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Abstract We derive a one-dimensional variational problem representing the
elastic energy of a rod with misfit, starting from a nonlinear, three-dimensional
elastic energy with nontrivial preferred strain. Our approach to dimension
reduction is to find a Γ -limit as the thickness of the rod tends to 0. The
limiting energy is a quadratic function of the rates at which the rod bends and
twists, and we give explicit expressions for the preferred curvature and twist
in the special case of isotropic elastic moduli.

Keywords Elastic rods · Dimension reduction · Gamma-convergence · Misfit

Mathematics Subject Classification (2000) 74K10 · 49S05 · 49J45 ·
74B10

1 Introduction

There are many examples of rods in nature that deform due to misfit.1 The
best-known of these is a metallic bilayer, which bends when heated [35]. Re-
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1 By misfit we mean preferred elastic strain. For example, this may be caused by thermal
stress or the tendency to expand (perhaps anisotropically) due to water absorption. Similar
concepts in the literature sometimes go by the names prestrain, prestress, non-Euclidean
elasticity, and incompatible elasticity.
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cently, it has been proposed that misfit causes many rod-like or ribbon-like
objects to twist or form helices; examples include some crystals [34] and plant
tendrils such as Erodium awns [2]. We give a systematic discussion of the
deformation of a rod due to misfit.

A rigorous treatment of rod theory as a Γ -limit of three-dimensional elas-
ticity was given by Mora and Müller [27] and independently by Pantz [31].
The present work uses the same tools: we identify the elastic energy of a
rod with misfit (Equation 4) by taking the Γ -limit of the elastic energy of
a three-dimensional rod (Equation 2) as its thickness tends to 0. The result-
ing one-dimensional rod energy depends on the rod’s configuration through
the rates at which it bends and twists. There is, in general, a non-zero pre-
ferred curvature and twist, which we express in terms of certain integrals over
the two-dimensional cross section. We also find symmetry conditions which
guarantee that the rod will not prefer to bend or twist.

We hope that this work is interesting and accessible to audiences in both
applied mechanics and the calculus of variations. To that end, we include a
brief orientation. Read linearly, this paper motivates the rod theory in Sections
1.1 and 1.2, then precisely states the dimension reduction result (Theorem 1)
and necessary definitions in Sections 1.4-1.6. Section 2 continues with an in-
formal derivation of the the rod energy (Equation 4). The remainder of this
paper, except for Section 7, analyzes the rod energy and provides examples. A
theoretically-minded reader could instead read Sections 1.4-2.1, and perhaps
1.3 and 2.2, then turn to the proof of Theorem 1 in Section 7. A practically-
minded reader might instead focus on the examples, starting with a quick
characterization of the limiting rod theory through Equation (4) and Theo-
rems 2 (the general case) and 3 (a more explicit version for materials with
isotropic Hooke’s law).

1.1 Examples

We begin with a few examples of rods with misfit. Several of the experiments
mentioned in this section deal with ribbons rather than rods, but find results
that are present in rod theory. See Section 5.1 for some comments on the
distinction between ribbons and rods.

The isotropic bilayer: We start with a well-known example. Consider
a rod made of two different layers, bonded as shown in Figure 1. Both layers
prefer to expand isotropically when heated, but by different amounts. The two
layers cannot assume their stress-free deformation because they must meet
on the boundary, but one layer can expand more than the other if the rod
bends. Of course, each cross section will deform slightly, and that there can
be boundary effects. It is well known, both theoretically and experimentally,
that the rod bends.

Motivated by the application to bimetallic thermometers, Timoshenko cal-
culated the preferred curvature of the isotropic bilayer using linear elasticity
[35]. We reproduce this classical result in Section 6.1 using the framework of
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(a) Reference configuration

(b) Deformed configuration

Fig. 1: The isotropic bi-
layer

Fig. 2: The construc-
tion of the anisotropic
bilayer.

(a) Twisted strip

(b) Twisted and bent strip

(c) Bent strip

Fig. 3: Configurations
of the anisotropic bi-
layer

this paper, except that unlike Timoshenko we assume that the elastic moduli
are the same in both layers. This example leads to a restricted class of de-
formations in that the bilayer bends, but it does not twist. This is a general
pattern; Theorem 3 implies that a rod made out of an isotropic material will
never twist in response to isotropic misfit.

The diagonally prestrained bilayer: In view of the previous exam-
ple, it is natural to ask whether misfit can also give rise to twist. The answer
is yes. We outline a simple example of twist caused by misfit, and defer a
systematic treatment to Section 6.2. Several groups performed closely related
experiments, motivated by the study of crystals [37], the opening of seed pods
[3], and tunable helical ribbons [6].

Consider two elastic sheets, stretched in orthogonal directions and glued
together. Now suppose that a rod is cut from the sheets along an angle θ
to the principal stretches, as shown in Figure 2. For generic θ the rod twists
and bends uniformly (Figure 3b). If θ = 0 or θ = π/2 then it bends without
twisting (Figure 3c), and if θ = π/4 it twists without bending (Figure 3a).

Plant tendrils: Many plants have long, thin helical tendrils. It has been
conjectured that these deform due to swelling or contraction in parts of the
tendril. Aharoni et. al. correctly predicted the shape of long, thin cells in
Erodium awns using a theory closely related to this work [2].

Quartz:2 Crystals are sometimes thin in one or two dimensions. Remark-
ably, although the crystal lattice seems to prefer polyhedra, crystalline rods
sometimes spontaneously twist [34]. We focus on naturally occurring α-quartz,
and on the question of whether its intrinsic twist can be explained by model-
ing the crystal as a linearly elastic body with misfit. The dimension reduction
discussed in the present work challenges this idea: there should be no intrinsic

2 We gratefully acknowledge extensive input from Alexander Shtukenberg, with whom we
had many discussions about twisted crystals. These discussions formed the critical nucleus
for the investigation presented here.
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twist or curvature for a rod with the misfit and elastic stiffness tensor typical
of quartz. See Section 6.5 for details.

Quartz is far from the only crystal that can resemble a twisted rod, and
our description of quartz relies crucially on two conditions: that the crystal
lattice has twofold rotational symmetry about the long axis of the crystal, and
that the misfit is caused by variations in the preferred lattice lengths.

1.2 An overview of the problem

Classically, one would find the energy required to twist or bend an elastic rod
by minimizing the linear elastic energy of a cylinder within an appropriate
ansatz [4] [24]. The resulting energy, in the simplest setting, is of the form

Erod =

∫ L

0

c1ω
2(x1) + c2κ

2
2(x1) + c3κ

2
3(x1)dx1, (1)

where the rates of twisting and bending at position x1 are denoted by ω(x1)
and κj(x1), j = 2, 3. The purpose of the linearly elastic energy minimizations
mentioned above is to identify the constants cj , which requires knowledge of
how the cross sections warp in response to curvature or twist. This approach
gives an algorithm to compute the energy, but it is unsatisfying if viewed
as a justification of Equation (1): it describes locally how each cross section
should deform, but it does not exhibit an ansatz and does not explicitly use
the fact that the thickness is assumed to be small. Even using linear elasticity
is questionable: the strains are small but the displacements large.

One approach is to define a warping function separately for each cross sec-
tion via the linear elastic energy minimization mentioned above, then combine
these to get a full ansatz. One can then use Taylor’s Theorem to estimate
the nonlinear elastic energy in terms of only the linear strain, which takes
advantage of the assumption that the thickness is small. Of course, for this
to be meaningful the ansatz must be chosen correctly. A more modern ap-
proach, called Γ -convergence, asks also that we show that the ansatz achieves
the minimum energy to leading order in thickness. We use Γ -convergence.

One feature of this framework is that it requires that we be precise about
what we mean by “the limit as the thickness vanishes.” We mean that we
consider an elastic cylinder with length parameterized by z1 ∈ (0, L) and cross
section parameterized by zcs = (z2, z3) ∈ hS. Here h, which represents the
thickness, has units of length. We send h to 0, holding fixed the curvature and
twist, so in order to apply the present rod theory one should have h � 1/κ
and h� 1/ω.

In order to get a consistent theory we must also scale the linear elastic
misfit, denoted here by m(h)(z), with the thickness. Heuristically, we expect
that bending the centerline with curvature κ should result in strains of O(hκ),
so m(h) should scale like h. We allow the misfit to depend on z1 (i.e. to vary
along the length of the rod), but it must vary slowly. Precisely, we consider
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misfit of the form

m(h)(z1, zcs) = hm(z1, zcs/h) for z1 ∈ (0, L), zcs ∈ hS.

With slight abuse of notation we refer tom as the as the misfit. Notice however,
that it has units of length inverse, whereas the physical misfit is a strain and
therefore dimensionless. We consider the limit h → 0, so the physical misfit
must be small.

1.3 Methods and related results

We are not aware of any prior derivation, rigorous or otherwise, of a rod
theory with general misfit.3 The one presented here is variational in character:
we show that a one-dimensional rod energy with non-zero preferred curvature
and twist arises as the Γ -limit [9] of a three-dimensional elastic energy with
misfit.4 Γ -convergence is a familiar tool in dimension reduction, and has been
used to justify a rich class of one-dimensional [1] [27] [28] and two-dimensional
[20] [14] [15] energies for thin elastic structures. The direct analogue of the
present work without misfit was given independently by Mora and Müller [27]
and Pantz [31].

