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Abstract

A body of literature has developed concerning “cloaking by anomalous local-
ized resonance”. The mathematical heart of the matter involves the behavior of
a divergence-form elliptic equation in the plane, V - (a(z)Vu(z)) = f(z). The
complex-valued coefficient has a matrix-shell-core geometry, with real part equal
to 1 in the matrix and the core, and -1 in the shell; one is interested in understand-
ing the resonant behavior of the solution as the imaginary part of a(x) decreases
to zero (so that ellipticity is lost). Most analytical work in this area has relied
on separation of variables, and has therefore been restricted to radial geometries.
We introduce a new approach based on a pair of dual variational principles, and
apply it to some non-radial examples. In our examples, as in the radial setting,
the spatial location of the source f plays a crucial role in determining whether or
not resonance occurs.

MSC: 35Q60, 35P05

Keywords: cloaking, anomalous localized resonance, negative index metama-
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1 Introduction

A body of literature has developed concerning “cloaking by anomalous localized reso-
nance”. Cloaking of two types of objects has been considered: (a) dipoles or inclusions,
considered e.g. in [2,4,8,10,13] and (b) spatially localized sources [1]. In this article we
work in the setting of localized sources.
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B{O) B,(0)
Figure 1: Sketch of the core-shell-matriz geometry.

Focusing initially on the math (not the physics), we are interested in a divergence-
form PDE in the plane:

V- (a,Vu,)=f onR? (1.1)
Vu, =0 as |z| = oo.

The coefficient a,(z) is piecewise constant and complex-valued, with constant imaginary
part n > 0:
ay(z) = A(z) + in; (1.2)

its real part has a matrix-shell-core character in the sense that

+1 outside Bg(0)
A(x) = ¢ —1 in the shell Bg(0)\ X (1.3)
+1 in the core X

(see Figure 1). Concerning the core, we assume that
S C By(0) (1.4)

so the shell includes an annulus of width R — 1. Concerning the source f, we assume it
is real-valued, supported at distance ¢ from the origin, and has zero mean:

f=FH'0B,0), F:0B,0)—R, FeL*dB,0)), and / ()Fd?—[l =0. (L.5)
0Bg4(0

Our interest lies in the question:

Question: Asn — 0 with f and A(x) held fized, what is the behavior of

E, = 1 |V, |* dzx ?
2 Jao
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In the radial setting, i.e. when ¥ = B;(0), one expects by analogy with [1,2,8,10,13]
that the answer depends mainly on the location of the source. Specifically: there is a
critical radius R* = R3/? such that for a broad class of sources f,

limsup F, = oo if ¢ < R*, while
n—0

limsup F,, < oo if ¢ > R*.
n—0

Note that it is no restriction to fix the core radius to be 1. A scaling argument implies
that, for core radius rg, and shell radius R, the critical radius is

3/2 1/2
o) ()
To To

Definition 1.1 (Resonance). Let a configuration be given by coefficients A and source
f as in (1.3)~(1.5). We shall call the configuration resonant, if

limsup F,, = oo.
n—0

Otherwise we call the configuration non-resonant.

In the physics literature the term “anomalous localized resonance” is used. An
anomalous feature of the resonance is that it is not associated to a finite dimensional
eigenvalue of a linear operator and a forcing term at or near the resonant frequency.
Instead, the resonance here is associated to an infinite dimensional kernel of the limiting
(non-elliptic) operator. The word localized refers to the fact that the resonance is spa-
tially localized: while [ |Vu,|* — oo if ¢ < R*, the potential u, (and therefore also its
gradient Vu,,) stay uniformly bounded outside some ball.

The connection to cloaking is as follows (see [1] for a more thorough discussion).
For time-harmonic wave propagation in the quasistatic regime, £, is the rate at which
energy is dissipated to heat. Let us now consider a source «, f, where a,, € R is a scaling
factor. If the (unscaled) source f produces resonance (i.e. if E,, — oo) then the source
o, f is connected to the energy dissipation a%En. If the physical source a,, f has finite
power, then we must have a,, — 0 as  — 0. If the fields u,, associated with the unscaled
source f are bounded outside a certain region, then the physical fields a;u, vanish in
that region as n — 0. This implies that the finite power source ay, f is not visible from
outside.

Returning to a more mathematical perspective: we are interested in this problem
because it involves the behavior of the elliptic system (1.1) in a limit when ellipticity is
lost. It is not surprising that oscillatory behavior occurs in such a limit. It is however
surprising that, at least in the radial examples, (a) resonance depends so strongly on the
location of the source, and (b) the oscillatory behavior is spatially localized. We would
like to understand the following question:

Question: s this surprising behavior particular to the radial setting, or is it a more
general phenomenon?
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The present paper addresses only point (a): the dependence on the location of the
source. Our method, which is variational in character, is unfortunately not well-suited
to the study of point (b).

We know only one numerical study of a similar problem with non-radial (and non-
slab) geometry. The paper [4] by Bruno and Lintner considered, via numerical simu-
lation, various examples including an elliptical core in an elliptical shell. The results
were similar to those of the radial case; in particular, the structure seemed to cloak a
polarizable dipole placed sufficiently near the shell.

The paper [1] by Ammari et al considers a problem very similar to ours. The main
difference is that both the outer and inner edges of the shell are not constrained to
be radial. (There is also a minor difference: their PDE has a, = 1 in the matrix and
core and a, = —1 + in in the shell, so energy is dissipated only in the shell.) Using a
representation based on single layer potentials, Ammari et al obtain an expression for
a spatially localized analog of F,. To make use of their expression, one needs detailed
information on the spectral properties of certain boundary integral operators. This
information is difficult to come by in general and hence, beyond the radial setting, it is
unclear how to use their method to obtain information on resonance and non-resonance
in the limit as n — 0.

Our approach is based on variational principles. The starting point is a pair of (dual)
variational principles for E,. One expresses F, as a minimum; trial functions may be
used to provide an upper bound in order to show that resonance doesn’t occur. The
dual principle expresses F, as a maximum; trial functions may be used to provide a
lower bound in order to show that resonance occurs. Similar variational principles were
considered in [5,11]. Our main results — all proved using the variational principles — are
the following:

(i) If there is no core then there is always resonance, for any source radius ¢ > R and
any nonzero [ (see Proposition 3.2).

(ii) For any core ¥ C B;(0), there is resonance for a broad class of sources f, provided
the source location is ¢ < R* := R*? (see Theorem 3.4).

(iii) In the radial case (when ¥ = B;(0)), R* := R%? is critical, in the sense that (a)
when the source location is ¢ < R* resonance occurs for a broad class of f’s, and
(b) when the location is ¢ > R* resonance does not occur for any f (see Theorem
3.4 and Proposition 4.1).

(iv) In the (weakly) nonradial case when the core is B,(zp) with |2y sufficiently near
0 and p sufficiently near 1, resonance does not occur if the source location ¢ is
sufficiently large (see Theorem 5.3).

Point (iii) is already known, from Section 5 of [1]. Our variational method is interest-
ing even in this radial setting: our proof of (iii) is, we think, simpler and more elementary
than the argument of [1]. Unfortunately, our methods do not seem to provide simple
proofs for the localization effect when there is resonance.

