω
1 + α2

∫
N±
|v(x)|

/ l

∫ ξ2

ξ1

‖v(x1, ·)‖L∞ dx1

≤ l(ξ2 − ξ1)1/2

√∫ ξ2

ξ1

‖v(x1, ·)‖2L∞ dx1

/ l3/2ε1/2.

Equation (14) follows from the bounds of the above paragraph, Equation (18),

and the fact that u1 =
√
1+α2

2α

(
a+ − a−

)
· u. Specifically, we have shown that∣∣∣∣∣

∫ l

0

u1(ξ′, x2) dx2

∣∣∣∣∣ / ε1/2l5/2 (ξ0 − ξ)−3/2
. (20)

We are in position to complete the proof of the lower bound in Theorem 1, but
first we summarize the argument. This is similar to the lower bound in [5].

We now know that the displacements are small outside the wrinkled zone. But
we have also assumed that the energy is small, which in particular implies that
horizontal lines connecting ξ′left and ξ′right cannot be stretched much. Combining

these facts, we see that the amplitude of the wrinkles must be small (in L2, not
pointwise).

Proposition 4 (The lower bound) There is some constant C such that, for any u

and v satisfying the boundary conditions of Theorem 1,

E(h)(u, v) ≥ E0 + Ch4/3.

The constant C depends on ω, ξ and l but not h.
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Proof By considering the bending term in Equation (2), we see immediately that∫
Ω

(∂22v)
2 dx ≤ h−2ε. (21)

In fact, it will be useful to consider a smaller domain Ω′ =
{
ξ′left < x1 < ξ′right

}
in

which we have better control.
We establish control on

∫
Ω′
v2 dx by controlling ∂1v. By examining the 11

component of the membrane term in Equation (2), we have that

ε ≥
∫
Ω′
m2

11 dx '
1

l

(∫
Ω′
m11 dx

)2

≥ 1

l

(
1

2

∫
Ω′

(∂1v)
2 dx−

∣∣∣∣∫
Ω′
∂1u1 dx

∣∣∣∣)2

We use this to bound
∫
Ω′ (∂1v)

2 dx in terms of u1 and ε, then invoke Equation (20).∫
Ω′

(∂1v)
2 dx / ε1/2l1/2 +

∣∣∣∣∣
∫ l

0

u1(ξ′right, x2)− u1(ξ′left, x2) dx2

∣∣∣∣∣
/ ε1/2l5/2 (ξ0 − ξ)−3/2

.

The Sobolev embedding inequality, together with the control of v on {x1 = ξ′}
(Equation 16), yields that∫

Ω′
v2 dx / ε1/2l5/2

(
1

2
− ξ
)−3/2

+ εl2
(

1

2
− ξ
)−2

(22)

We are now ready to use a simple interpolation inequality to bound the slopes
from above.∫

Ω′
(∂2v)

2 dx ≤
(∫

Ω′
v2 dx

)1/2(∫
Ω′

(∂22v)
2 dx

)1/2

. ε3/4h−1 (23)

On the other hand, we know (by Lemma 1) that the wrinkles must relax a fixed
amount of contraction, so the slopes are bounded from above in L2. By Equa-
tion (12) and Jensen’s Inequality,∣∣∣∣∫

Ω′

1

2
(∂2v)

2 − ω2

2

(
ξ2 − x21

)
+

∣∣∣∣dx ≤ ε1/2l1/2,
so therefore∫

Ω′

1

2
(∂2v)

2 dx ≥
∫
{|x1|<ξ}

1

2

(
ξ2 − x21

)2
dx− ε1/2l1/2 & 1. (24)

Equation (23) and the above equation show that ε3/4h−1 & 1, which proves the
lower bound.

Proposition 5 (Lower bound with multiple parameters) Let u and v satisfy

the conditions of Theorem 1. For h sufficiently small, l ≥ 1 and ξ ∈ (0, 1/4),

ε ' h4/3l−1/3

(
1

2
− ξ
)
. (25)
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Proof Using Equation (21) and (22), we get that∫
Ω′

(∂2v)
2 dx / ε3/4l5/4

(
1

2
− ξ
)3/4

h−1 + εl−1

(
1

2
− ξ
)−1

h−1.