We hasten to add that there is some general work on thin structures with
misfit. Kupferman and Solomon used a modified Γ -limit to identify the elastic
energy of an m-dimensional manifold with a non-Euclidean metric [19], which
is specialized to rods in [2]. Their metric and our misfit play similar roles,
but in the context of rods our discussion is more general. In fact (as we show
in Section 5.2), the Kupferman-Solomon theory, when specialized to rods, is
equivalent to our theory with a misfit that depends linearly on the cross-
sectional variables.

Plates with misfit have recieved additional attention. Schmidt showed that
multilayers–plates with piecewise constant misfit depending only on the thin
variable–can be modeled with an energy similar to that of an inextensible plate,
but with non-zero preferred second fundamental form [33]. Assuming instead
that the misfit does not depend on the thin direction there are analogues to
both Kirchhoff [23] and von Kármán [21] [22] plate theories.

Classically, rod theories have often been justified using force-balance. Saint-
Venant found a twelve-dimensional set of solutions to the equations of force
balance for an infinite, linearly elastic prism,5 which he called the reference
solutions. He conjectured that the displacement of a long but finite prism ap-
proaches the reference solutions far from the ends. Mielke used center manifold
theory in a Banach space to prove Saint-Venant’s conjecture in the setting of

3 See, however, the final paragraph of this subsection, concerning the paper [8].
4 Familiarity with Γ -convergence is not necessary to read this work if one takes on faith

that Theorem 1 is an acceptable derivation of a rod energy. See [30] for a review of thin
structures and Γ -convergence.

5 Six dimensions are associated to rigid motions. Twisting and stretching contribute one
mode each, and bending contributes two dimensions. The last two modes are due to shear.
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nonlinear elasticity [25][26], assuming only that the strains are uniformly small.
This was motivated in part by Ericksen’s observation [11] that, in linear elastic-
ity, Saint-Venant’s reference solutions are precisely the solutions with bounded
strain.

It is natural to ask how dimension reduction via Γ -convergence is related
to the work of Mielke. Γ -convergence, together with a compactness condition,
implies that minima of the three-dimensional energy converge to minima of the
limiting energy, which makes it useful when studying energy minimization. The
critical points of an energy functional represent force-balance, and in general
Γ -convergence does not imply that critical points converge. However, Mora
and Müller [29] and Davoli and Mora [10] showed that critical points indeed
converge for a hierarchy of rod energies without misfit. That partially closed
the gap between force-balance and energy minimization.

After this paper was completed, we learned about simultaneous and in-
dependent work by Cicalese, Ruf, and Solombrino on essentially the same
problem [8]. Our work and theirs overlap: in particular, a version of Theo-
rem 1 is found in [8] as well, and we both study in some detail the case of
the bilayer. However, there are also significant differences. We show additional
properties of the reduced energy, and compare our results with different parts
of the literature. The paper [8] covers local as well as global minimizers, a
topic that we do not address.

1.4 Notation

In this work we will use the convention that (∇y)ij = ∂jyi. Matrices will
sometimes be written in block notation; if so the blocks will be separated by
solid lines.

It will be useful to distinguish between the coordinate x1 along the rod and
the coordinates xcs = (x2, x3) in the cross section. We extend this notation
in various self-explanatory ways, for example by using βcs = (β2,β3) for
other vectors (typically representing linearly elastic displacements of the cross
section) and ∇csβ = (∂2β, ∂3β). Similarly, for matrices m ∈ R3×3 we will use
mcs,cs to denote the lower right 2-by-2 block and mcs,1 = (m21,m31).

1.5 The three-dimensional energy

We start with a generic elastic energy with misfit, defined on a cylindrical
reference domain Ωh = (0, L)× hS. We will take the limit as the thickness h
tends towards 0. The cross section S is an open, bounded, connected subset
of R2 with Lipschitz boundary. By translating the reference domain we may
assume that S is centered at the origin:

∫
S
xcsdxcs = 0. The energy is defined

for y ∈W 1,2(Ωh,R3) by

E(h)(y) =
1

h4

∫
Ωh

W
(
∇y(z)M−1

h (z1, z2/h, z3/h)
)
dz.
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By rescaling x = (z1, z2/h, z3/h) we write the energy as

E(h)(y) =
1

h2

∫
Ω

W
(
∇hy(x)M−1

h (x)
)

(2)

with the notation ∇hf =
(
∂1f

∣∣ 1
h∂2f

∣∣ 1
h∂3f

)
and Ω = Ω1.

The elastic energy density W ∈ C0(R3×3, [0,∞]) satisfies the standard
conditions:

1. Frame indifference: W (RF ) = W (F ) for all F ∈ R3×3 and R ∈ SO(3).
2. Stress-free: W = 0 on SO(3).
3. Coerciveness: W (F ) ≥ dist2(F ,SO(3)).
4. Regularity: W ∈ C2 in a neighborhood of SO(3).

We use Q3 to denote the associated linear elastic energy density: Q3(F ) =
1
2W

′′(Id)(F ,F ).
We assume that the preferred strain is of the form Mh(x) = Id +hm(x)

for m ∈ L∞(Sym(3)). As mentioned in Section 1.2, the scaling of Mh(x) is
chosen such that it produces O(1) bend or twist in the limit as h→ 0.

1.6 The one-dimensional energy

In the limit h → 0, we will find an energy for an inextensible rod depending
only on the curvature and twist. It is not enough to know the position of the
midline ỹ, which must be a unit speed curve from (0, L) to R3 (the rod is
indexed by the long variable x1). In order to define the twist we also need to
know the orientation of each cross section. The energy depends on the material
frame (Figure 4), a function R : (0, L)→ SO(3) such that the first column is
the tangent to the midline: r1(x1) = dỹ

dx1
(x1). The second and third columns,

which represent the orientation of the cross section, are normal to r1.
The skew-symmetric matrix A = RT∂1R controls the bending (in the x2

and x3 directions) of the rod as well as the twist. The one-dimensional energy
derived here is a function of A alone. We will sometimes write A in terms of
the twist ω and bending κ = (κ2, κ3):

A(ω,κ) =

 0 −κ2 −κ3
κ2 0 −ω
κ3 ω 0

 . (3)

The limiting energy involves the following quantities, defined in Section 2.1:

– Am ∈ L2((0, L),Skew(3)) measures the preferred bending and twisting at
each cross section. We will sometimes use the notation A(ωm,κm) = Am.

– Q1 : Skew(3)→ R is a positive definite quadratic form.
– E0 ∈ R, E0 ≥ 0 is a constant measuring the incompatibility of the misfit

with strains.

Section 3 gives more computationally useful characterizations of Q1 and Am

in Theorem 2 (the general case) and Theorem 3 (isotropic rods).
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Fig. 4: A sketch of the material frame. The midline ỹ is in solid black. The
columns of R, controlling the orientation of the cross section, are drawn with
thick blue arrows for several values of x1.

Definition 1 (Limiting energy functional) We define E : W 1,2(Ω,R3×3)→
[0,∞] by

E(R) =

{
E0 +

∫ L
0
Q1

(
RT∂1R(x1)−Am(x1)

)
dx1 if R is admissible ,

∞ otherwise,

(4)
where R ∈W 1,2(Ω,R3×3) is admissible if and only if R(x) ∈ SO(3) and R(x)
depends only on x1.

Section 2 gives an informal derivation of the one-dimensional energy via
minimization within an ansatz. Theorem 1 rigorously derives the one-dimensional
energy Equation (4) from the three-dimensional energy Equation (2) in the
small-thickness limit.

Theorem 1 (Γ -convergence) The functionals E(h) Γ -converge to the func-
tional E as h→ 0 in the following sense:

1. (liminf inequality) For any positive sequence hj → 0 and corresponding
deformations y(hj) in W 1,2(Ω,R3) such that ∇hy(hj) → R strongly in L2,

E(R) ≤ lim inf
j→∞

E(hj)(y(hj)).

2. (limsup inequality) For any positive sequence hj → 0 and for every R ∈
L2(Ω,R3×3) there exists a sequence y(hj) in W 1,2(Ω,R3) such that ∇hy(hj) →
R strongly in L2,

E(R) ≥ lim sup
j→∞

E(hj)(y(hj)).

The proof is deferred to Section 7.
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2 Minimization within an ansatz

2.1 Definitions

The one-dimensional energy E (Equation 4) depends on several quantities,
which we now define. These definitions are geared towards a formal ansatz
(Section 2.2) that achieves the correct energy. Theorem 2 gives computation-
ally explicit definitions of Q1 and Am. Equation (8) and (9) of Section 2.2
give a concise but more opaque definition of E.

Definition 2 (admissible strains) For A ∈ Skew(3), we define the set

E(A) =

sym

ξe1 +A

 0
x2
x3

∣∣∣∣∣∣∇csβ

 : ξ ∈ R,β ∈W 1,2(S,R3)


and the vector space E = ∪A∈Skew(3)E(A). We associate to L2(S, Sym(3)) the
inner product 〈F ,G〉W ′′(Id) =

∫
S
〈F ,W ′′(Id)G〉dxcs with the inherited norm

‖·‖W ′′(Id). Note that E is a closed subspace of L2(S,Sym(3)) with respect to
this norm.