In focusing on (1.1), we have chosen the imaginary part of a, to be the same con-
stant constant in the matrix, shell, and core. This simplifies the formulas, and it seems
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physically unobjectionable. But we suppose a similar method could be used when the
imaginary part is different in each region.

We specifically consider sources f that are concentrated on the curve 0B,(0). Our
method also allows the study of more general distributions of sources, which can be
obtained as a superpositions of concentrated sources, f, at different values of q.

We have taken the core to have A(x) = 1 because this case has particular interest:
in the radial setting, the “cloaking device is invisible” if the core has A = 1, see [13].
However anomalous localized resonance also occurs when A takes a different (constant)
value in the core. It would be interesting to extend our method to analyze cores with
A#£1.

Our assumption that A(x) = —1 in the shell is essential to the phenomenon. Indeed,
our PDE problem becomes very different if the ratio across each interface, the plasmonic
eigenvalue, is different from —1. This can be seen from the perspective of the boundary
integral method, where ratios other than —1 lead to boundary integral equations of
Fredholm type, see [1,7]

Our main results are almost exclusively for a circular outer shell boundary 0Bg(0).
This is essential to our method, since we use the perfect plasmon waves on the outer
shell boundary in the construction of comparison functions. We refer to Section 3 for a
further discussion. A more general geometry is only treated in Proposition 3.3 with the
help of a domain transformation. Related techniques are used in [12].

Plasmonic resonance effects have many potential applications. This is one of the
reasons why the development of negative index metamaterials is another much-studied
research area, see e.g. [3,9,14]. We hope that our variational approach will be useful
also in the other contexts.

Notation. We use polar coordinates and write z € R? as # = r(cosf,sinf). In
Section 5 we identify R? = C via (21, 79) = 21 +ixy = 2. With this notation, we identify
2z =re". The complex conjugate of z is denoted by Z.

We denote the sphere with radius p, centered at x, as B,(zo). The measure H* |9
is the 1-dimensional Hausdorff measure on the curve 0€2. Unless otherwise specified,
integrals are over all of R?. Constants C' may change from one line to the next.

2 The primal and dual variational principles

In the subsequent definitions of energies we always consider the source f as a given
element f € H~*(R?). We will always consider sources with a compact support (in the
sense of distributions). Furthermore, we shall assume that the sources f have a vanishing
average,
f=0.
R2

Since f is merely a distribution, it would be more correct to write (f, 1) = 0, where
1:R? — R is the constant function, 1(z) = 1 for all z € R%. We note that since f has
compact support, it can be applied to test-functions that are only locally of class H'*.
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We remark that, while the main results of this paper concern R?, the primal and dual
variational principles generalize to any dimension.

2.1 A complex elliptic system and its non-elliptic limit

Our aim is to study, for a sequence n = n; — 0, sequences u, of solutions to (1.1).
For non-vanishing dissipation, n # 0, (1.1) is an elliptic PDE, while the system loses
ellipticity in the limit n — 0.

To a solution u, : R? = C of the original complex-valued equation

V- (a,Vy) = | (2.1)

we have associated an energy F, (in physical terms the energy dissipation in the struc-
ture)

Byfuy) =3 [ 19wl (2.2

As noted in the introduction, the phenomenon of cloaking is related to resonance in the
sense of Definition 1.1,
E,(u,) — o0 (2.3)

along a subsequence 7\, 0.
We can write the complex scalar equation for u, : R* — C as a system of two real
scalar equations. We set

1
Uy = Uy + 1 p wy,  with v,, w, : R> = R. (2.4)

For a real-valued source, f : R? — R, the complex equation V - (a,Vu,) = f with
a, = A +in is equivalent to the coupled system of two real equations on R?

V- (AVy,) — Aw, = f, (2.5)

V - (AVw,) + n*Av, = 0. (2.6)

The energy E,(u,) can be expressed in terms of v, and w, as

n n 1
Byun) = 3 [ 1V =3 [190f+ 5 [ 1Vl 2.7

In the following subsections we introduce

1. the primal variational problem, a minimization problem, which characterizes the
energy E,(u,) as a constrained minimum; and

2. the dual variational problem, a maximization problem, which characterizes the
energy E,(u,) as a constrained maximum.

To provide a functional analytic framework for the study of the variational problems
we introduce the following function space of real or complex-valued functions,

R 1= {U € L) VU € PE)}, U= [ IVUP+ [ U
R2 B1(0)
(2.8)
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2.2 The primal variational problem

For fixed f € H~'(R?) we consider the energy functional

i 1
I(0, w) = §/|Vv|2+%/|Vw|2 (2.9)

defined for v, w € H*(R?). The primal variational problem is given by

minimize I,(0,w) over all pairs (7, )

2.10
which satisfy the PDE constraint V - (AV0) — Aw = f. (2.10)

Lemma 2.1. Let f € H '(R?) be a fived real-valued source with compact support and
with vanishing average. Then the primal variational problem (2.10) is equivalent to the
original problem (2.1) with energy (2.2) in the following sense.

1. The infimum
inf{ 1,,(3, @) ‘ (5,@) € HY(R?) x HY(R?), V- (AV3)— Ad = f} (2.11)

is attained at a pair (v,,w,) € H'(R?) x H'(R?).

2. The minimizing pair, (v,,w,), is unique up to an additive constant. The function
Uy = vy 0" w, is the unique (up to an additive constant) solution of the original
problem (2.1).

3. For the solutions, the energies coincide,
Ey(uy) = I (v, wy) . (2.12)
Remark. The lemma implies
Ey(uy) < I(0,0) (2.13)

for every pair (v,w) that satisfies the PDE constraint of (2.10). We shall use the in-
equality (2.13) to establish non-resonance.

Proof. Point 1. Fix a radius s > 0 such that supp(f) C B(0), we introduce the function

space with constraint:
X = {ﬂeHl(R2) ‘ / a:o}.
5(0)

Note that ,,, defined in (2.9), is convex on X x X. Moreover, the constraint set is non-
empty. Indeed, choose v, smooth and of compact support and defined w, to be the weak
solution of Aw, = —f 4+ V- (AV,). It follows that the infimum in (2.11) is attained on
X x X (see, e.g., Chapter 8.2 of [6]), i.e. there exists (v,,w,) € X x X such that

Ly (v,, wy) < L,(0,w) for all (0,w) € X x X, with V- (AV?) — Aw = f.
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Point 2. We first observe that the constraint (2.10) is identical to (2.5). As a minimizer
of I,,, the pair (v,,w,) satisfies the Euler-Lagrange equation

0.1, (Un + 70, Wy, + TiIJ)

= 0, for every (0,0) € X x X
7=0

satisfying V - (AV0) — Aw = 0. For the energy I, this equation reads
1 1
0:n/an-V17+5/an~vw:n/an~Vz7+ﬁ/an-AVz7,
where we have used the constraint to obtain the second equality. We find
—1<2A V- (AVw,), ) =0, VieX
p n°Av, + V- (AVw,),0) =0, Ve X,

which is the weak form of (2.6). We use here that © can be any element of H'(R2)
with compact support, since an associated w € H 1(R?) can be obtained as the solution
of a Poisson problem. As a solution of (2.5)-(2.6), the pair (v,,w,) defines through
u, = v, +in~tw, a solution of the original problem (2.1).

