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Abstract. Many physical systems can be modelled by nonconvex variational problems regular-
ized by higher-order terms. Examples include martensitic phase transformation, micromagnetics,
and the Ginzburg–Landau model of nucleation. We are interested in the singular limit, when
the coefficient of the higher-order term tends to zero. Our attention is on the internal structure
of walls, and the character of microstructure when it forms. We also study the pathways of
thermally-activated transitions, modeled via the minimization of action rather than energy. Our
viewpoint is variational, focusing on matching upper and lower bounds.
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1. Introduction

Many physical systems are described by nonconvex variational problems regularized
by higher-order terms. Two of the simplest examples are the Ginzburg–Landau energy

∫
�

(u2 − 1)2 + ε2|∇u|2

and the Aviles–Giga energy
∫

�

(|∇u|2 − 1)2 + ε2|∇∇u|2.

The former is a basic model of nucleation; we shall discuss it in Section 4. The latter
arises in many settings, including convective pattern formation and magnetic thin
films; we shall discuss it in Section 3. Other, more complicated examples include mi-
cromagnetics and martensitic transformation; we shall discuss them too, in Section 2.
Our focus is always on the singular limit ε → 0.

In some settings, minimizers get increasingly complicated as ε → 0. We call
this the development of microstructure. We shall discuss two examples in Section 2,
involving twinning in martensite [40] and the branching of domains in a uniaxial
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ferromagnet [13]. When microstructure forms, we are interested in its local character
and length scale.

In most settings, minimizers develop sharp transition layers where there is rapid
spatial variation. Outside these layers the solution is relatively smooth. We call the
transition layers walls and the smooth regions domains. We are interested in the
internal structure of walls, and in evaluating their surface energies. We shall discuss
two examples in Section 3, involving the Aviles–Giga energy [38] and cross-tie walls
in ferromagnetic thin films [1].

Finally, we are interested in local as well as global minimizers, and in thermally-
activated transitions between them. We shall explain in Section 4.1 how large deviation
theory leads to the minimization of action rather than energy. Then, in Section 4.2,
we discuss the singular limit of action minimization for the Ginzburg–Landau func-
tional [42].

Our viewpoint is variational: we focus on the leading-order dependence of the
energy upon ε. In problems with microstructure we find the optimal scaling law
(Section 2); though the argument does not determine the minimizer, it does give
information about its character. In problems involving walls (Sections 3 and 4) the
scaling law is obvious and our achievement is to find the prefactor. In the process, we
also determine an example of a minimizer.

Upper bounds on the minimum energy are usually easy, by considering appropriate
test functions. Lower bounds are much more difficult, however, since our functionals
are nonconvex. The main mathematical accomplishment in each of our examples is
an ansatz-independent lower bound:

(a) For the examples involving microstructure (Section 2), the heart of the matter
is an interpolation inequality (10). It expresses mathematically the fact that
development of fine-scale microstructure requires a lot of surface energy.

(b) For the examples involving walls (Section 3), the heart of the matter is the use
of a suitable “entropy.” Recall that for a conservation law, entropy is dissipated
at shocks. Our entropies are analogous, in the sense that the divergence is
concentrated at walls.

(c) For the example involving action minimization (Section 4), the heart of the
matter is the separation of the action into two parts: the “nucleation cost” and
the “propagation cost.”

It should be clear by now that our goal is not to survey the field of energy-driven
pattern formation. Such a survey would be extremely difficult, because the subject
is vast and ill-defined. Even if we limited attention to recent mathematical work
based on singularly perturbed variational problems, a survey would have to include
diblock-copolymers [11], [55], energy-driven coarsening [41], compressed thin film
blisters [7], dislocation patterns in plasticity [17], vortex patterns in type-II super-
conductors [59], the intermediate state of a type-I superconductor [14], and many
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additional examples from micromagnetics [21]. (This list is of course incomplete,
and the citations are simply examples selected from a huge literature.)

Our aim is much more limited. The primary goal of this paper is to communicate
the methodological developments summarized in (a)–(c) above. In addition, we will
explain the materials science problems that led to these developments.