Combining this with Equation (24) yields

ε3/4l5/4
(

1

2
− ξ
)−3/4

h−1 + εl1
(

1

2
− ξ
)−1

h−1 ' l − ε1/2l1/2,

so

ε ' min

{
h4/3l−1/3

(
1

2
− ξ
)
, h

(
1

2
− ξ
)
, l1/2

}
.

Given the conditions that l ≥ 1, h is sufficiently small and ξ ∈ (0, 1/4) the first
argument of the minimum is always the smallest. Equation (25) follows.

4 The upper bound

We complete the proof of Theorem 1 by constructing a deformation that achieves
E(h)(u, v) ≤ E0 + C′h4/3.

The present task, in short, is to find an ‘almost optimal’ deformation (u, v). In
proving the lower bound we understood something about how any such deforma-
tion must behave.

– The normal displacement v must be small for |x1| > ξ (at least on average), as
shown in Equation (15).

– For |x1| < ξ, material lines in the x2 direction must avoid compression by de-

viating from the helix. Equation (12) makes this quantitative:
∫ l
0

(∂2v)
2 dx2 =

lω2
(
ξ2 − x21

)
+

+ o(1).

– The amplitude of the wrinkles is small (Equation 22): ‖v‖L2(|x1|<ξ) . h1/3.

The last two conditions suggest that we should consider a displacement v which
oscillates rapidly (with wavelength no more than order h1/3). This is our first hint
that the minimizer of E(h) is aptly described as ‘wrinkling’.

In Example 1 we present an ansatz which, although natural, fails to achieve
the correct energy scaling. However, Example 1 is a simple and concrete setting
which contains ideas used in the successful argument, and the manner in which our
simple ansatz fails motivates the argument that succeeds. The impatient reader
can skip directly to Section 4.1; the argument given there is self-contained.

Example 1 (Wrinkling with uniform wavelength: an unsuccessful ansatz) With the
above conditions in mind, it is natural to consider a deformation that wrinkles
in the x2 direction with a single wavelength, but with amplitude that varies with
x1. Thus we consider

v(h)(x) = λf(x1) sin
(
x2
λ

)
, (26)

where the wavelength is λ = h1/3 and the amplitude λf is given by

f(x1) = ω
√

2 (ξ2 − x21)+. (27)
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The difficulty is that v is not sufficiently regular, and so we get infinite energy.

Step 1: calculating the bending energy. We have yet to define the normal dis-
placement u(h), but recall that the bending energy B(v(h)) = ∇∇v(h)+ω (e1 ⊗ e2 + e2 ⊗ e1)
depends on v(h) alone. We calculate:

E(h)(u, v(h)) ≥ h2
∫
Ω

∣∣∣B(v(h))
∣∣∣2 dx

= h2
∫
Ω

(
∂11v

(h)
)2

+
(
∂12v

(h) + ω
)2

+
(
∂22v

(h)
)2

dx

& h2
∫
Ω

h2/3 (∂11f(x))
2 + (∂1f(x))

2 + h−2/3 (f(x))
2 dx

&
∫ ξ

0

h8/3r−3 + h2r−1 + h4/3r dr =∞.

The last line used that ∂j1f(x) blows up like |ξ − x1|1/2−j for x1 near ξ.

We expect an energy scaling of the form minE(h) = E0 +O(h4/3) (Theorem 1).
The argument above shows us that the energy of this ansatz is infinite, but the
infinite term is formally much smaller than h4/3. This gives us the hope that
smoothing f slightly could yield the correct energy scaling. However, we will show
that the membrane energy is not as well behaved: formally, the coefficient next to
the h4/3 term is infinite.

Step 2a: vertical stretching. The membrane term controlling stretching in the

vertical direction is m22 = ∂2u
(h)
2 + 1

2 (∂2v
(h)+ωx1)2− 1

2ω
2ξ2. Outside the wrinkled

zone, the ribbon is purely in tension, which gives us the leading-order energy∫
|x1|>ξm

2
22 dx = E0. Inside the wrinkled zone, we write this as

m22(x) = ∂2u
(h)
2 (x) +

1

2

(
f(x1) cos

(
x2
λ

)
+ ωx1

)2
− ω2

2
ξ2

= ∂2u
(h)
2 (x) +

1

4
f2(x1) cos

(
2x2
λ

)
+ ωx1f(x1) cos

(
x2
λ

)
:= ∂2u

(h)
2 (x) + ϑ(h)(x) + ωx1f(x1) cos

(
x2
λ

)
,

where the remainder ϑ(h) is O(1). In order to achieve small energy we pick ∂2u
(h)
2 =