The uniqueness is a consequence of the fact that the original problem (2.1) possesses
a unique solution. This can be seen from the Lax-Milgram Lemma. We introduce a
sesquilinear form b(-,-) : X x X — C defined by

b(ﬁl,ﬂg) = —Z/ aanLlVﬂg .
R2
The form b(-, ) is coercive on X

Rb(a, @) > Cllallk

since the imaginary part of a, is strictly positive and by the Poincaré inequality. Ex-
istence and uniqueness of a weak solution wu, € H'(R?) solution follows from the Lax-
Milgram Lemma.

Point 3. The energy equality (2.12) was already observed in (2.7).
The proof of Lemma 2.1 is complete. O

2.3 The dual variational problem

For fixed f € H'(R?), we introduce the dual energy

nwyi= [ ro=3 [wop-3 [1vue. (2.14)
defined for (v,v) € H'(R?). The dual variational problem is given by

maximize .J,(7,1)) over all pairs (9,1))

- 2.15
which satisfy the PDE constraint V - (AV) + nAv = 0. (2.15)

The following lemma establishes that the dual variational problem is also equivalent
to the original complex equation.
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Lemma 2.2. Let f € H '(R?) be a fized real-valued source with compact support and
with vanishing average. Then the dual variational problem (2.15) is equivalent to the
original problem (2.1) with energy (2.2) in the following sense.

1. The supremum
sup{ T, (5,) ‘ (5,0) € HY(R?) x H'(R?), V- (AV]) + nAs = o} (2.16)

is attained at a pair (v,,1,) € H'(R?) x H'(R?).

2. The mazimizing pair, (vy,,y), is unique up to an additive constant. The function
uy, = v, iy, is the unique (up to constants) solution of the original problem (2.1).

3. For the solutions, the energies coincide,
Ey(un) = Jy(vg, ¢y) - (2.17)

Remark. The lemma implies

Ey(uy) > J,(3,9) (2.18)
for every pair (,4)), which satisfies the PDE constraint of (2.15). We shall use inequality
(2.18) to establish our results on resonance.

Proof. Point 1. The existence of a maximizing pair (v,, ) for the variational problem
(2.16) follows from the concavity of J, (convexity of —J,), by arguments analogous to
those given above for the primal variational problem.

Point 2. At a maximizer, (v,, ), one has for all #,¢ € H'(R?) N L?(R?) satisfying the
PDE constraint V - (AV4) + nAv = 0, that

0 Jy <vn + 70, + 7”(/~1> = 0.
For the energy J,, this relation provides
/f@ﬁ—n/an-W—n/V%-Vzﬂ:O. (2.19)

Using the PDE constraint V - (AV4) + nA% = 0 to replace 9, we find that (2.19) is
equivalent to

0= [ fi+ [ Vo, 490 - [V, 90
= (f = V- (AVu,) + Ay, ).
We conclude that the pair (v,,w,) = (v,,n,) is a weak solution of (2.5)-(2.6) and,

thus, that u, := v, + i), is a solution of V - (a,Vu,) = f on R? Uniqueness follows
again from the fact that u, is unique up to constants.
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Point 3. Regarding the energy equality, we calculate

Ey(s) = ol ) = 3 [ (92 = Ty ) = [ [V, 4 / Vol [ fo,
_/kMWAV%—<%fj+V AV% /j%_n

This concludes the proof of Lemma 2.2. O

3 Resonance results
As discussed in the introduction, we consider configurations of the following type:
1. The coefficients a,(z) and A(z) are defined by (1.2)-(1.3) with core ¥ C B;(0)

2. The source, f(z), is concentrated at a distance ¢ > 0 from the origin and is taken
of the form f = FH'|0B,(0) as in (1.5).

We seek conditions on configurations, which ensure resonance or non-resonance in the
sense of Definition 1.1.

We explore the resonance properties of a configuration as follows. To prove resonance
we use the dual variational principle, exploiting (2.18). It suffices to construct, given
n =mn; — 0, a sequence of comparison functions (v,,,) that satisfy the constraint of
(2.15) and that have unbounded energies J, (v, ¢,). To prove non-resonance we use the
primal variational principle, exploiting (2.13). It suffices to construct, given n =n; — 0,
a sequence of comparison functions (v,,w,) that satisfy the constraint of (2.10) which
have bounded energies I, (v,, w,).

In this section, we show resonance in both radial and non-radial settings. The non-
resonance results will be presented in Section 4 for radial cases and Section 5 for a
non-radial geometry.

The basis of construction of trial functions is the family of perfect plasmon waves:

Remark 3.1. Consider the PDE for functions 1 : R?> — R,

V- (AVy) = 0
Vi(z) — 0, as |z] — o0 (3.1)
where »
-1 <
m@:{+1 E;R' (3.2)

For any k > 1, there is a non-trivial solution 1) = @Ek which achieves its mazimum at a
point with |z| = R, given by:

. - {r’“ cos (k@) for |x| < R, (3.3)

V() = =k 2k cos(k) for|z| > R.
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We call such functions perfect plasmon waves. Notice that

/|V72}k|2 = /_R@Ek [%} = 2k R?* .

Since our proofs rely on these perfect plasmon waves, we always use (except for
Proposition 3.3) the circular outer shell boundary 0Bg(0). For the same reason, our
technique is restricted to the two-dimensional setting. (For an explanation why it does
not extend to 3 or more dimensions, see Appendix A).

Since perfect plasmon waves are given in terms of Fourier harmonics, it is natu-
ral to expand arbitrary sources F' € L?(9B,(0)) with vanishing average in Fourier se-
ries. We will represent an arbitrary source by superposition of the elementary sources
parametrized by harmonic index, k£ € N, and source-distance, ¢:

£ = cos(kf) H' 0B, (0). (3.4)

3.1 Resonance in the radial case

Proposition 3.2 (No core = Resonance for sources at any distance ¢). Assume no
core, X =0, so that a,(z) = A(x)+in where A(z) is given by (3.2). Let f = FH'[0B,(0)
with 0 # F : 0B,(0) — R be a source at a distance ¢ > R. Then the configuration is
resonant, i.e. E,(u,) — 0o asn — 0.

Proof. We fix the radii R and ¢ and consider an arbitrary sequence n = n; — 0. We
write the source as f = Y .2 axf, where f! is defined in (3.4). Since F # 0, there
exists some k > 1, such that oy, # 0. Our aim is to find a sequence (v,, ), satisfying

the constraint V - (AV,) + nAv, = 0 of (2.15) and such that J,(v,,¢,) — co. We
choose

vy(z) = 0 (3.5)
%(ZE) = )‘n'lzjk(x) ’
where @Ek is the perfect plasmon wave of (3.3) and ), € R is to be chosen below. The pair

vy, Y,,) satisfies the constraint (2.15). Using (2.18), the definition of J,, the hypothesis
m Yn 7
q > R, and the orthogonality of Fourier harmonics, we obtain

Bya) = Ty ) = (0 ) = [ 1w =2 [ 190

= / g cos(kf) - \yq " R* cos(kf) — Q|)\,7|2 / Vi |?
9B4(0) 2
> 1 qap\, ¢ "R* — Cy (77‘)‘77‘2) kR .