Proving lower bounds is difficult, but guessing them is easier. This is particularly
true in problems from physics, where experimental observations are available. There-
fore it should not be surprising that many of our results were guessed long ago. For
example, the scaling of the minimum energy for a uniaxial ferromagnet (Section 2.2)
has been “known” for decades [33], [52]. The cross-tie wall, however, is an exception
to this rule. As we shall explain in Section 3.2, the analysis of [1] finds the opti-
mal wall structure explicitly. Prior to that work the structure was known only from
numerical and physical experiments [50].

1.1. Warmup: one space dimension. For context and background, it is useful to
review a simple 1D example. Consider the minimization of

∫ 1

0

1

ε
(u2

x − 1)2 + εu2
xx + αu2 (1)

where ε and α are positive. The first term prefers ux = ±1; the second penalizes
changes of slope; the third penalizes deviations from 0. Their preferences are incom-
patible, and the competition between them determines the character of the minimizer.
When ε is small, the optimal u is a sawtooth function as shown in Figure 1. Its slope
is nearly ±1 except for a transition region (whose length is of order ε) near each peak
and valley. The distance between peaks and valleys is determined by the competition

ε

Figure 1. A minimizer of (1).

between the first two terms (which attribute energy to each peak and valley) and the
last term (which prefers u to be small). This is most evident in the limit ε → 0, when
each transition layer shrinks to a point. If 2c0 is the energy of an (optimal) transition
layer, then the limiting variational problem as ε → 0 is the minimization of

∫ 1

0
c0|uxx | + αu2 (2)

subject to the condition ux = ±1.
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The statement that (2) captures the asymptotic behavior of (1) can be proved with
mathematical rigor: this is a basic example of �-convergence, see e.g. [9]. In this
article we shall work mainly at positive ε, so we do not make use of �-convergence in
any formal sense. Our viewpoint, however, is very similar. In particular, the following
argument – which amounts to the identification of the constant c0 in (2) [46] – will
recur repeatedly. Consider a function u such that ux = −1 near x = a and ux = +1
near x = b. Then

∫ b

a

1

ε
(u2

x − 1)2 + εu2
xx ≥

∫ b

a

2|1 − u2
x ||uxx | =

∫ b

a

|[�(ux)]x | (3)

if �′(t) = 2|1 − t2|. Since

∫ b

a

|[�(ux)]x | ≥
∣∣∣∣
∫ b

a

[�(ux)]x
∣∣∣∣ = |�(1) − �(−1)| = 2

∫ 1

−1
(1 − t2)

we conclude that the cost 2c0 of a peak or valley in (1) is at least

2
∫ 1

−1
(1 − t2) = 8/3.

Moreover this estimate is sharp, and it reveals the internal character of the transition
layer: for equality to hold in (3) we need

|1 − u2
x | = ε|uxx |

from which it follows easily that ux = tanh(x/ε). We have omitted some details, of
course; at finite ε the assumptions ux(a) = −1 and ux(b) = +1 are only approxi-
mately valid. Still, the preceding calculation captures the heart of the matter.

Our example (1) is local, in the sense that the energy involves only u, ux , and uxx .
But it can also be viewed as a nonlocal problem. Indeed, if we treat v = ux as our
basic variable, and write u = ∇−1v as an indefinite integral of v, then (1) is equivalent
to minimizing ∫ 1

0

1

ε
(v2 − 1)2 + εv2

x + α|∇−1v|2. (4)

From this perspective, space gets divided into “domains” where v ≈ ±1, separated
by “walls” where v changes rapidly, on a length scale of order ε.

The problems considered in Sections 2–4 can be viewed as multidimensional
analogues of (1) or (4). The multidimensional setting introduces new challenges, and
many phenomena not seen in one space dimension. But 1D examples are rich, and
their analysis has taught us a lot. For example, these functionals have many local
minima, and it is natural to inquire about the character of those states. Are they
periodic in x, or can they have “defects”? For studies of this type see [48], [54],
[62], [64].
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2. Singular perturbation and the development of microstructure

We say a singularly-perturbed variational problem develops microstructure if its min-
imizers become increasingly complicated as ε → 0. In this section we discuss two
examples, from martensitic transformation and micromagnetics.