Remark 1 (Uniqueness of A, β and ξ) Notice that a strain F ∈ E does not
correspond to a unique β. However, it does correspond to a unique skew-
symmetric matrix A. To see this more clearly, we write out F in block form:

F =

(
ξ − κ · xcs

1
2 (ωx⊥cs +∇csβ1)

1
2 (ωx⊥cs +∇csβ1) sym∇csβcs

)
.

1. ξ, κ and ω are uniquely associated to F ∈ E .
2. β1 is unique up to an additive constant.
3. F involves βcs = (β2,β3) only through sym∇csβcs. Therefore βcs is

uniquely defined modulo infinitesimal rigid motions.

Definition 3 (Decomposition of m) In this definition we hold x1 fixed.
By orthogonally projecting m onto E , we see that there exist Am(x1), ξm(x1)
and βm(x) such that

m(x) = mE(x) +m⊥(x) = sym

ξme1 +Am

 0
x2
x3

∣∣∣∣∣∣∇csβ
m

+m⊥(x)

and 〈m⊥(x1,xcs),F 〉W ′′(Id) = 0 for all F ∈ E and a.e. x1. Am, ξm and βm are

in L2 (by boundedness of the projection operator). By Remark 1, we can also
insist that

∫
S
βm(x1,xcs)dxcs = 0 and

∫
S

skew∇csβcs
m(x1,xcs)dxcs = 0.

With these conditions, βm is uniquely defined.

Let Q3(F ) = 1
2W

′′(Id)(F ,F ) denote the three-dimensional linear elastic
energy density. We define a corresponding one-dimensional energy density Q1

and the limiting energy functional.
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Definition 4 (The one-dimensional energy density) LetQ1 : Skew(3)→
R be defined by

Q1(A) = min
F∈E(A)

∫
S

Q3(F )dxcs, (5)

and define E0 =
∫
Ω
Q3(m⊥)dx.

In the following remark we check that Q1 agrees with the one-dimensional
energy density for a rod without misfit, which was found in [27]. This amounts
to showing that the minimal F in Definition 4 satisfies ξ = 0. The Euler-
Lagrange equations associated to Q1 are explicitly written in [27] Remark
3.4, and specialized in Remarks 3.5 (isotropic rods) and 3.6 (circular cross
sections).

Remark 2 (Some properties of the optimal F in the definition of Q1) Let F
minimize

∫
S
Q3(F )dxcs among E(A) as in Equation (5). We write

F = sym

ξe1 +A

 0
x2
x3

∣∣∣∣∣∣∇csβ

 .

Then F has ξ = 0 and
∫
S
∇csβdxcs = 0.

Proof The first variation of
∫
S
Q3(F )dxcs with respect to ξ and β must vanish.

This condition reads

0 =

∫
S

〈
sym

ξe1 +A

 0
x2
x3

∣∣∣∣∣∣∇csβ(xcs)

 ,W ′′(Id) sym (ζe1|∇csη(xcs))

〉
dxcs

for any η ∈ W 1,2(S,R3) and ζ ∈ R. By considering η linear, we see that for
any matrix G ∈ Sym(3),

0 =

〈∫
S

sym (ξe1 +Axcs|∇csβ) dxcs,W
′′(Id)G

〉
.

The elastic stiffness tensor W ′′(Id) maps Sym(3) onto itself, so W ′′(Id)G is
an arbitrary matrix in Sym(3). Thus the integrand must vanish. Using our
convention that

∫
S
xcsdxcs = 0, we get

0 =

∫
S

sym

ξe1 +A

 0
x2
x3

∣∣∣∣∣∣∇csβ

 dxcs = sym

(
|S|ξe1

∣∣∣∣∫
S

∇csβdxcs

)
.

By considering the 11 component of this matrix it follows that ξ = 0. The
other components show that

∫
S

sym (0|∇csβ) dxcs = 0. The condition that∫
S

skew∇csβcsdxcs = 0 completes the proof.

This technique can be used to compute the preferred extension ξm, along
with a few other projections of mE .
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Remark 3 (Some properties of mE) The following equations hold a.e. in x1:

– ξm(x1) = 1
|S|
∫
S
m11(x)dxcs,

–
∫
S
∇csβ

m
cs(x)dxcs =

∫
S
mcs,cs(x)dxcs, and

–
∫
S
∇csβ

m
1 (x)dxcs = 2

∫
S
mcs,1(x)dxcs.

The proof is essentially identical to that of Remark 2, and is therefore
omitted.

2.2 The ansatz

The proof of the main result, Theorem 1, is deferred to Section 7. Here we
present a formal ansatz which, ignoring regularity issues, gives the correct
limiting energy.

Given a frame R(x1) ∈ SO(3) we define

y(h)(x) = ỹ(x1) + h(t(x1) + x2r2(x1) + x3r3(x1)) + h2Rβ(x). (6)

Here t(x1) and β(x) are R3-valued functions to be determined, and ỹ(x1) =∫ x1

0
r1(s)ds. Let A = RT∂1R. As previously mentioned, the entries of A

control the bending and twist of the rod as one moves along the midline
(see Equation (3)). ξe1 = RT∂1t measures the infinitesimal stretching, and β
controls the slight deformation of the cross section. We compute the gradient:

RT∇hy(h)(x) = Id +h

ξe1 +A

 0
x2
x3

∣∣∣∣∣∣∇csβ

+O(h2). (7)

Therefore the energy is, at least formally, given to leading order in h by

Eansatz
m (A,β, ξ) = E(h)(y(h)) =

∫
Ω

Q3

sym

ξe1 +A

 0
x2
x3

∣∣∣∣∣∣∇csβ

−m(x)

dx,
(8)

where Q3(F ) = 1
2W

′′(Id)(F ,F ) is the linear elastic energy density associated
with W .

The energy Eansatz
m (A,β, ξ) is closely connected to our final energy E(R).

Notice in particular that

E(R) = min
β,ξ

Eansatz
m

(
RT∂1R,β, ξ

)
, (9)

and that Eansatz
m (A,β, ξ) is minimized by (Am,βm, ξm). To make this explicit,

we plug in m = mE +m⊥ and minimize over β and ξ.
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Using ξ̃ = ξ − ξm, and similarly for Ã and β̃, the energy is

lim
h→0

E(h)(y(h)) =

∫
Ω

Q3

sym

ξ̃ψ + Ã

 0
x2
x3

∣∣∣∣∣∣∇csβ̃

−m⊥(x)

dx
=

∫
Ω

Q3

sym

ξ̃e1 + Ã

 0
x2
x3

∣∣∣∣∣∣∇csβ̃

+Q3(m⊥)dx.

By choosing β and ξ optimally and choosing E0 =
∫
Ω
Q3(m⊥)dx, we get that

lim
h→0

E(h)(y(h)) = E0 +

∫ L

0

Q1(A(x1)−Am(x1))dx1.

3 Explicit computation of Q1 and Am

The one-dimensional energy

E(y) = E0 +

∫ L

0

Q1

(
R(x1)T∂1R(x1)−Am(x1)

)
dx1

is defined in Section 2.1. The definition ofAm is computationally cumbersome:
(Am,βm, ξm) minimize a quadratic energy Eansatz

m (A,β, ξ). The bulk of the
work goes into computing βm, which does not appear in the reduced energy.
This amounts to solving a partial differential equation in each cross section.
Computing Am ought to be easier than that; we project m onto a three-
dimensional space, which by the Riesz representation theorem only requires
computing three integrals. In this section we write down those integrals.

We start the task of identifying Am. Elements of E are determined by a
scalar ξ ∈ R controlling extension, a matrix A ∈ Skew(3) controlling bend-
ing and twist, and a function β controlling the warping of the cross section.
The energy is the minimum of Eansatz

m (A,β, ξ) over β and ξ. To find this,

we write down the optimal warping of the cross section ψ(j) associated to
stretching (j = 0), twist (j = 1) or bending (j = 2, 3). The optimal β is a

linear combination of ψ(j).6

6 There is something counterintuitive about this approach. It looks like β and ξ are of
similar status, because we minimize over both of them, but instead our analysis treats ξ, ω
and κ similarly. The reason for this will become clear in the proof of Theorem 2. The key
is that F (j) are orthogonal to symmetrized gradients, but are not in general orthogonal to
each other.



On the bending and twisting of rods with misfit 13

It is useful to consider the response of the rod to unit twist, unit bending in
each direction, and also stretching by an amount h per unit length. We define

I(0)(ψ) =

∫
Ω

Q3(sym (e1|∇csψ))dx

I(1)(ψ) =

∫
Ω

Q3(sym (−x3e2 + x2e3|∇csψ))dx

I(j)(ψ) =

∫
Ω

Q3(sym (xje1|∇csψ))dx.

Notice that these are closely related to the energy of our ansatz with no misfit
(see Equation (8)). For example, I(0)(ψ) = Eansatz

0 (0,ψ, 1) is the energy of a
rod stretched by h per unit length with a cross section warped by an amount
ψ. We let ψ(j) be the minimizer of I(j), then define the associated strains by:

F (0) = sym
(
e1

∣∣∣∇csψ
(0)
)

F (1) = sym
(
−x3e2 + x2e3

∣∣∣∇csψ
(1)
)

F (j) = sym
(
xje1

∣∣∣∇csψ
(j)
)

for j = 2, 3.