Choosing \, — oo with n|\,|*> = 0 we obtain E,(u,) — oo for n — 0. O
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3.2 Resonance in the non-radial case

Our first observation for non-radial geometry regards a variant of Proposition 3.2. We
consider the index A = —1 in a domain D C R?, which is similar, but not identical to
the ball Bg(0).

Let & : C — C be a holomorphic function. For three radii R < ¢ < s we introduce
the three domains Dg := ®(Bg(0)), D, := ®(B,(0)) and D, := ®(B,(0)). We assume
that @ is bijective on the largest ball, ®|p, () : Bs(0) — D, has a inverse ¥ : D, — B,(0).

Proposition 3.3 (Resonance for non-radial structures without core). Fiz radii 1 < R <
q < s, holomorphic maps ® and ¥ = &' as above. Assume s > ¢*/R. Consider the
equation (1.1):

Vo (anVuy) = f

where a,(x) = A(z) +in and

Alz) = { : ' ; gf; (3.7)

Then there exists a source f = F H'|OD,, where F € L*(0D,;), such that the configura-
tion is resonant, i.e. Ey,(u,) — oo forn — 0.

Proof. We proceed as in Proposition 3.2 and exploit the dual variational principle. Our
aim is to construct a sequence (v, 1,), satisfying the constraint V - (AV4,) +nAv, =0
of (2.15) and such that J,(v,,1,) — co. However in this case, due to the coupling of
Fourier harmonics in a non-radial geometry, we cannot restrict ourselves to a harmonic
of fixed index, k.

We start the construction from the perfect plasmon waves ﬁk of (3.3). They are
mapped with ® to functions ¢ : Dy — R, ¢ := ¢ o V. We note that these functions
are harmonic in Dy \ 0Dg. Regarding the jump of the normal derivative along dDg,
we can calculate as follows. The normal vector e, to dBg(0) is mapped to the (not
normalized) normal vector v = D® - e, of dDg. In a point x € dDg the matrix D®
can be represented by a complex number M € C, and we can calculate (v, Vlﬁk) =

<M€T’> ((V@Ek)T : M_l)T> = <Me7“> (M_l)TV,lka> = <67’7 vdk> ThU_S, ,lvbk solves
v (A(x)vzzk(x)) —0, for z€ D, . (3.8)

In order to define functions on all of R?, we introduce a smooth cut-off function
h: R? — [0,1]. By our assumption on the radii, we can choose a number Q € (¢*/R, s)
and Dg = ®(Bg(0)). Let h be such that h =1 on Dg and h =0 on R? \ D.

We now construct a comparison function of the form

Py (x) = Ny h(x) Yg() (3.9)

where A, and k = k(n) are to be chosen below. Once 1, is determined, the function v,
is chosen as the bounded solution of

nAvy () = =V - (A(2)Vy(2)) = =V - (A(2)Vipy(2)) 1p.\pg () - (3.10)
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The latter equality holds by (3.8) since Vh(x) # 0 precisely on Dy\ Dg. The pair (v,, 1)
satisfies, by construction, the constraint (2.15). It only remains to verify J, (v, 1,) — oo.

To motivate our choice of A\, and k(n), we first compute the contributions to the
energy, J,, of the functions v, and 1,,. In the following calculations, C' denotes a constant
that is independent of k and n; C' depends on the geometry of the structure and its value
may change from one line to the next. For the contribution from v, we find

1
n/\wn\? <cl Vi, 2
1 JD\Dg

)\2 B B )\2 R2 2k
<0 [k + [V < C Lk (—) . (3.11)
1 Jp\Dg n Q
The contribution to the energy, .J,, from v, is
1 R2 2k
y/wwﬁgomgkﬁ%+2(§> < CnkAJR* . (3.12)

It remains to evaluate the first term of the energy, J,, for a source f = FH'|0D,. For
some positive constant ¢ > 0 we obtain

=) F A Fod))
/fwn n/@Dq wk ZC n/BBq(O)( )¢k
R2\* R2\*
=c)\, (7) /ijq(O)(Foq)) cos(kf) = c\, (?) Qg , (3.13)

where «y, is a Fourier coefficient for F' o ®. We shall drive J,(v,,,) to infinity by
driving the contribution (3.13) to infinity while keeping the contributions (3.11) and
(3.12) bounded.

Balancing the upper bounds (3.11) and (3.12) requires that we choose k = k(n) such
that:

(R/Q)"™ ~ 1.
Since R/Q < R?/q* < 1, there is such k(n), and k(n) — oo as n }. 0. With this choice of

k,
R3\ k)
o [1val e [[90p <cxim(G) (3.14)
To keep this contribution to the energy bounded we choose A, so that
1 Q k(n)
No=— = : 3.15
= (i) 349)
Finally, substitution of (3.15) into (3.13) we obtain, for some ¢, C' > 0:
1 QR\"”?
| = | [, = ¢ 2o ()l - ¢ o
k(n) \ 4
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We have chosen @ with Q > ¢*/R. Therefore, if we choose F such that its Fourier
coefficients, oy, are not decaying too rapidly, we have |J,(v,, ¢,)| = 0o as n — 0. This
completes the proof of Proposition 3.3. O

Next, we consider a non-radial geometry with a core, ¥ C B1(0), of arbitrary shape.
The following resonance result has a proof very similar to that of Proposition 3.2.

Theorem 3.4 (Any shape core, source at ¢ < R* = Resonance). Let ¥ C B(0)
be an arbitrary core with I' = 0% a curve of class C?. Then, for every radius R <
q < R* := R%2, there exists f supported at a distance q, such that the configuration is
resonant.

Remark. Our proof actually gives a slightly stronger result. Not only does there exist
f, supported at ¢ € (R, R"), E,, — oo as n — 0, but furthermore the divergence of
the energy occurs for every f having high frequency components of sufficiently large
amplitude.

Proof. We fix R < ¢ < R* and a sequence 77 = 17; — 0. We consider the source function
[ =>0 apfl with fl asin (3.4). Our aim is to construct a sequence (v,, ¥,), satistying
V- (AVy,) + nAv, = 0 of (2.15) with J, (v,, ) — 0.

As in the proof of Proposition 3.2 our sequence of trial functions is built using perfect
plasmon waves; as before we choose the harmonic index k& = k(1) to depend on 1 and
set

Py(x) = )‘nlﬁk(n) ().

The numbers k£ = k(n) € N and A, € R will be chosen below.