−ϑ(h) − ωx1∂2v(h). Note that we must have u
(h)
2 (x1, 0) = u

(h)
2 (x1, l) = 0, which is

possible because the remainder integrates to 0 in x2.9

Step 2b: shear energy. Except where we explicitly say otherwise, for the rest of
this example we consider only |x1| < ξ.10 The shear component of the membrane

9 Our only concrete requirement on v(h) is that it must ‘waste the correct amount of arc
length’ Lemma 1. That ϑ(h) integrates to 0 in x2 is equivalent to asserting that the left hand
side of Equation (12) is 0, rather than being merely small.
10 u(h)(x) = 0 for |x1| > ξ.
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energy is given by

2m12 = ∂2u
(h)
1 + ∂1u

(h)
2 + (∂2v

(h) + ωx1)∂1v
(h) − ωv(h)

= ∂2u
(h)
1 +

1

2
λω2x1 sin

(
2x2
λ

)
− λω(x1f(x1))′ sin

(
x2
λ

)
+ (∂2v

(h) + ωx1)∂1v
(h) − ωv(h)

= ∂2u
(h)
1 − λ

(
ω2

2
x1 sin

(
2x2
λ

)
+ 2ωf(x1) sin

(
x2
λ

))
.

We aim to achieve
∫
|M|2 dx . h4/3, so this is not small enough. Therefore we

choose ∂2u
(h)
1 such that m12 = 0, noting that the boundary data u

(h)
1 (x1, 0) =

u
(h)
1 (x1, l) = 0 is compatible with this because the proposed ∂2u

(h)
1 integrates to 0

in x2.
We pause to highlight an important idea. We picked ∂2u

(h)
2 to make m22 = 0.

This introduced a non-zero term in m12, which we obtained by differentiating ϑ(h)

in x1 and integrating it in x2. Because ϑ(h) oscillates with wavelength λ = h1/3

in x2, ∂1u
(h)
2 is formally smaller but less regular than ∂2u

(h)
2 . We are free to play

this game again and choose ∂2u
(h)
1 to make m12 = 0, at the cost of a non-zero

term ∂1u
(h)
1 in m11. Again, ∂1u

(h)
1 is smaller but less regular than ∂2u

(h)
1 . The loss

of regularity is fatal: ∂2u
(h)
1 has a term of the form x1 sin

(
2x2

λ

)
1|x1|<ξ, which is

not differentiable. We persist regardless; in fact, we will see that our choice of v(h)

always gives infinite membrane energy.

Step 2c: horizontal stretching. The final component in the membrane tensor
is

m11 = ∂1u
(h)
1 +

1

2

(
∂1v

(h)
)2

= −λ2
(
ω2

4
cos

(
2x2
λ

)
+ 2ωf ′(x1) cos

(
x2
λ

))
+

1

2
λ2
(
f ′(x)

)2
sin2

(
x2
λ

)
= −λ2

(
ω2 +

(
f ′(x1)

)2
4

cos

(
2x2
λ

)
+ 2ωf ′(x1) cos

(
x2
λ

))
+

1

4
λ2
(
f ′(x)

)2
.

This component of M scales as h2/3, meaning that
∫
Ω
|M|2 dx formally scales as

h4/3. However, the above expression for m11 is not in L2, and so it integrates
to infinity. Unlike the bending energy, the infinite term in the membrane energy
is formally of leading order. The fatal flaw lies firmly with our choice of v(h):
by invoking Parseval’s Theorem in the dx2 integral and disgarding all but the
wavenumber 0 term, we see that∫

Ω

|m11|2 dx =

∫
Ω

(
∂1u

(h)
1 +

1

2
(∂1v

(h))2
)2

dx

&
∫ ξ

−ξ
λ4(f ′(x1))4 dx1 =∞.

This last estimate, together with step 2a, suggests that we cannot salvage this
ansatz by smoothing f in a boundary layer. If the boundary layer is small in h then
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the above integral is large in h, but if the boundary layer is not small in h then the
vertical stretching term contributes O(1) energy. Our method for choosing u(h)

from v(h) is sound, but we must consider a richer class of normal displacements
v(h).