(10)

Theorem 2 (Q1 andA for a general rod) Let m̃ = m−e1⊗e1|S|
∫
S
m11(xcs)dxcs.

For a.e. x1 the preferred twist ωm and bending κm solve the following three-
by-three linear system:〈

m̃,F (j)
〉
W ′′(Id)

= ωm
〈
F (1),F (j)

〉
W ′′(Id)

+
∑
i=2,3

κmi

〈
F (i),F (j)

〉
W ′′(Id)

(11)
for j ∈ {1, 2, 3}. The one-dimensional energy density is given by

Q1(ω,κ) =

∫
S

Q3

(
ωF (1) + κ2F

(2) + κ3F
(3)
)
dxcs. (12)

Proof To simplify notation we will write κ1 = ω for the duration of this proof.
The symmetrized gradient with respect to cross-sectional variables only is
denoted by ecs(α) = sym (0|∇csα) for α ∈W 1,2(Ω,R3).

Notice that the strains F (j) are all orthogonal to the cross-sectional sym-
metrized gradients: for any α ∈W 1,2(Ω,R3),

δI(j)(ψ(j))[α] =
〈
F (j), ecs(α)

〉
W ′′(Id)

= 0.

By projecting m onto E , we have

m =
(
ξmF (0) + ωmF (1) + κm2 F

(2) + κm3 F
(3)
)

+ ecs(αm) +m⊥ (13)
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for some αm, where m⊥ is orthogonal to each of the other terms in the sense
of 〈·, ·〉W ′′(Id). Recall that, according to Remark 3, ξm = 1

|S|
∫
S
m11(xcs)dxcs.

Taking the inner product of each side with F (j), j ∈ {1, 2, 3} yields〈
m− F

(0)

|S|

∫
S

m11(xcs)dxcs,F
(j)

〉
W ′′(Id)

=

3∑
i=1

κmi

〈
F (i),F (j)

〉
W ′′(Id)

.

The orthogonality of F (j) with symmetrized gradients implies that
〈
F (j), e1 ⊗ e1

〉
W ′′(Id)

=〈
F (j),F (0)

〉
W ′′(Id)

, which shows Equation (11).

Recalling Eansatz
m from Equation (8), the one-dimensional energy is given

by

E(R) = min
ξ,β

Eansatz
m

(
RT∂1R,β, ξ

)
= min

ξ,β

∫
Ω

Q3

sym

ξe1 +A

 0
x2
x3

∣∣∣∣∣∣∇csβ

−m
dx

= min
ξ,α

∫
Ω

Q3(m⊥) +Q3(ecs(α−αm))

+Q3

(ξ − ξm)F (0) +

3∑
j=1

(κj − κmj )F (j)

dx
= E0 +

∫
Ω

Q3

 3∑
j=1

(κj − κmj )F (j)

dx.
The third line used orthogonality. The fourth used the definition of E0 =∫
Ω
Q3(m⊥), and the fact that the minimum is achieved when ξ = ξm (Re-

mark 2). This implies Equation (12).

Corollary 1 (The quadratic nature of Q1) Q1 : Skew(3)→ R is a positive
definite quadratic form.

Proof This follows immediately from Equation (12).

Notice that finding the energy density Q1 requires finding the strains F (j),
j ∈ {1, 2, 3}. Given those strains, one can compute Am by taking several
integrals and solving a linear system. If one considers a rod with misfit that
depends on the cross section (i.e.m(x) depends on x1) then the above theorem
simplifies the computation immensely.

We can make Theorem 2 more explicit when the material is isotropic:
W ′′(Id)(F ) = 2µF + λ tr(F ) Id where µ > 0 and λ + µ > 0. Am depends on
one parameter, ν = λ

2(µ+λ) (Poisson’s ratio).
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Remark 4 (Strain of an isotropic rod) Let the elastic stiffness tensor be isotropic
with Poisson’s ratio ν. Define φ(xcs) (called the torsion function) to be the
solution to {

∆φ(xcs) = 0 for xcs ∈ S,
∂nφ(xcs) = (−x3, x2) · n for xcs ∈ ∂S.

The strains F (j) are given by

F (0) =

1 0 0
0 −ν 0
0 0 −ν


F (1) =

 0 1
2 (∂2φ− x3) 1

2 (∂3φ+ x2)
1
2 (∂2φ− x3) 0 0
1
2 (∂3φ+ x2) 0 0


F (j) = xj

1 0 0
0 −ν 0
0 0 −ν

 for j = 2, 3.

(14)

The proof follows directly from the Euler-Lagrange Equations of I(j). For j 6= 0
this observation was also in [27].

Theorem 3 (Q1 and A for an isotropic rod) Let W ′′(Id) be isotropic,
and assume that

∫
S
x2x3dxcs = 0. Then

1. the quadratic form Q1 is diagonal in ω, κ2, κ3:

Q1(A(ω,κ)) =

∫
S

ω2Q3

(
F (1)

)
+ κ22Q3

(
F (2)

)
+ κ23Q3

(
F (3)

)
dxcs; (15)

2. moreover, ωm, κmj have the simple formulas:

ωm =

〈
F (1),m

〉
W ′′(Id)∥∥∥F (1)

∥∥∥2
W ′′(Id)

, κmj =

∫
S
xjm11(x)dxcs∫
S
x2jdxcs

for j = 2, 3. (16)

Proof The key observation is that
{
F (j)

}3

j=0
are mutually orthogonal with

respect to 〈·, ·〉W ′′(Id). Equation (15) follows immediately from this and the

analagous statement for general rods, Equation (12) of Theorem 2. The or-

thogonality of F (j), together with Equation (11), shows that

ωm =

〈
F (1),m

〉
W ′′(Id)∥∥∥F (1)

∥∥∥2
W ′′(Id)

, κm2 =

〈
F (2),m

〉
W ′′(Id)∥∥∥F (2)

∥∥∥2
W ′′(Id)

, κm3 =

〈
F (3),m

〉
W ′′(Id)∥∥∥F (3)

∥∥∥2
W ′′(Id)

.

Elementary manipulations reduce this to Equation (16).
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Remark 5 (The geometric effect of Poisson’s ratio) It is remarkable that the
preferred bending and twist do not depend on ν, although this is well known
in the special case of the bimetallic rod. In general (for anisotropic materials),
Am depends on W ′′(Id).

Remark 6 (Conditions on m that produce no bending or twist) For isotropic
rods, we see that the preference to bend is driven by a propensity to stretch
in the long direction, and the preference to twist is driven by a propensity
that cross sections prefer to shear. Specifically, if m11 = 0 then κm = 0 and
if m12 = m13 = 0 then ωm = 0. It follows in particular that isotropic misfit
will never make a rod twist. This explains why the well-known bimetallic strip
bends but does not twist, and suggests how we might create a rod that prefers
to twist. See Section 6.1 and Section 6.2 for examples related to these remarks.

4 Properties of the one-dimensional energy

This section discusses how properties of the three-dimensional energy have
consequences for the limiting, one-dimensional rod theory. In particular, we
show in Section 4.1 how symmetries can force the preferred twist ωm or pre-
ferred bending κm to vanish, and we discuss in Section 4.2 the circumstances
in which E0 = 0.

4.1 Symmetries of the rod

Finding Am typically requries computing several integrals. However, symme-
tries in the three-dimensional energy can imply that certain entries in Am are
0. Consider the following concrete example: suppose that the three-dimensional
energy has a rotational symmetry Qcs in the cross section. Rotating the cross
section (in reference coordinates) by a matrix Qcs ∈ SO(2) rotates the cur-
vature vector κ = (κ2, κ3) by the same matrix Qcs. The energy is minimized
by some unique κ = κm, so κm = Qcsκ

m. This implies that κm = 0. A
symmetry can also imply that ωm = 0: if the rod is symmetric with respect to
a reflection, then because reflections change orientation the energy cannot dis-
tinguish between left-handed and right-handed twist. The following theorem
generalizes and makes rigorous these ideas.

Theorem 4 (Symmetries of a rod) Let Q ∈ O(3) be of the following form:

Q =

q11 0 0
0 q22 q23
0 q32 q33


and let Qcs be the lower right two-by-two block of Q. Assume also that:

1. (Symmetry of the elastic stiffness tensor). For any F ∈ Sym(3),

W ′′(Id)(QTFQ) = QT (W ′′(Id)F )Q.
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2. (Symmetry of the cross section). If xcs ∈ S then Qcsxcs ∈ S.
3. (Symmetry of the misfit). For a.e. x ∈ Ω, QTm(x)Q = m(x1,Qcsxcs).

Then the preferred bending κm and twist ωm satisfy the following conditions:

– If det(Q) = −1 then ωm = 0.
– Qcsκ

m = κm. In particular, if Qcs ∈ SO(2) and Qcs 6= Id then κm = 0.

The above conditions mean that the rod is symmetric with respect to the
rigid motion given by Q. The first special case outlined above corresponds to
q11 = 1, Qcs ∈ SO(2).