The function v, is not A-harmonic along the core interface 0¥ C B;(0). In order to
satisfy the constraint we therefore define v, as the solution of nAv, = =V - (AV4,). By
elliptic estimates

NIVl Ze@ey <O~ IV - (AVY) [ F-1gey < Ot A2 k(n) .-

It remains to calculate the energy J,(v,,,). We choose k = k(n) to be the smallest
integer with R=% < 1 and note that R~**! > 5 holds. Exploiting (2.18), we obtain, for
some cg > 0

n n
En(un) Z Jn(vmwn) = /f% - 5 / |V¢n|2 - 5 / |VU77|2
> coouhng "R — Cpk NS R* — Ok ]

= )\nR CoQp g — C)\nk(nR ) — CW)\UIC

The choice of k with 1 < nR* < R ensures that the last two contributions are of
comparable order. We find, for some Cy > 0,

R k(n)
Eﬁ(uﬁ> > )\an(n) CoQl(n) (5) —C(]>\,7]{3(7]) .
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We choose A, such that the right hand side is positive, specifically

)\ _ 1 R ’f(ﬁ)
T 2Cok(n) M\ )

1 R k(n) 1 R3 k(m)
E, > N\ RF@ [ = — = — 2 = .
il = <2C°ak<"><q) ) k() ) <q)

By assumption, ¢, the location of the source satisfies ¢ < R*, or equivalently ¢> < R3.
To ensure that F, (u,) — oo it suffices to assume that the sequence of Fourier coefficients
(ar)r € [*(N) decays sufficiently slowly. In particular, if (az), decays algebraically we
have E,(u,) — oo. This completes the proof of Theorem 3.4. O

4 Non-resonance in the radial case

In this section, we use the primal variational principle (2.10) to show non-resonance in
the radial case for sources located at distance larger than the critical radius R*.

Proposition 4.1 (Non-resonance beyond R* in the radial case). Consider a,(z) of
(1.2)—(1.3), with the radial concentric arrangement ¥ = By1(0) C Bg(0). Assume f =
FHY0B,(0), F € L*0B,(0)). Then, for any ¢ > R* := R3?, the configuration is

non-resonant.

Proof. Expanding in Fourier series we have F' = ), oy cos(kf) + >, <, Bysin(kf) =
Foven + Foaa. Tt suffices to prove that feven = Foven ™' [0B,(0) and foaq = Foaa™'|0B,(0)
are non-resonant. We give the argument for fe.n; the argument for fyqq is the same.
Accordingly, we consider from now on f = », ayfx, where f; is given by (3.4) and
(ar)k>1 € I*(N;R); we suppress here the superscript ¢ of f. We will construct test
functions in Step 1 and compute their energy in Step 2 to prove the Proposition.

Step 1. Construction of comparison functions. To prove non-resonance, we use the
primal variational problem (2.10). Consider a fixed sequence 1 = 7); tending to zero. We
shall construct (v,,w,), satisfying the constraint

V- (AVy,) — Aw, = f (4.1)

such that the energy along this sequence, I, (v,,w,) remains bounded. Our strategy is
to decompose the source f into a low frequency part and a high frequency part as

k* 00
f= 1+ fhet, fro = Zakfka fret = Z o fr (4.2)
k=1 k=k*+1

where k* is chosen to depend on 7. Later we will choose k* = k*(n) to be the smallest
integer for which R7%" > 1.
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Our approach, to be discussed in detail below, is to solve the constraint equation
(4.1) in the form: v, = v, + v}'8" where

v};’W satisfies V - (AVU;OW) = flow (4.3)

high (o +icf (A phigh — fhigh 4.4
v, " satisfies V- (AVo,"") 050 f (4.4)
wy, satisfies  — Aw, = =V - (AVu'e") 4 fhieh (4.5)

This construction yields (v, w,), which satisfies the constraint (4.1) of the primal prob-
lem (2.10). Furthermore, we shall see that with an appropriate choice of cutoff k* = k*(n)
in (4.2), I,,(v,, w,) remains bounded as n — 0. As in our analysis of resonance, we shall
make strong use of the perfect plasmon waves.

Step 1a. Construction of v,l7°W. The function v,l7°W is pieced together using variants of the
perfect plasmon waves.

rk cos(k0) for |z| <1,
B(@) = :;;fzz(fo?(w Ei ;Z"@é}jj (4.6)
r~*(q/R)* cos(k6) for ¢ < |z|.
We note that v has the following properties.
1. 9, is continuous on all R?
2. 0y satisfies V - (AV9y;,) = 0 for z € R? \ 9B,(0).
3. Along 0B,(0), 0y has a jump in its normal flux:
(v - Vilas, o) = {%quR_% — quR_%} cos(kf) = —%qu_% cos(kf) .
Therefore, an appropriate constant multiple A,0; will satisfy
V - (AV i) = apfr, on R2
In order to satisfy this relation, we must choose A\, with
Ak - (—%qk}%_zk) = Q.
q
We therefore set
i+
v,l7°W = Z AU,  with A = —ak%q_kRzk. (4.7)

k=1
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This function satisfies (4.3),

V- (AVY) = [v - Vo, os,0 H => M (— "R~ cos(ke)) H'|0B,(0)
k<k*

= Z a cos(kO)H' 0B, (0) = f°v.

k<k*

high

Step 1b.  Construction of v, high

g
elementary plasmon waves Vj, for the radius ¢q. The functions are not tuned to solve

V- (AVv) = 0 on 0B1(0) or 0Bg(0), but they are small along these curves (compared
to their maximal values). We set

Vi(2) ¥ cos(k0) for |x| < g,
T) =
: r=*q?* cos(k6) for ¢ < |z|.

and w,. The function v is constructed from the

(4.8)

Recall A(z) =1 in a neighborhood of |z| = ¢, so the jump in the normal flux on 0B,(0)
is
AV ‘ = (=2 k .
[1/ VVk] - (—2k/q)q" cos(k6)
Therefore if we set

hlgh Z )\k Vk y )\k = —ak%q_k y (49)
k>k*

it follows that (4.4) is satisfied:
V. (AVhieh ’ _ fhigh
(AVey™) 9B4(0) d

We emphasize that v;“gh is not a solution on all of R? due to normal flux jumps at |z| = 1

and |z| = R. Since (4.3) is satisfied, the constraint (4.1) is equivalent to (4.5),
— Aw, = =V - (AVu)eh) 4 fhieh
- _ . ’ 1
-3 [V Avvk} ‘ HOBy (0) — > M [V Avvk} ‘aBRm)H 18Br(0).

9B1(0
k>k* 1(0) k>k*

(4.10)
We use this equation to define wy,.

Step 2. Calculation of energies. It remains to calculate the energy I, (v,,w,), for the
above choice of v, = v,lfw + vf;igh and w,,. It is in this step that we choose the low-high
frequency cutoff, k* = k*(n) to ensure that I,(v,,w,) remains uniformly bounded as
17 — 0. Once we verify the boundedness of this sequence of energies, the non-resonance
property of Definition 1.1 follows from (2.13).