The ansatz Equation (26) uses the same frequency everywhere in the wrinkled
zone, and then varies the amplitude with x1 to waste the correct amount of arc
length (Equation 12). The essential difficulty is that the amplitude of the wrinkles
dies off in too singular a fashion, which suggests that we should pick an ansatz
from a richer class: we should allow the frequency and amplitude to vary with x1.
It is natural to consider an ansatz of the form

v(h)(x) = λ(x1)f(x1) sin

(
x2

λ(x1)

)
, (28)

so that the amplitude λ(x1)f(x1) is less singular. Of course, we have to modify
Equation (28) to accommodate the boundary conditions v(x1, 0) = v(x1, l) = 0:
in Fourier space, v must have frequencies in a discrete set. As a result, our final
ansatz (although motivated by Equation (28)) is slightly different:

v(h)(x) = f(x1)
∑
k

λkϕk(x1) sin (x2/λk). (29)

Here {ϕ2
k} is a partition of unity. By choosing λk and ϕk we can allow the wave-

length to vary with x1. Visually, this is a ‘cascade’ of wrinkles that get finer and
finer near the boundary of the wrinkled zone. Similar constructions have been seen
before; see, for example, [20] [6] [15].

4.1 The proof of the upper bound

We prove the upper bound half of Theorem 1.

Proof Our task is to construct an ansatz that wrinkles to waste arc length propor-
tional to f(x1)2, which was defined in Equation (27).

Step 1: the normal displacement and bending energy. Let ξk = (1− 4−k−1)ξ
and λk = 2−kλ0. The frequency λ0 should be approximately h1/3, but in order to

satisfy the boundary data v(x1, l) = 0 we modify this slightly: λ0 =
⌊

l
2πh1/3

⌋−1 l
2π .

Our interpretation will be that the wrinkles oscillate (in the x2 direction) with
length scale λk for |x1| near ξk. The ansatz will only have finitely many frequencies,
so we define Nh to be the floor of −4

3 log4(h).

We take a partition of unity
{
ϕ2
k

}∞
k=0

with ϕk supported on (−ξk+2,−ξk) ∪
(ξk, ξk+2) if k > 0, or (−ξ1, ξ1) otherwise. Furthermore, we may and do assume
that the derivatives are not needlessly large:

|ϕ(i)
k (x1)| . (ξk+2 − ξk)−i . 4ik for i = 1, 2.

We define the vertical displacement:

v(h)(x) = f(x1)

Nh∑
k=0

ϕk(x1)λk sin

(
x2
λk

)
. (30)
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For convenience, we define

fk =

{
ϕkf if 0 ≤ k ≤ Nh
0 otherwise.

(31)

The bounds on the derivatives of ϕk yield the following:

sup
∣∣∣f (i)k ∣∣∣ . (ξ − ξk)1/2−i . 2(2i−1)k for i = 0, 1, 2, and

|Spt fk| ≤ 2(ξk+2 − ξk) . 2−2k, (32)

where the implicit constant in . does not, of course, depend on k.

We show that h2
∫
Ω

∣∣∣B(v(h))
∣∣∣2 dx . h4/3, where this quantity is the bending

energy of Equation (2). It suffices to show that
∫
Ω

∣∣∣∇∇v(h)∣∣∣2 dx . h−2/3. We

compute the derivatives of v:

∂1v
(h) =

Nh∑
k=0

f ′k(x1)λk sin

(
x2
λk

)

∂2v
(h) =

Nh∑
k=0

fk(x1) cos

(
x2
λk

)

∂11v
(h) =

Nh∑
k=0

f ′′k (x1)λk sin

(
x2
λk

)

∂12v
(h) =

Nh∑
k=0

f ′k(x1) cos

(
x2
λk

)

∂22v
(h) = −

Nh∑
k=0

fk(x1)λ−1
k sin

(
x2
λk

)
.