Remark 7 (Symmetry of the misfit with q11 = −1) Notice that the third condi-
tion is notQTm(x)Q = m(Qx), which would relate the misfit in two different
cross sections. Our conditions 2 and 3, by contrast, involve symmetries of the
cross section obtained by fixing x1.

Proof Let x̃1 = x1, x̃cs = Qcsxcs and suppose that Eansatz
m (A,β, ξ) is mini-

mized at A(ωm,κm), βm, and ξm. We will show that the energy is invariant
under the transformation at ω̃ = (detQ)ω, κ̃ = Qcsκ and β̃ = Qβ. By strict
convexity of the energy (Corollary 1), the minimizers κm and ωm are unique
so in fact κm = Qcsκ

m and ωm = (detQ)ωm.

Eansatz
m =

∫
Ω

Q3

sym

ξe1 +A(ω,κ)

 0
x2
x3

∣∣∣∣∣∣∇csβ

−m(x)

dx
=

∫
Ω

Q3

QT

sym

ξe1 +A(ω,κ)

 0
x2
x3

∣∣∣∣∣∣∇csβ

−m(x)

Q
dx

=

∫
Ω

Q3

(
QT

(
ξ − κ · xcs

1
2 (ωx⊥cs +∇csβ1)

1
2 (ωx⊥cs +∇csβ1) sym∇csβcs

)
Q−m(x1,Qcsxcs)

)
dx

=

∫
Ω

Q3

((
ξ − κ · xcs

1
2 (ωx⊥cs +∇csβ1)Qcs

1
2Q

T
cs(ωx⊥cs +∇csβ1) QT

cs sym∇csβcsQcs

)
−m(x1,Qcsxcs)

)
dx.

To derive the second line we used symmetry of the elastic stiffness tensor, and
to find the third we used the symmetry of the misfit. We write the energy in
terms of x̃:

Eansatz
m =

∫
Ω

Q3

((
ξ − κ̃ · x̃cs

1
2 (ω̃x̃⊥cs +∇csβ̃1)

1
2 (ω̃x̃⊥cs +∇csβ̃1) sym∇csβ̃cs

)
−m(x̃)

)
dx̃

= Eansatz
m (ω̃, κ̃; β̃, ξ).

In finding the off-diagonal components we used the fact that, if Qcs is a
rotation, (Qcsx̃cs)⊥ = Qcsx̃

⊥
cs because rotations commute in two dimensions.
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If Qcs is a reflection then by direct computation we see that (Qcsx̃cs)⊥ =
−Qcsx̃

⊥
cs. Thus,

q11

(
QT

csx̃cs

)⊥
= q11 (detQcs)QT

csx̃
⊥
cs = (detQ)QT

csx̃
⊥
cs.

We conclude that, for any ω and κ,

Eansatz
m (ω,κ;β, ξ) = Eansatz

m

(
(detQ)ω,Qcsκ; β̃, ξ

)
.

The theorem follows from the fact that minimizers of Eansatz
m exist and are

unique.

4.2 Condition for vanishing E0

We present a test to determine whether the minimum energy E0 is 0. This
is equivalent to m ∈ E , which we interpret as the statement that m is a
linear strain admissable achievable by a suitable combination of bending, twist,
extension, and warping of the cross section.

Theorem 5 (Conditions for E0 = 0) Note that E0 = 0 if and only if
m(x1,xcs) ∈ E for a.e. x1. For rods with simply connected cross section S,
this is equivalent to the following conditions a.e. in x. Derivatives are meant
in the distributional sense.

1. m11 is affine in xcs, and
2. ∂2m13 − ∂3m12 is constant in xcs, and
3. ∂22m33 + ∂33m22 − 2∂23m23 = 0.

Proof First assume that m(xcs) ∈ E for a.e. x1, i.e. that

m(xcs) = sym

ξme1 +Am

 0
x2
x3

∣∣∣∣∣∣∇csβ
m


= sym

(
ξm − κm · xcs

1
2 (ωmx⊥cs +∇csβ

m
1 )

1
2 (ωmx⊥cs +∇csβ

m
1 ) sym∇csβ

m
cs

)
. (17)

The first condition, that m11 be affine in xcs, is obvious. The second condition
is obtained by commuting derivatives:

∂2m13 − ∂3m12 =
1

2
(ωm + ∂23β

m
1 )− 1

2
(−ωm + ∂32β

m
1 ) = ωm. (18)

The third condition follows from the compatibility condition for linear strains
(see e.g. [7]).

We show the converse: if m satisfies conditions 1-3 then m ∈ E . It suffices
to find ξm, κm, ωm and βm such that Equation (17) holds. Finding κm and
ξm is simple: by condition 1, we can define m11 = ξm + κm · xcs.
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The second condition tells us that ∂2m13−∂3m12 is a constant, so in order
to match Equation (18) we call this constant ωm. Condition 2 shows that
mcs,1 − 1

2ω
mx⊥cs has curl 0. The domain S is simply connected, so there is

some βm1 such that ∇csβ
m
1 = mcs,1 − 1

2ω
mx⊥cs.

By the compatibility condition for linear strains [7] the third condition
implies that mcs,cs = e(βmcs) for some function βmcs.

Remark 8 In general, Am depends on both W ′′(Id) and m. If m ∈ E then
this is not the case; Am depends only on m.

5 Related energy functionals

5.1 Comparison between rods and ribbons

There has been much recent interest in ribbons (informally, elastic bodies with
three length scales t� w � L) with misfit, motivated by diverse applications
in physics [6], biology [3] and chemistry [34]. In principle Theorem 1 makes no
assumptions about the eccentricity of the cross section, and so one might use
this (or other rod theories) to study ribbons. We urge caution. The bounds in
Theorem 1 hold for any cross section S, but they do not hold uniformly over
all S. Audoly and Pomeau suggest [4] that a narrow enough ribbon can be
modeled as a rod; specifically they require that w �

√
tL.7

Alternatively, one could model a ribbon as a narrow sheet. The Sadowsky
functional [32] [36], which was recently justified via Γ -convergence [12] [17],
gives an elastic energy functional for an inextensible ribbon (without misfit)
depending only on the configuration of the ribbon’s midline.8 In the present
context it is natural to ask whether something similar can be done for rib-
bons with misfit. The answer is yes, but the theory is not yet complete. One
reasonable analogue [19] of an inextensible plate with misfit is of the form

E(y) =

{∫
S Q
(
IIy − II0

)
if ∇yT∇y = g

∞ otherwise

where IIy denotes the second fundamental form of y, II0 the preferred second
fundamental form and g the preferred metric. Both II0 and g are determined
by the misfit, which is defined on a thin, three-dimensional sheet S × (−ε, ε).
Freddi et. al. derived an analogue of the Sadowsky functional assuming that
g is the Euclidean metric, which is true for multilayers [33]. We expect that

7 In this section we conflate the typical radius of curvature with L. These are closely
related quantities in the present work because the small-thickness limit of Theorem 1 holds
the midline fixed as h tends to 0.

8 Both results considered the Γ -limit of an inextensible plate energy in the small-width
limit. Kirby and Fried [17] used the Frenet frame with some additional assumptions amount-
ing to small twist, whereas Freddi et. al. [12] used the material frame and derived a corrected
Sadowsky functional that holds even with large twist.
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extending this result to arbitrary g is non-trivial: the set of immersions with
some prescribed metric is not well understood.

The rod-like and Sadowsky energies appear to be very different, so given
that they model similar physical systems it is natural to ask how they are
related. We are not aware of a general answer, but an enlightening example
due to Armon et. al. [3] compares the narrow and wide regimes for a ribbon
with misfit similar to the anisotropic bilayer of Section 1.1.9 In the narrow
ribbon limit w �

√
tL the bending energy dominates, which gives rise to

a rod-like theory similar to Equation (4). If w �
√
tL then the membrane

energy dominates, so Armon et. al. minimize the bending energy (modified
due to misfit) among isometries. This matches the assumptions used in [13]
to derive a Sadowski-like functional. The resulting elastic energy functional
illustrates a significant difference between rods and ribbons: even with free
boundary conditions it may have two local minima, which is impossible for a
quadratic functional such as Equation (4).

5.2 Comparison to the theory of Kupferman and Solomon

In Section 1.3 we mentioned a general theory of dimension reduction due to
Kupferman and Solomon [19]. We briefly outline their results, specialized to
rods [2], and show that in that case the present theory is more general: in our
language, [19] uses W ′′(Id)F = symF and assumes that m(x) is linear in
xcs. Of course, the main strength of the work of Kupferman and Solomon is
that it is not restricted to rods, but instead deals with arbitrary manifolds.

The starting point of [19] is an energy of the form10

EKS
h (y(h)) =

C

h4

∫
Ωh

dist2(dy(h)(z),SO(3))dvolg(z) (19)

where dy(h) is a derivative in the sense of some smooth metric g defined on
Ω1. For the sake of simplicity we take g(x1, 0, 0) = Id. Equation (19) closely
resembles the energy E(h)(y(h)) (Equation 2), whereM2

h is the preferred value
of (∇hy(h))T∇hy(h) and therefore naturally thought of as a metric. A key
difference is that g does not depend on h. If we set M2

h(x) = g(x1, hxcs) +
O(h2) and take a power series expansion in h we see that m(x) must be linear
in xcs.