Step 2a. Energy of v,. By the triangle inequality we can bound the energies of leW nd
vh‘gh separately. Furthermore, orthogonality of Fourier modes implies for v;

2k
o [19=n S [1vak <oy jak (B me (£)'}

k<k* k<k*
(4.11)

low
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For the case where ¢ > R?, we obtain
0 [V < C Y Janf < O,
<k

which is obviously bounded. The case where R* < ¢ < R? is more subtle. We note here
that estimate (4.11) simplifies in this case to

}%2 2k*
o[ IvirEseny jak () (4.12)

k<k*

We will come back to this bound soon with a specific choice of k*.

The energy of v;’igh is easier to control:
n/ Tl < o 3 AP /\vm? <on Y|t <C (4.13)
k>k* k

Step 2b. Energy of w,. Next we study the energy of w,. By the properties of the solution
operator (—A)~! acting on functions in H~*(R?) with vanishing average, we have

1 1 . . 1
‘/ [Vw,|* < C=||V - (AVoREh) — freh)2 0 < 0= Y [\ R* k.
g g M ek

The last inequality follows from (4.10), which states that V-(AVy,'") — f"&" is supported
on |z| =1 and |z| = R.
Now by the choice of \; in (4.9), we have |[\;| < C|ag|k~t¢™*, and hence

1/ ) , 1 (R)z’“*
- Vw < C al — | — 4.14
., V> < C > o A (4.14)

k>k*
Balancing the right hand sides of the bounds (4.12) and (4.14) we choose k* so that

2\ 2 1 /R\2
() a6
q n q
i.e. we choose k* = k*(n) to be the smallest integer with R=%" < 5 such that
* 1 *
n< Rt and - < RY. (4.15)

U
Combining (4.15) with (4.14) and (4.12), we obtain

1 R3 k*(n)
—/\vwnﬁ < C Z\akﬁ <—2) (4.16)
n . q

and

o , R3 E*(n)
77/|V'Unow| < C Z|ak| (?) (417)
k

Thus, if ¢ > R* = R*?, I (vy,wy) is bounded as n — 0. The proof of non-resonance is
complete. 0
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5 A non-resonance result in a non-circular geometry

5.1 Interaction coefficients

In this section we use complex notation. We will use complex analysis in order to
calculate certain interaction integrals that will be of interest for non-resonance results
in non-radial geometries.

We identify R? = C via (21, 23) = 21 + iz = 2. The complex functions z — 2* and
z +— 2~* are holomorphic on C and C\ {0}; we have used the real part of these functions
before,

éR(zk) =k cos(k@), %(z‘k) =k cos(k0), for z = re'.

By the Cauchy-Riemann differential equations, the gradient of these real functions can
easily be calculated,

v = () e = (205 ) () =TT = T et
T2
Accordingly, we can evaluate for v = z/|z| the normal derivative on a sphere 9B,.(0),

(v, VR(z¥)) = R (3 . k;zk—l) _ %R(zk) N —) (5.1)

2| r

A similar calculation provides for the imaginary part (v, VS(2*)) = £S(2F).
Using the complex notation we define, for arbitrary radius p > 0 and arbitrary center
20 € C, the function

) R((z — 20)™) for |z — 20| < p,
i) {me%((z —20)™™) for |z — 2| > p. (52)

This function is a perfect plasmon wave for 0B,(2) in the sense that it is continuous and
it satisfies the equation V - (4., ,V¥,,) = 0 for the coefficient A, , = 1 outside B,(2)
and A, , = —1 inside B,(z). This is easily checked with either the above complex
calculations or the previously imployed real calculations.

Of importance will be the interaction of two perfect plasmon waves with different
centers. In particular, we need to know the following interaction coefficients.

Definition 5.1. Let a radius p > 0 and a center zy € C be such that the corresponding
disk contains the origin, 0 € ¥ := B,(2). For wave numbers k,m € N, the interaction
coefficient is defined as

g = | R(EF)(z—z2)mdH' €C. (5.3)
o%
The integral in (5.3) is with respect to the Hausdorff measure; the complex number

I, can therefore be identified with the real vector whose two components are the
real integrals [ R(z7")R(z — zp)™ dH' and [ R(z7)J(z — 29)™ dH'. In this sense, the
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coefficients I, are, up to normalizing factors, the coefficients for an expansion of the
function (2 7") in spherical harmonics of the sphere 9B,(z).
With the help of complex analysis, the interaction coefficients can be computed ex-
plicitly.
Lemma 5.2 (Properties of I,,, ). The interaction coefficients for m > 1 and k > 0 are
given by
0 form < k,
L = m—1 5.4
* (=)™ *mp ( ) 2k form >k (5.4)
m—k

For m = 0 we have Iy = 2mp o .
On the circle OB,(zy), the function R(z~%) with k > 1 can be expanded in spherical
harmonics with center zo as

R(zF) =R (mp™™ ) M L (2 — 20)™ (5.5)

m>k
For any number @ > 0 we have the estimate
> Q il < 7pQ (120] + Q)" (5.6)
keN

for every m € N.

Proof. We note that, for m = k = 0, the value I = 2mp follows immediately from the
definition of I,, ;. From now on, we can therefore assume k +m > 1.

We can calculate the number I,,, , with the help of the residue theorem. We decom-
pose the integral according to R(z7%) = %z_k + %Z_k. We calculate first the contribution
of z7F,

(/ 7Rz — )™ d’Hl) = / 2R =)™ dH? @ pzm/ 2R — 20) "™ dH?
ox. ox. ox.
= —ip p2m/ 2Rz —z) ™™ dz © 0,

ox

—
=

where the symbol c.c. denotes complex conjugation. In the calculation above, we have
used in equality (a) the fact that, for the argument ¥ € R of (z — zy), we have
(z—=20)™ = pmexp(—imd) = p*(z — z9)”™. In equality (b) we have introduced the
complex line element dz with the help of the tangential vector i (z — zy)/p, substituting
(2 — z9) dH' = —ipdz. In equality (c) we have used the fact that the contour of integra-
tion can be deformed without changing the value of the integral; we deform the contour
into increasingly large circles, and the limiting value is 0. We exploited here k +m > 1.

We have thus seen that one of the two contributions to I,,, , vanishes. Using again
the tangential line element (2 — 29) dH! = —ipdz we have

] »
Ly = —/ 2R (2= 2" dH = ﬂ/ 2R (2= 2)" 2.
2 Jox 2 Jos
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At this point we have verified the claims for m = 0, since for £ > 1 we can again move
the contour of integration to oo, hence the integral vanishes. In the case m > 1 we
expand the term (z — zp)™ ! and find

—zp/82 %2( _1) T (— ) dz

0

By the residue theorem, the boundary integral is non-vanishing only for j = m — k, since
for this value the exponent of z ism —1 —j — k = —1. We obtain

___w -1 m—1 o m—k _ m—1 o m—k
L s = 5 azz (m—k)( 20) dz-wp(m_k)( 20)

by Cauchy’s theorem. This proves the explicit formula (5.4).