By invoking Fourier Isometry with respect to the x2 variable, we see that∫
Ω

∣∣∣∇∇v(h)∣∣∣2 dx .
Nh∑
k=0

∫ 1/2

−1/2

(f ′′k (x1))2λ2k + (f ′k(x1))2 + (fk(x1))2λ−2
k dx1

.
Nh∑
k=0

(
sup

∣∣f ′′k ∣∣2 λ2k + sup
∣∣f ′k∣∣2 + sup |fk|2 λ−2

k

)
|Spt fk|

.
Nh∑
k=0

(
26k2−2kh2/3 + 22k + 2−2k22kh−2/3

)
2−2k

. 4Nhh2/3 +Nh + h−2/3 . h−2/3

because we chose Nh such that 4Nh ≤ h−4/3.

Step 2: the tangential displacement and the membrane energy. We must
define u(h) and show that the membrane energy is controlled by E0 +C′h4/3. This
comes from three physical effects:
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– The outer edges {|x1| > ξ} are stretched vertically, which results in exactly E0
energy.

– The wrinkles would waste exactly the right arc length if we took Nh = ∞.
However, that would cost infinite bending energy. Our failure to match the
relaxed energy will contribute o(h4/3) energy.

– The wrinkles cannot be isometric. This contributes O(h4/3) energy.

The membrane energy consists of three summands, which represent horizontal
stretching (m11), shearing (m12), and vertical stretching (m22):∫

Ω

|M(u, v)|2 dx =

∫
Ω

(
m2

11 + 2m2
12 +m2

22

)
dx.

Instead of opening with a definition of u(h) and checking each of these terms

afterwards, we will first define u
(h)
2 to make m22 = 0 sufficiently far inside the

wrinkled zone, then define u
(h)
1 so that m12 = 0. The ansatz will then be complete,

so we will need only to check that m11 is sufficiently small.

Step 2a: vertical stretching. Let ψ(x1) =
∑Nh

k=0 ϕ
2
k(x1). We note that ψ(x1) = 1

for |x1| < ξNh
, ψ(x1) = 0 for |x1| > ξNh+2, and that it is between 0 and 1 for

intermediate values of x1.
From Equation (3), we recall that m22 = ∂2u2 + 1

2 (∂2v + ωx1)2 − 1
2ω

2ξ2. We
let

∂2u
(h)
2 = −1

2

(
(∂2v

(h))2 − 1

2
f2ψ

)
− ωx1∂2v(h) (33)

:= −1

2
ϑ(h)(x)− ωx1∂2v(h).

In principle we should check that u
(h)
2 satisfies the boundary conditions of Theo-

rem 1. We delay this until Step 2b and compute the vertical strain:

m22(u(h), v(h)) = ∂2u
(h)
2 +

1

2

((
∂2v

(h)
)2
− 1

2
f2
)

+ ωx1∂2v
(h) +

1

2
ω2(x21 − ξ2)+

= −1

4
f2(x1) (1− ψ(x1)) +

1

2
ω2(x21 − ξ2)+.

Notice that the first term vanishes in {|x1| > ξ}, and the second in {|x1| < ξ}.
Using this and the definition E(0)(0, 0) = E0 (Equation 8), the energy from vertical
stretching is∫

Ω

m2
22(u(h), v(h)) dx =

1

16

∫
Ω

f4(x1) (1− ψ(x1))
2 dx + E0.

The integrand is even in x1 and supported on a narrow strip near the edges x1 =
±ξ, so ∫

Ω

m2
22(u(h), v(h)) dx− E0 .

∫ ξ

ξ−ξNh

f4(x1) dx1 . (ξ − ξNh
)3 . h4.

As promised, this term is much smaller than h4/3.
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Step 2b: the shear energy and boundary data on u(h). In the statement of the
theorem we insisted that u2 be 0 at the top x2 = l and bottom x2 = 0. We must
therefore check that the proposed ∂2u2 integrates to 0 is x2, for any fixed x1. This
follows immediately from the fact that ϑ(h) is mean-0 in x2, or from the following
computation:

ϑ(h) =

(
Nh∑
k=0

fϕk cos

(
x2
λk

))2

− 1

2
f2

Nh∑
k=0

ϕ2
k

=

Nh∑
k=0

f2k

(
cos2

(
x2
λk

)
− 1

2

)
+ 2fkfk+1 cos

(
x2
λk

)
cos

(
x2
λk+1

)

=

Nh∑
k=0

1

2
f2k cos

(
2x2
λk

)
+ fkfk+1

(
cos

(
3x2
λk

)
+ cos

(
x2
λk

))
. (34)