Kupferman and Solomon study the limit of EKS
h in the sense of reduced-

convergence (Eq. 2.3 and 2.4 of [19]), which is closely related the Γ -convergence.

9 The words ‘wide’ and ‘narrow’ are used inconsistently in the literature. Here as in [3]
and [4] we refer to w and

√
tL, whereas in [12] the authors use ‘narrow’ in relation to w/L.

Additionally, we note that the analysis of the narrow ribbon in [3] is similar to that in [4]
but with misfit.
10 As in the introduction, x is the reference coordinates after rescaling the cross section

and z = (x1, hx2, hx3) the reference coordinates with physically correct dimensions.
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The limiting energy is

EKS
rod =

∫ L

0

C1

(
ω − ωKS

)2
+ C2

(
κ− κKS

2

)2
+ C3

(
κ− κKS

3

)2
where ω and κj are defined as in this work, and

κKS
j =

1

2
∂j g̃11 and ωKS =

1

2
(∂2g̃13 − ∂3g̃12) (20)

are the preferred curvatures. For notational convenience, in this section alone
we use ∂j g̃ = ∂jg(x1, 0, 0). Here we assumed that

∫
S
x2x3dxcs = 0.

We show that, should their theory and ours both apply, the limiting en-
ergies prefer the same bend and twist. Let m(x) = 1

2 (x2∂2g̃ + x3∂3g̃) and

W (F ) = dist2(F ,SO(3)). The misfit m as defined above is exactly achiev-
able: m11 = 1

2 (x2∂2g̃11 + x3∂3g̃11) so the preferred curvatures are κmj =
1
2∂j g̃11 = κKS

j . The preferred twist is slightly more complicated: we set βm1 =
x2x3

2 (∂3g̃12 + ∂2g̃13) and ωm = ωKS. Then

m12 =
1

2
(−ωmx3 + ∂2β

m
1 ) and m13 =

1

2
(ωmx2 + ∂3β

m
1 ). (21)

Lastly, we note that the lower two-by-two block of m is affine and therefore
equal to e(βcs) for some function βcs ∈ W 1,2(S,R2). It follows that κKS

j and

ωKS are the preferred values given by both theories.
Notice that, in the rod theory of Kupferman and Solomon, the minimum

energy is always 0 and the preferred bend and twist do not depend on the
elastic moduli [2].

6 Examples

We make several of the examples from Section 1.1 precise.

6.1 The isotropic bilayer

We return to the classical example of the bimetallic strip. Consider a square
cross section S = [−1, 1]2 and piecewise constant misfit m(x) = sgn(x3) Id.
Suppose that the linear elastic tensor is isotropic:11 [W ′′(Id)]F = 2µF +
λ tr(F ) Id for µ > 0 and λ+ µ > 0.

Our goal is to find Am, which gives us the preferred bending and twist.
To find the full energy we would also have to compute Q1 (the energy density,
which does not depend on the misfit) and the minimum energy E0. Theorem 3

11 A real bilayer is made of two different materials, so both the misfit and the Hooke’s
law would depend on xcs. In this paper, however, we have taken the Hooke’s law to be
independent of xcs (since our goal is to explore the effect of misfit in the simplest possible
setting). Thus our bilayer is made from two materials with the same Hooke’s law but different
prestrains.
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reduces this to the evaluation of several integrals. It is clear that ωm = κm2 = 0.
We calculate κ3.

According to Theorem 3,

κm3 =

∫
S
x3m11(x)dxcs∫
S
x23dxcs

=

∫ 1

−1 |x3|dx3∫ 1

−1 x
2
3dx3

=
3

2
.

This agrees exactly with the result found in [35] (Eq. 6).
We can alternatively invoke Theorem 4 to show that ωm = κm2 = 0. The

relevant symmetry Q is given by q11 = 1 and Qcsxcs = (−x2, x3).

6.2 The diagonally prestrained bilayer

We return to the diagonally prestrained bilayer of Section 1.1. The descrip-
tion of the diagonally prestrained bilayer is based on experiments conducted
independently by Armon et. al. [3] and Ye et. al. [37]. Both experiments dealt
with ribbons rather than rods.

It is worth asking why diagonal prestrains (i.e. m that have an eigenvector
neither in the cross section nor perpendicular to it) are associated with twist.

Notice that F (1), which measures the strain of a twisted rod, has eigenvectors
(±c, ∂2φ − x3, ∂3φ + x2) for c = |∇csφ + x⊥cs|, which make an angle of 45◦

with the long axis. These have eigenvalues ±c.12 Geometrically, this means
that twisting a rod clockwise stretches helices that wrap clockwise around the
centerline. Helices wrapping in the opposite direction are instead compressed.
It is intuitive that, if ωm 6= 0, then m must favour extension or compression
of helices. For isotropic materials this cannot be accomplished with either
preferred expansion along the length of the rod or in the cross section. This can
be readily seen from the formula for ωm in Theorem 3: if e1 is an eigenvector

of m(x) then
〈
F (1)(x),W ′′(Id)m(x)

〉
= 0.

We again use an isotropic material with square cross section. The misfit
is piecewise constant, but rather than being isotropic the two sides prefer
the same magnitude of stretching but in two different directions. Making this
precise: let u = (cos(θ), sin(θ), 0) and u⊥ = (− sin(θ), cos(θ), 0). We define the
misfit:

m(x) =

{
u⊗ u if x3 > 0

u⊥ ⊗ u⊥ if x3 < 0.

We can also write m in the form

m(x) =
1

2
Id +

sgn(x3)

2

cos(2θ) sin(2θ) 0
sin(2θ) − cos(2θ) 0

0 0 0

 .

12 The third eigenvector has eigenvalue 0.
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We observe that
∫
S
x2m11(x)dxcs = 0, so κm2 = 0. Following Theorem 3 we

compute:

κm3 =

∫
S
x3m11(x)dxcs∫
S
x23dxcs

=
3

4

∫
S

|x3|
2

cos(2θ)dxcs =
3

4
cos(2θ).

The prefered twist is given by

ωm =

〈
F (1),m

〉
W ′′(Id)∥∥∥F (1)

∥∥∥2
W ′′(Id)

= 2 sin(2θ)

∫
S

(∂2φ− x3) sgn(x3)dxcs∫
S
|∇csφ+ x⊥cs|2dxcs

.

Armon et. al. [3] analyzed this system using plate theory of Kupferman and
Solomon [19], which requires that the misfit be linear in the thin direction. Our
analysis has two principal differences: we work with rods rather than ribbons,
and we choose piecewise constant misfit. We unsurprisingly fail to reproduce
their results for wide ribbons, but up to a multiplicative constant our results
agree with those of Armon et. al. in the narrow regime. See Section 5.1 for
further comments on the distinction between wide and narrow strips.

6.3 Rods with surface stress

We turn to a model meant to approximate rods with surface stress using a
thin layer with misfit. Chen et. al. [6] reported an experiment in which strained
latex membranes were glued to thicker rubber sheets. Ribbons were cut out
of the composite sheet. Depending on the angle between the long axis of the
ribbon and the direction in which the latex was stretched, the ribbon can
bend, twist or form a helix. As before, we use rods whereas the experiment
used ribbons. The principal difference between this experiment and [37] or [3]
is that one layer is much thinner than the other.

We again use an isotropic material and a square cross section S = [−1, 1]2.
Let ε > 0, which will be the non-dimensional thickness of the (thin) latex
sheet. The direction in which the latex was stretched is given by the unit
vector u = (cos(θ), sin(θ), 0). The misfit m is

m(x) =

{
1
εu⊗ u if x3 > 1− ε
0 otherwise.

We computeAm. We use Theorem 3 to compute the other two components
of Am. As in the last example, it is immediately clear that κm2 = 0.

κm3 =

∫
S
x3m11dxcs∫
S
x23dxcs

=
3

4
(2− ε) cos2 θ

ωm = sin 2θ
1
ε

∫ 1

1−ε
∫ 1

−1(∂2φ− x3)dx2dx3∫
S
|∇csφ+ x⊥cs|2dxcs

.
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Fig. 5: A schematic of the isotropic trilayer. The misfit prefers expansion in
the outer layers.

We are especially interested in the behaviour when ε is small, so we note that

lim
ε→0

ωm = sin 2θ

∫ 1

−1(∂2φ(x2, 1)− 1)dx2∫
S
|∇csφ+ x⊥cs|2dxcs

.

Chen et. al. [6] found an explicit minimizer to a linear elastic energy with
surface stress in a three-dimensional body. The body is thin in only one direc-
tion, and therefore the solution resembles a plate more than a rod. For this
reason their analysis does not match this example exactly, but it is qualita-
tively similar. In particular, our results and theirs agree that the rod forms a
part of a circle if θ = 0, and in general the centerline forms a helix.

6.4 The trilayer

We turn to an example in which thin rods behave very differently from thin
ribbons. This is not motivated by any particular experiment, though kelp
blades are somewhat similar [18].