For fixed k > 1, we expand the function R(27%)|0B,(2) : dB,(z) — R in spherical
harmonics with coefficients v;,y; € R,

R(z") =D Rz — 20) +4S(z — 20)" (5.7)

leN

For arbitrary m > 1, we multiply this function with R(z — 2z5)”™ and integrate over
I' := 0B,(%). Using orthogonality properties of spherical harmonics, we find

/?R TMR(z — 20)™ dH" Z% / R(z — 20)'R(z — 20)™ dH' = yump®™ .

leN

The left hand side is nothing else than $(7,, ). Repeating the calculation for the imag-
inary part, we find 7, + %, = (7p*" )71 I,, . This verifies the expansion (5.5).
Estimate (5.6) is obtained with a straightforward calculation. For m > 1 there holds

Sl < 3w () Ll = al + @

keN 1<k<m

This completes the proof. O

5.2 Non-resonance for a non-concentric circular core

The following result generalizes Proposition 4.1 to a geometry that is not radially sym-
metric.

Theorem 5.3 (Non-resonance for non-concentric core). We consider a configuration
of the following form. The coefficients are given by a circular core ¥ = B,(z) with
0 € ¥ C By(0) through (1.2)—(1.3). The source is located at a radius q with ¢ > R*, and
given as f = FH' 0B, (0) with F' = 37,  ajcos(kf) + 3, -, Brsin(kl). We assume
that the Fourier coefficients satisfy >, {|ouw| + 8|} < C.

There exist g = €9(q) > 0 and 1 = €1(q) > 0 such that, if the core is close to the unit
disk in the sense that |zo| < g9 and 1 — &1 < p < 1, the configuration is non-resonant.
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Remark. We will provide an explicit condition regarding the smallness of ¢y and &1, see
(5.14) and (5.19).

Note that we consider sources at the radius ¢ > R3. We know that the source radius
g must satisfy ¢ > R* = R%? to be non-resonant, see Theorem 3.4. The lower bound R*
is probably not optimal.

Proof. As in the proof of Proposition 4.1, we can decompose the expansion of F into two
parts and can write F' = Fiyen + Foaqa. By linearity of the equations it is sufficient to show
the non-resonance property for the two contributions separately. Without restriction of
generality, we study in the following f = >, ax fr with fi, = f of (3.4), and coefficients
(Oék)k S 52(N; R) N ll(N; ]R)

We fix a sequence n = n; N\, 0. Our aim is to construct a sequence (v,, w,) of bounded
energy I,, and to use the primal variational principle (2.10) to show non-resonance.

Step 1. Construction of comparison functions. We will use a construction similar in
spirit to that used in the proof of Proposition 4.1. The main difference is that the
functions 0g(x) of (4.6) are not suited for the eccentric core 3. We will replace these
functions by oy (z) of (5.8) defined in Step la. We then need to correct errors on 0¥ due
to the non-concentric geometry. This is done in Step 1b and Step 1lc.

Step 1a. Construction of the main part of v,. We first construct the main part of v,
denoted by V,, following the construction of Proposition 4.1 with the new elementary
functions

U ()]s forz € %,
B(z) = =% cos(kf) for z € Bg(0) \ %, (5.8)
A P cos(k0) for R < |z| < g, '

r=*(q/R)* cos(kf) for ¢ < |z],

where ¥y |x, is chosen so that 7 is harmonic in ¥ and continuous on 9.
The function V;, is constructed as a linear combination of the elementary functions
U),. The coefficients A, are chosen to satisfy V - (AVV,) = f away from 0X. This leads

to
q

V;? = Z )\k f)k s )\k = —akﬁq_kR% . (59)
keN

The coefficients \; are actually identical to those in (4.7). This is because ¥, coincides
with 9, on R?\ X.
Step 1b. Evaluation of errors on 0X. In the case of concentric spheres, the construction
could be finished at this point, the distinction into high and low frequencies was only
necessary in order to find the optimal bound for ¢. Instead, since we now study a core X
that is not concentric, the functions oy are not solutions of V- (AVv) = 0 on 9%. Hence,
we need to correct the error on 0X:

F = V : (AV‘/U) - f - Z )\k {au'ak|out + a1/1~)I€|in} Hl Laz
keN

= Z )\ka,,ﬁk|0ut H! L@Z + Z )\k&,@khn H! L@Z (510)
keN keN

= Fu H' |0 + Fn 103,
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where the last equality gives the definition of Fj,; and Fi,.

We start with F,, the contributions from 9,0 |ou, which can be calculated explicitly,
since ¥y, is defined in (5.8) as ¥(2) = r ¥ cos(kf) = R(27%) on # € Br(0)\ X. Asin (5.1)
we calculate the normal derivative, which we then expand using (5.5),

—k —k
8 Uk|out - —§R( _k §R Z 7Tp2 ]mk (Z - ZO)

m—+2
m>k

Hence, we have evaluated the first part of the error in (5.10) to be

Fowe = Z )\k s (fmk z—2z)" Z?R out L (2 — 29)™ ) (5.11)

k,m>1 m>1
with
out R
' Z Akﬂpzmﬁ (5.12)

1<k<m

We next estimate the decay of |u2"| as m — oo with the help of estimate (5.6) for |I,,, x|.
We set Q := R*/q < 1/R and use the sequence B}, := Q*|I,,|. Using the elementary
estimate

1Bixllz < 118wl 1 Be)elln < 1(Be)ln,

we obtain

| < C Y ol (B2 /) ™" Lk < Cll(aw)ille o> (Be)illn

< Cll(aw)illiz p™*™ (|20] + (R*/q))™

To guarantee fast decay of |u2™|, we choose gy and €1 such that

o (o+%) <k

This is possible since ¢ > R?. Combined with our assumptions |zy| < &g, and 1 —p < &1,
we have obtained the estimate

] < Cll(ew)lliz 7™, (5.15)

We next study the other error contribution Fj, in (5.10). Our goal is to express,
analogous to (5.11),

Fu =Y MOkl =Y R (- (2 — 20)™) , (5.16)

keN m>1

and to provide an estimate for the coefficients p.
As a first step we expand the function 7x(z) = R(27*) on 9%, which was done in
(5.5). Since both components of the function z — (z — 2)” are harmonic in X, the
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expansion of the boundary values provides us also with the harmonic extension v;|y
Formula (5.5) yields

=R Z AN k(2= 20)™ for z € X

m>k

We next evaluate the normal derivative, using again (5.1). We find, on 0%,

0t = 3 (0™ ) R L) R = 20)" = D (™) S ) Sz~ 20)"

m>k m>k

This provides for the normal derivative from inside ¥ the expansion (5.16) with the

coefficients m

= MmN T L — (5.17)
p

k<m

This expression for u” is analogous to (5.12) for p. In particular, u* can be treated
similarly to 2" in (5.13).
To sum up, we have obtained

Fi=R> pim-(z—2)" H'[0S, with || < Cll(ax)ille B (5.18)

m=1

Step 1c. Correcting the error on 0¥.. We now correct the error term F' given by (5.18).
We recall that the error was introduced by V,, through V- (AVV,) =
We define m* to be the smallest integer with (p/R)?>™ < n and decompose accord-

ingly
F = Flov ! |0 + Frhish g1 0%
=R Z fim + (2 — 20)" H1L82+§R Z fom + (2 — 20)"™ HIWE-

m<m* m>m*

We will correct the high frequency error FM&" by taking w, to be the solution to Aw, =
Fhigh

The low frequency error F'°% must be treated with a quite different approach. The
basic idea is to use the perfect plasmon waves V, and Vj, as in (3.3). We define Vj(z) =
R(2") and Vi (2) = S(2*) for z € B(0), and Vi (2) = R¥R(z*) and Vi(z) = R¥*S(27F)
for = € R? \ Bg(0). These functions are perfect plasmon waves for the curve dBg(0),
but they are not solutions on dX. In other words, the nonzero functions V- (AVV;) and
V- (AVf/k) are concentrated on 0X.