Writing down the exact solution will become cumbersome, so instead we note that
ϑ(h) is of the following form:

ϑ(h) =
∑
k

3∑
j=1

αjf
2
k cos

(
jx2
λk

)
+ βjfkfk+1 cos

(
jx2
λk

)
,

for coefficients αj , βj which depend on nothing execpt j. In particular, they do
not depend on h. 11

We pick u
(h)
1 such that the shear strain m12 vanishes:

∂2u
(h)
1 = −∂1u(h)2 − ωx1∂1v(h) + ωv(h) − ∂1v(h)∂2v(h)

=
1

2
∂1

∫
ϑ(h) dx2 + ω∂1(x1v

(h))

− ωx1∂1v(h) + ωv(h) −
Nh∑
k=0

fk cos

(
x2
λk

) Nh∑
l=0

λlf
′
l sin

(
x2
λl

)

=
1

2
∂1

∫
ϑ(h) dx2 + 2ωv(h) −

Nh∑
k=0

fk cos

(
x2
λk

) Nh∑
l=0

λlf
′
l sin

(
x2
λl

)
This expression is of the form

∂2u
(h)
1 = 2ωv(h) +

∑
k

λk

3∑
j=1

αjfkf
′
k sin

(
jx2
λk

)
(35)

+
∑
k

λk

3∑
j=1

βjf
′
kfk+1 sin

(
jx2
λk

)
+ γjfkf

′
k+1 sin

(
jx2
λk

)

for different constants αj , βj and γj . Note that ∂2u
(h)
1 still integrates to 0 in the

x2 direction, so it is consistent with the boundary condition that u
(h)
1 (x) = 0 at

x1 = 0 and l.

11 There is no ‘off by one’ error at the upper limit of the summation: recall from Equation (31)
that fNh+1 = 0.



The wrinkling of a twisted ribbon 25

Step 2c: stretching energy along the wrinkles. The final term in the strain
matrix is

m11 = ∂1u
(h)
1 +

1

2

(
∂1v

(h)
)2
. (36)

We bound
∫
Ω

∣∣∣∂1u(h)1

∣∣∣2 dx and
∫
Ω

(
∂1v

(h)
)4

dx separately.

We first show that
∫
Ω

∣∣∣∂1u(h)1

∣∣∣2 dx . h4/3.

To find ∂1u
(h)
1 , we take the general form of ∂2u

(h)
1 (Equation 35) and integrate

once in x2 while differentiating in x1. The integration in x2 helps: it gives us a
factor of λk ≈ 2−kh1/3 in the summation, which is small in h and helps the sum-
mand converge. The derivative in x1 hurts: by Equation (32), we see that taking
derivatives in x1 makes the summand more singular. The following computation

has two purposes: we show that ∂1u
(h)
1 scales as h2/3, and that the summation

converges.
From Equation (35), we see that

∂1u
(h)
1 = 2ω

∑
k

λ2kf
′
k cos

(
x2
λk

)
(37)

+
∑
k

λ2k

3∑
j=1

2∑
l=0

[
αj,lf

(l)
k f

(2−l)
k cos

(
jx2
λk

)
+ βj,lf

(l)
k f

(2−l)
k+1 cos

(
jx2
λk

)]
,

where again the coefficients do not depend on anything except j and l. By Parse-
val’s Theorem,∥∥∥∂1u(h)1

∥∥∥2
L2

.
Nh∑
k=0

λ4k‖f
′
k‖

2
L2 +

∑
k

2∑
l=0

λ4k

[
‖f (l)k f

(2−l)
k ‖2L2 + ‖f (l)k f

(2−l)
k+1 ‖

2
L2

]

≤
Nh∑
k=0

λ4k |Spt fk|
∥∥f ′k∥∥2L∞ +

∑
k

2∑
l=0

λ4k |Spt fk|
∥∥∥f (l)k ∥∥∥2

L∞

∥∥∥f (2−l)k

∥∥∥2
L∞

+
∑
k

2∑
l=0

λ4k |Spt fk ∩ Spt fk+1|
∥∥∥f (l)k ∥∥∥2

L∞

∥∥∥f (2−l)k+1

∥∥∥2
L∞

.
∑
k

λ4k |Spt fk|
[
‖f ′k‖

2
L∞ + ‖f ′k‖

4
L∞ + ‖fk‖2L∞‖f

′′
k ‖

2
L∞

]
.
∑
k

λ40 2−4k2−2k
[
22k + 24k + 2−2k26k

]
. λ40.