Consider a rod comprised of three layers, as shown in Figure 5. The outer
two layers are identical, and the misfit favours isotropic expansion relative
to the inner layer. For definiteness, we consider the following problem. Let
S = [−ε, ε]× [−1, 1] and with isotropic elastic stiffness tensor.

m(x) =

{
Id if |x3| > 1

3

0 otherwise.

It is natural to guess that the rod should twist, because twist makes lines
along the outside of the rod expand without changing the midline. This logic
is, however, incorrect : due to mirror symmetry, the preferred twist must be
0 (Theorem 4 with q11 = −1, Qcs = Id). The key error is that we ignored
strains due to shear which are O(hω), whereas the change in length scales as
h2ω2. Shear dominates in the thin-rod limit. In Remark 6 we noticed that, in
an isotropic rod, twist is caused by misfit m that prefers shear.

The geometric reasoning that suggested twist was not completely wrong.
Ribbons with similar misfit can prefer twist, as studied in [5] (example 2 of
section 1.4). Formally, the shear should scale as hωε while the membrane effect
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is order h2ω2. In a ribbon both h and ε are small, but treating this is a rod
takes the h → 0 limit first, leaving ε fixed, then sends ε to 0. Theorem 1
applies for any ε, but it does not apply uniformly for all ε > 0. We could
instead consider the opposite distinguished limit: first we ε → 0, then h → 0.
This approach treats the ribbon as a narrow two-dimensional sheet.13

6.5 Quartz

As mentioned in Section 1.1, naturally occurring α-quartz sometimes resembles
a twisted macroscopic rod. It has been proposed, for an example by Shtuken-
berg et. al. in [34] Section 5.7, that the twist is caused by slight variations
in the preferred lengths of the crystalline lattice. Attempting to capture this
idea within the framework of the present study, it seems natural to model a
quartz crystal as a rod with misfit. Alas, the attempt seems to fail: Proposi-
tion 1 shows that under some (reasonable, in our view) hypotheses based on
the symmetries of quartz, the associated rod should have no preferred twist.
This is of course a highly idealized picture of quartz, as we briefly discuss at
the end of this subsection.

To get started, we begin by reviewing the physical origin of the misfit. A
quartz crystal may be long and thin because the growth processes on distinct
(not symmetry related) faces are different. In particular, some faces grow much
faster than others. The differences in the growth processes also cause slight
impurities,14 which give rise to variations in m. Although we will not use this,
it is natural to assume that m is constant on polyhedral zones: each point x in
the crystal is included because some face grew through it, which partitions the
crystal. Two different points in the same zone grew through the same process,
and so likely have similar misfit.

We turn to a discussion of symmetry, which is essential in our proof of
Proposition 1. The crystal lattice of quartz has three axes of twofold rota-
tional symmetry (called a axes), which are perpendicular to a threefold axis of
symmetry (the c axis). The crystal, should it resemble a rod, advances along
an a axis [34]. The results in this section only use the symmetry of the crystal
lattice under the rotation matrix

Q =

1 0 0
0 −1 0
0 0 −1


representing the twofold symmetry around the long axis. As in Theorem 4,
Qcs = − IdR2 denotes the lower right two-by-two block of Q. We assume that

13 Rods are well-approximated by a theory allowing only finitely many degrees of freedom.
Sheets are much less restricted. Of course the ribbon might do something more complex
than twisting or bending: kelp leaves, for an example, sometimes wrinkle [18].
14 Namely the substitution of silicon atoms for aluminum (and a monovalent cation). This

can be precisely measured because γ-ray irradiation causes smoky discoloration proportional
to the Al concentration, and has a known effect on the lattice constants.
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the three-dimensional elastic energy inherits the symmetry Q of the crystal
lattice in the sense of Conditions 1-3 of Proposition 1 below, and that the
misfit respects this symmetry in the sense of Condition 4.15

Proposition 1 Assume that W ′′(Id), S and m satisfy the following condi-
tions for Q defined above.

1. (Symmetry of the Hooke’s Law) For any F ∈ Sym(3), W ′′(Id)(QTFQ) =
QT (W ′′(Id)F )Q, and

2. (Symmetry of the cross section) If xcs ∈ S then Qcsxcs ∈ S, and
3. (Symmetry of the misfit) For a.e. x ∈ Ω, QTm(x)Q = m(Qx), and
4. (Misfit due to lattice parameters) For a.e. x ∈ Ω, QTm(x)Q = m(x).

It follows that Am = 0.

Proof We first check that κm = 0. Noting that q11 = 1, we see that the first
three conditions above are precisely the assumptions of Theorem 4. Q is a
rotation matrix, so κm = 0.

We again invoke Theorem 4, but this time with respect to −Q rather than
Q. Because det(−Q) = −1, in order to conclude ωm = 0 it suffices to check
that the minimization problem is symmetric under −Q:

1. (Symmetry of the Hooke’s Law with respect to −Q) For any F ∈ Sym(3),

W ′′(Id)
(
(−Q)TF (−Q)

)
= (−Q)T (W ′′(Id)F )(−Q).

2. (Symmetry of the cross section with respect to −Q) If xcs ∈ S then
−Qcsxcs ∈ S.

3. (Symmetry of the misfit with respect to −Q) For a.e. x ∈ S, (−Q)Tm(x)(−Q) =
m(x1,−Qcsxcs).

The condition for symmetry of the Hooke’s Law is quadratic in Q, so it holds
for−Q as well. The symmetry of the cross section is trivial because−Qcs = Id.
The symmetry of the misfit with respect to −Q follows from the assumption
that QTm(x)Q = m(x).

We briefly comment on the differences between our model and real quartz.
The most significant is that quartz is likely highly inelastic, except perhaps
in a thin newly-accreted layer. Alternatively, perhaps it is also possible that
our assumptions on the form of m are mistaken: although we have a plausible
explanation why we might expect misfit of this form, there might be similar
explanations for different types of misfit. Finally, real quartz should be narrow
near the tip compared to the base, although the thickness changes slowly. The
present rod theory deals only with cylindrical bodies: the misfit can depend
on x1, but the shape of the cross section cannot.

15 These conditions should hold for all of the symmetries, not just Q. This would imply
that m is diagonal and m11 = m22, where the c axis aligns with x3. It would also yield more
information about the elastic stiffness tensor. See [16] for measurements the elastic stiffness
tensor of quartz.
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7 Γ -convergence

Although we think of a rod as a one-dimensional object, it is really a thin,
three-dimensional object governed by three-dimensional elasticity theory. We
would like to rigorously reduce this to a one-dimensional theory in the limit
as thickness tends towards 0. We will show that the three-dimensional energy
functional E(h) (Equation 2) Γ -converges to the one-dimensional energy E
(Equation 4) in the sense of Theorem 1. The analogous theorem for rods
without misfit, which has a similar proof, was done independently in [31] and
[27].

Whenever we study Γ -convergence it is useful to identify compact sets in
the corresponding topology. The compactness result for rods without misfit,
stated and proved in [27] and [31], also applies here and is restated below in
Theorem 6.

Theorem 6 (Compactness) Let y(h) be a sequence in W 1,2(Ω,R3) such
that

lim sup
h→0

1

h2

∫
Ω

dist2
(
∇hy(h),SO(3)

)
dx <∞.

1. There exists a subsequence (not relabled) such that ∇hy(h) → R strongly
in L2(Ω). Furthermore, R ∈W 1,2(Ω → SO(3)) depends only on x1.

2. Given some R(h) (rotations approximating ∇hy(h)) define G(h) (infinites-
imal displacement) by

(R(h))T∇hy(h)(x) = Id +hG(h)(x).

For some well-chosen sequence of rotations R(h). G(h) converges weakly

in L2 to a matrix G ∈ L2
(
Ω,R3

)
with G(x1, ·, ·) ∈ E

(
RT∂1R

)
almost

everywhere.

The first part is Theorem 2.2 of [27], and the second part is embedded in
the proof of Theorem 3.1 of the same paper. Theorem 6 is closely related to
Theorem 3.1 of [31].

Notice that any sequence with E(h)(y(h)) ≤ C <∞ satisfies the hypotheses
of Theorem 6 by the triangle inequality and the coerciveness of W :

C ≥ 1

h2

∫
Ω

dist2
(
∇hy(x),SO(3)M−1

h

)
dx

=
1

h2

∫
Ω

dist2
(
∇hy(x),R(x)M−1

h

)
dx for some R ∈ SO(3)

&
1

h2

∫
Ω

(
dist2 (∇hy(x),R)− dist2(R,RM−1

h )
)
dx

≥ 1

h2

∫
Ω

dist2 (∇hy(x),SO(3)) dx−
∫
Ω

|m(x)|2 dx.

We recall Theorem 1. This theorem has two parts; the first bounds the
energy from below (called the lim inf inequality) and the second provides an
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ansatz achieving the lower bound (called the lim sup inequality). The proof
is similar to that of [27] Theorem 3.1 and [31] Propositions 4.1 and 5.1. The
key ideas in the ansatz are found in Section 2.2, assuming enough regularity
to use Taylor’s Theorem.

Proof (Proof of Theorem 1) We omit the subscripts on h, and we do not re-
lable subsequences.