The normal derivatives on 9% of these functions have been used before. There holds
v-VVi = p'kR((z — 2)(z¥1)), compare (5.1). Similarly, we have for the imaginary
part the normal derivative v - V‘N/k R(z =20 ikp™' 2571 = p7 hS((2 — 20) (2" 7).

The fact that the functions Vk and Vj are not solutions on 9% can be used to our
advantage. We expand the low frequency error F'® in terms of the residuals of these
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functions. Expanding with respect to the center z = 0, we find, on 0%

ow : m— - —1 — m—
P =03 i = ) =) = R S (D)) A ) e )

::EE:/§kLI-Y7§@ +—:£:/§kb’-‘7v2,
k=1 k=1

with the real coefficients Bk and (3, given by

b= 3 (72 ) (20
m=k

We use now the estimate (5.18), |u,| < CR™™, to estimate the complex coefficient

B = Br + B,

= m—1 m— = —-m m—
|6k|§CZ|um|<k_1)|zO| <O R+ |z))m
m=k

m=k

We choose ¢; such that

(I+¢e0) <R (5.19)
Hence, as (1 + |z0|)/R < 1, we have
1B < C Z R™™(1+ |20))™ ™ < CR7*(1 + |%)* ! (5.20)

m=k

We can therefore compensate the low frequency errors introduced by V;, of (5.9) using
the functions Vj, and V;. We recall that V - AVV, = —20, V), H'| 0¥ and set therefore

1Sn o 184 -
vy =V, + 525'%* 52@%. (5.21)
k=1 k=1

With this choice of v,, we have V - (AVv,) = F + f — F'°% = f 4 FMet_If we choose w,
as the solution of Aw, = F"&" we obtain

V- (AVy,) — Aw, = f + phigh _ phigh — f

In particular, the constraint of (2.10) is satisfied.
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Step 2. Calculation of energies. It remains to calculate the energy I, (v,,w,). By the
triangle inequality, the energy of v, is bounded if we can control the energy of each term
on the right hand side of (5.21).

Recall that oy, defined in (5.8) agrees with oy, defined in (4.6) on R?\ . Accordingly,
the energy contribution of V;, is bounded by a similar argument as in the proof of Propo-
sition 4.1. But since we do not have orthogonality of the basis functions, we calculate
here with the [!'-assumption on aj. Using (5.9), the triangle inequality, and the fact that
we are in the case ¢ > R?, we find

(] |vvn\2)1/2 = VillVll < V7 5 A (f1vae)
<OV leul yrg— = VY leul £ OV,

1/2

(5.22)

The calculations for the energies related to the corrections involving Vi, and Vj are
identical, we therefore treat here only the contribution of »_ f;Vj. Exploiting orthogo-
nality and the estimate (5.20) for g, we find

/‘VZ@ch <C?72|ﬁk|2/|VVk|2

< CnZR_%(l + [z0l) " RR* < C(p/R)*™ (m*)*(1 + |z0])"
k=1

where in the last inequality, we have used the fact that n < C(p/R)*™ by our choice of
m*. By the assumption p < 1 and the choice of gy in (5.19), the energy is bounded.

It remains to estimate the energy contribution of w,, given by the solution to Aw, =
Fhigt Note that the squared norm of FM&! can be estimated by (5.18) as

I3 < C ) ™™ < Cll(an)illie (0/R*™ < COn.

m>m*

By the properties of the solution operator (—A)~! acting on functions in H~!(R?) with
vanishing average, we conclude that the energy contribution n=! [ |Vw,|* < Cn~'n < C
is bounded.

The proof of non-resonance is complete by inequality (2.13). O

Regarding the last proof we remark that the decomposition of F' into high and low
frequency parts was only necessary in order to obtain an improved lower bound for ¢.
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A Are there perfect plasmon waves in dimensions
n # 27

The perfect plasmon waves ﬁk, defined in (3.3), play a central role in the construction
of trial functions in our variational arguments. In this section we consider the question
of whether such plasmons exist in dimensions n # 2. Plasmon solutions may be viewed
as solutions to the plasmonic eigenvalue problem (see [7] and references cited therein).
Specifically, for a fixed radius, R > 0, we seek ¢ (x), x € R", such that

V- (AVY)= 0, v -0 as r=|z] - 0 (A.1)
where
L, |z[ >R
Ax) = A2
(=) {5 . |z| < R. (A42)

This is the situation where we take the core ¥ = ().

A function 1) is a weak solution of (A.1)-(A.2) if and only if

A =0, 2] # R (A.3)
—€ % % = 0 (flux continuity) (A.5)
or |=R- or |=R+
v —0as |z] = oo . (A.6)
We are interested in the case ¢ = —1 and we show

Claim 1: There are no plasmons localized on spheres in dimension n = 3.

Claim 2: There are plasmons localized at the plane separating half-spaces in any spatial
dimension n > 2. That is, for any n > 2, there are solutions of (A.3)-(A.6) in the case
where the spherical interface |z| = R is replaced by the planar interface z,, = 0.

Proof of Claim 1: Let Y'(2), ©Q € S? denote any spherical harmonic of order [. That is,
—Ag:YH(Q) = 11+ 1YY Q), 1 >0. (A7)
The corresponding solutions of Laplace’s equation in dimension 3 are:
rtYHQ) and »YHQ), r = |z (A.8)
Regularity away from the interface and decay at infinity imply

rtYYQ) , 0<r<R;
P(r) = -1yl
cr Y (Q), r>R.

The constant ¢ is determined by the interface conditions. Continuity implies ¢ = R%*1.
Furthermore, the left hand side of (A.5) is equal to —R!~! # 0. Hence there are no perfect
spherical plasmon waves in dimension 3. A similar calculation holds in all dimensions
n >4, where —Agn1YH(Q) = 1(1 +n —2)Y(Q).
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Remark A.1. Note that
1yl
B rYH(Q), 0<r<R
Yi(x) = { R ==Ly UQ) | r>R
s a plasmonic eigenstate with corresponding eigenvalue €, =
plasmonic eigenvalues approaches —1 as | — oo.

—Hil. This sequence of
Proof of Claim 2: For any n > 2, we write x € R" as x = (z,, z,) and define:
—lénlzn i€
S e , T, >0
w(x7€) - { €‘5n|.’ﬂn 6i§Lml, T < 0
where &, € R and £, € R*™! are chosen so that:

‘£n|2 = &1-&1 .

Then v (x; &) is a plasmon wave.
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