We found the penultimate line by using AM-GM to separate ‖fk‖L∞ and ‖fk+1‖L∞ ,
then group like terms. Note that λk+1 differs from λk by a multiplicative constant.
The last line follows from Equation (32). Finally, we note that we have chosen λ0

to be approximately h1/3, so as promised this proves that
∫
Ω

∣∣∣∂1u(h)1

∣∣∣2 dx . h4/3.

We show that
∫
Ω

(
∂1v

(h)
)4

dx . h4/3, which concludes step 2c and the proof.

We start by invoking Parseval’s Theorem with respect to x2:∫
Ω

(
∂1v

(h)
)4

dx =

∫ 1/2

−1/2

∥∥∥∥(∂1v(h)(x1, ·))2∥∥∥∥2
L2

dx1 =
∑
j

∫
a2j (x1) dx1, (38)
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where the aj are the Fourier coefficients of
(
∂1v

(h)
)2

. Our expression for v(h) is

already in the form of a Fourier Series:

(
∂1v

(h)
)2

=

(∑
k

λkf
′
k sin

(
x2
λk

))2

=
∑
k

λ2k(f ′k)2 sin2

(
x2
λk

)
+ 2λkλk+1f

′
kf
′
k+1 sin

(
x2
λk

)
sin

(
x2
λk+1

)
=
∑
k

λ2k
2

(f ′k)2
(

1− cos

(
2x2
λk

))
+ λkλk+1f

′
kf
′
k+1

(
cos

(
x2
λk

)
− cos

(
3x2
λk

))
.

We write the above expression as
∑
j aj cos(2πjx2/l), then use that

∣∣f ′kf ′k+1

∣∣ ≤
1
2

(
(f ′k)2 + (f ′k+1)2

)
to conclude that∫ ∑

j

a2j dx1 .
∑
k

λ4k

∫
(f ′k)4 dx1 .

∑
k

λ402−4k24k4−k . λ40.

By the above and Equation (38),
∫
Ω

(
∂1v

(h)
)4

dx . h4/3.

In the preceding construction, the wavelength of the wrinkles varies with x1;
this is sometimes called a “cascade of wrinkles.” There are experimental settings
where a cascade of wrinkles is observed [1] [18] [29] [7]. However, we are not aware
of any experimental evidence that a twisted ribbon exhibits a cascade of wrinkles.
This does not contradict the present result: the energy-minimizing configuration
might look quite different, to the eye, than our ansatz. In particular, we expect
that there are other ways of evading the difficulty encountered in Example 1. For
any v, if we take the Fourier transform of v with respect to x2 alone, we get an
expression that resembles Equation (29):

v(x) =
∑
m

âm(x1) sin

(
2mπ

l
x2

)
.

A cascade of wrinkles can be seen as a special case of this, where (for fixed x1)
only two frequencies are present. We need to emphasize higher frequencies for x1
closer to the edge ±ξ, but there are many ways of doing that and we used only
two frequencies solely for convenience.
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of thin-film blistering. Journal of Mathematical Physics, 42(1):192–199, 2001.

21. Robert V. Kohn. Energy-driven pattern formation. Proceedings of the Interna-

tional Congress of Mathematicians, 1:359–383, 2006.
22. Robert V. Kohn and Hoai-Minh Nguyen. Analysis of a compressed thin film

bonded to a compliant substrate: The energy scaling law. Journal of Nonlinear

Science, 23(3):343–362, Jun 2013.



28 Robert V. Kohn, Ethan O’Brien

23. Joseph D. Paulsen, Evan Hohlfeld, Hunter King, Jiangshui Huang, Zhanlong
Qiu, Thomas P. Russell, Narayanan Menon, Dominic Vella, and Benny Davi-
dovitch. Curvature-induced stiffness and the spatial variation of wavelength in
wrinkled sheets. Proceedings of the National Academy of Sciences, 113(5):1144–
1149, 2016.
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29. Hugues Vandeparre, Miguel Piñeirua, Fabian Brau, Benoit Roman, José Bico,
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