Lim inf inequality. Assume that lim inf E(h)(y(h)) < ∞ (if not, the in-

equality is trivial). By the compactness lemma, there exists rotations R(h)

and deformations G(h), related by ∇hy(h) = R(h)(Id +hG(h)) such that up to

a subsequence G(h) → G weakly in L2, with G(x1) ∈ E . By frame indifference
of W ,

E(h)(y(h)) =
1

h2

∫
Ω

W
(

(Id +hG(h))(Id−hm)
)
dx.

Let ρ(F ) ∈ o(|F |2) be the Taylor Series remainder such that W (Id +F ) =
Id +Q3(F ) + ρ(F ), and let ρ̄(t) = sup|F |≤t ρ(F ). We also define

χh(x) =

{
1 if |G(h)(x)| < h−1/2

0 otherwise.

This goes to 1 in measure because G(h) is bounded in L2. It follows that

G̃
(h)

:= (G(h) −m− hG(h)m)χh → G−m weakly in L2.

Returning to the computation of E(h):

E(h)(y(h)) ≥ 1

h2

∫
Ω

W
(

(Id +hG(h))(Id−hm)
)
χhdx

=

∫
Ω

Q3

(
G̃

(h)
)

+
1

h2
ρ
(
hG̃

(h)
)
χhdx

≥
∫
Ω

Q3

(
G̃

(h)
)
−
∣∣∣G̃(h)

∣∣∣2 ρ̄
(
h
∣∣∣G̃(h)

∣∣∣)
h2|G̃(h)|2

χhdx.
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By using weak lower semicontinuity of the first term, boundedness of
∥∥∥G̃(h)

∥∥∥
L2(Ω)

and that ρ̄(t) ∈ o(t2) we conclude that

lim inf
h→0

E(h)(y(h)) ≥
∫
Ω

Q3(G−m)dx

=

∫
Ω

Q3(G−mE −m⊥)dx

=

∫
Ω

Q3(G−mE) + 〈G−mE ,W ′′(Id)m⊥〉+Q3(m⊥)dx

= E0 +

∫
Ω

Q3(G−mE)dx

≥ E0 +

∫ L

0

min
F∈E(RT ∂1R−Am)

∫
S

Q3(F )dxcsdx1

= E0 +

∫ L

0

Q1

(
RT∂1R−Am

)
dx1

= E(R).

The third line uses the orthogonality of m⊥ and E . The fifth line notices that
G −mE ∈ E(RT∂1R − Am). This concludes the proof of the Γ -lim inf in-
equality.

Lim sup inequality. Let R ∈ W 1,2(Ω, SO(3)) depending only on x1. We
construct a sequence y(h) such that ∇hy(h) → R in L2 and

E(R) ≥ lim sup
h→0

E(h)(∇hy(h)).

As before, we use A = RT∂1R to encode the bending and torsion given by
the frame R. Recall also the definitions from Section 2.1. In particular, we can
extract Am from the misfit m, which gives the preferred bending and torsion.
The displacement of the cross section β will also be important. The minimiza-
tion problem in Equation (5) associates to A a minimizer16 sym (Axcs|∇csβ),
which defines β. The misfit also gives a preferred displacement βm and a small
stretching ξm.

The core of this argument is found in Section 2.2. We make that section
rigorous by mollifying the functions involved so that we can use Taylor’s the-
orem. Because the functions depend on A − Am, we mollify A − Am and
β − βm. We use these to pick ∇hy(h) to leading order in h, which allows us
to define y(h) by integrating. The paper [27] uses a slightly different proof; it
instead mollifies y(h) and then projects ∇hy(h) onto SO(3).

We will pick

y(δ,h)(x) = ỹ(δ)(x1)+h
(
t(δ)(x1) + x2r

(δ)
2 (x1) + x3r

(δ)
3 (x1)

)
+h2R(δ)(x1)β(δ)(x)

16 For compactness of notation, here and below we write Axcs to mean A times (0, x2, x3).
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where ỹ(δ) ∈ W 1,2([0, l],R3) controls the midline, t(δ) ∈ W 1,2([0, l],R3) con-

trols the infinitesimal stretching and shear, and β(δ)(x) is the next-order de-
formation of the cross section induced by the curvature and torsion of the rod
in addition to the misfit. All of these depend on a small parameter δ, which
will be used to smooth out R.

Consider a family of mollifiers ψδ(x) = 1
δ3ψ

(
x
δ

)
with the standard proper-

ties ψ ∈ C1
0 (R3, [0,∞)) and

∫
ψ(x)dx = 1. It follows that ‖∇ψδ‖L2 . δ−5/2.

Using the fact that Ω has Lipschitz boundary, we extend A and β in
a W 1,2-bounded fashion to some open, bounded superset of Ω̄. Let A(δ) =

Am +
(
RT∂1R−Am

)
∗ ψδ and β(δ) = βm + (β − βm) ∗ ψδ, where β(x1, ·)

minimizes
∫
S
Q3(sym (Axcs|∇csβ))dxcs. We define R(δ) by the differential

equation ∂1R
(δ) = A(δ)R(δ) with R(δ)(0) = R(0). The midline is given

by ỹ(δ)(x1) =
∫ x1

0
r
(δ)
1 (s)ds, and the infinitesimal stretching by ∂1t(x1) =

r(x1)ξm.
We must check that y(δ,h) converges in the right sense to y as (h, δ)→ 0,

h ≤ δ5/2. First, we note that A(δ) → A in L2 and β(δ) → β in W 1,2. By
continuous dependence of the differential equation defining R(δ) on A(δ) it
follows that R(δ) → R in W 1,2. We compute the gradient to conclude that
∇y(δ,h) → R in L2.

∇hy(δ,h)(x) = R(δ) + h
(
∂1t+ x2∂1r

(δ)
2 + x3∂1r

(δ)
3

∣∣∣∇cs

(
R(δ)β(δ)

))
+ h2∂1

(
R(δ)β(δ)

)
⊗ e1.

The first term converges to R as δ → 0. The second term is bounded
in L2 uniformly in δ and is small in h, so it vanishes as (h, δ) → 0. We
note that the final term is bounded in L2 by h2δ−5/2 due to the bounds on
‖∂1ψ‖L2 . Thus this vanishes in the limit (h, δ)→ 0 and h ≤ δ5/2. By taking a

subsequence, we can also assume that R(δ), ∂1R
(δ), β(δ) and ∇csβ

(δ) converge
almost everywhere.

We now show that the recovery sequence gives the right energy. The proof
has two steps. First, we hold δ fixed and let h→ 0. We then pick a dependence
of δ on h to find the recovery sequence.

We expand (R(δ))T∇hy(δ,h)(x)M−1
h (xcs) in h to estimate the energy:

(R(δ))T∇hy(δ,h)(x)M−1
h (x) =

(
Id +hB(δ) + h2C(δ)

)
(Id−hm+O(h2))

= Id +h(B(δ) −m) +O(h2)

where the O(h2) terms are uniform in x because m ∈ L∞ and

B(δ) =
(
s+A(δ)xcs

∣∣∣∇csβ
(δ)
)

C(δ) = (A(δ)β(δ) + ∂1β
(δ))⊗ e1.
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Expanding m = mE +m⊥ as before,

B(δ) −m =
(

(A(δ) −Am)xcs

∣∣∣∇cs(β(δ) − βm)
)
−m⊥(xcs).

The next step is to apply Taylor’s Theorem to the energy. In the sequel cj
denotes constants possibly depending on δ but not x or h. We first notice that

dist
(
∇hy(δ,h)M−1

h ,SO(3)
)
< c1h.

By the facts that W = 0 on SO(3) and that W is C2 near SO(3) we conclude
that

1

h2
W
(
∇hy(δ,h)M−1

h

)
< c2

for all sufficiently small h. Thus the bounded convergence theorem shows that:

lim
h→0

E(h)(∇hy(δ,h)) = lim
h→0

1

h2

∫
Ω

W
(

Id +h(B(δ) −m) +O(h2)
)
dx

=

∫
Ω

lim
h→0

1

h2
W
(

Id +h(B(δ) −m) +O(h2)
)
dx

=

∫
Ω

Q3

(
B(δ) −m

)
dx

=

∫
Ω

Q3

(
B(δ) −mE

)
+Q3(m⊥)dx

which is equal to

E0 +

∫
Ω

Q3(((A−Am) ∗ ψδ)xcs|∇cs((β − βm) ∗ ψδ))dx. (22)

We now vary δ. The energy
∫
Q3(F )dx is continuous with respect to the

strong L2 topology, so for any j ∈ N there exists δj such that∫
Ω

Q3

(
((A−Am) ∗ ψδj )xcs

∣∣∇cs((β − βm) ∗ ψδj )
)
dx <

∫
Ω

Q1(A−Am)dx1+
1

j
.

By Equation (22), we can pick hj < δj such that

E(hj)(∇hjy
(hj ,δj)) < E0 +

∫
Ω

Q3

(
((A−Am) ∗ ψδj )xcs

∣∣∇cs((β − βm) ∗ ψδj )
)
dx+

1

j

< E0 +

∫
Ω

Q1(A−Am)dx1 +
2

j

< E(R) +
2

j
.

We conclude that limj→∞E(h)(∇hjy
(hj ,δj)) ≤ E(R). This concludes the proof

of the lim sup inequality.
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