2.1. Refinement of twins. A simple 2D analogue of (2) was introduced in 1992 by
Kohn and Müller:

min
uy=±1

u=0 at x=0

∫ 1

0

∫ L

0
u2

x + ε|uyy | dx dy (5)

where u = u(x, y) is scalar-valued. The constraint uy = ±1 applies in the interior
of the region (0, L) × (0, 1). It is clearly incompatible with the boundary condition
u = 0 at x = 0, so we expect ∇u to be oscillatory near x = 0. The regions
where uy = ±1 are “domains,” and the discontinuities of uy are “walls.” The term∫∫

ε|uyy | dx dy in (5) represents surface energy: since uy jumps between ±1 at each
interface, it simply counts 2ε times the number of interfaces above x then integrates
over x ∈ (0, L).

This is a simplified model for the geometry of twinning near an austenite twinned-
martensite interface, in a crystalline solid undergoing a martensitic phase transfor-
mation [39]. Briefly: in the “twinned” region (0, L) × (0, 1) there are two preferred
values ∇u = (0, 1) and ∇u = (0, −1), corresponding to two “variants” of marten-
site. The first term in (5) represents “elastic energy;” it penalizes deviations from
the preferred values of ∇u. The second term represents the surface energy of the
twin boundaries. We suppose the material occupying the region x < 0 is untwinned
and rigid; hence the boundary condition u = 0 at x = 0. See [39] for a more de-
tailed account of the crystallography behind (5), and [8] for a modern introduction to
martensitic phase transformation with a variational viewpoint.

The most basic result about (5) is the assertion that

Cε2/3L1/3 ≤ minimum energy ≤ C′ε2/3L1/3 (6)

when ε/L is sufficiently small [40]. Thus, we know the scaling law of the minimum
energy – though not the prefactor.

The right hand side of (6) – the upper bound – is relatively easy to prove. It suffices
to give a single example of a function u with the desired scaling. The convenient
construction is self-similar; in particular, the length scale of the twins at x decreases
geometrically as x approaches 0. Figure 2a sketches the construction by showing two
generations of refinement.

The left hand side of (6) – the lower bound – requires an entirely different type of
argument. No example or numerical simulation can be of any use. Rather, we require
a geometry-independent argument explaining why no microstructure can do better.
In a convex variational problem we would turn to the convex dual. But our example
is very nonconvex, due to the constraint uy = ±1.



6 Robert V. Kohn

x = Lx = 0

(a)

x = x0

(b)

Figure 2. (a) Two generations of the self-similar construction used to prove the upper bound.
(b) Visual aid for the lower bound. If there are few interfaces at x0 then the integral of u2

x over
the hatched region must be large.

The successful argument is actually quite elementary. It rests on two simple facts:

Fact 1. If the graph of f is a sawtooth with few teeth, then it must make large
excursions. More precisely: if fy = ±1 then

∫ 1

0
f 2 dy ≥ C/(N + 1)2 if the slope changes N times.

Fact 2. The integral of u2
x controls the variation of u with respect to x. In particular:

∫ 1

0
|u(b, y) − u(a, y)|2 dy ≤ (b − a)

∫ 1

0

∫ b

a

u2
x dx dy.

Using these, the lower bound is proved as follows (c.f. Figure 2b). For any u such
that u = 0 at x = 0 and uy = ±1, let

E =
∫ 1

0

∫ L

0
u2

x + ε|uyy | dx dy

be the associated energy.

Step 1. Since the second term in E controls the wall energy, for some 0 < x0 < L the
number of walls above x0 is less than or equal a constant times E/εL. We conclude
using Fact 1 that ∫ 1

0
u2(x0, y) dy ≥ Cε2L2/E2.

Step 2. Since the first term in E is u2
x , the boundary condition together with Fact 2

give

LE ≥
∫ 1

0
u2(x0, y) dy.



Energy-driven pattern formation 7

Step 3. Combining both steps, we have shown that LE ≥ Cε2L2/E2. Rearrangement
gives the desired lower bound E ≥ Cε2/3L1/3.

This argument is so easy it leaves one a bit uncomfortable. What makes it work,
and how can it be generalized? The answer will become evident in Section 2.2.

In focusing on upper and lower bounds, we have presented only the most basic
result concerning (5). Much more can be proved, including an estimate for the length
scale of twinning as a function of x [40]. Conti has studied the fine-scale structure
of a minimizer near x = 0, showing roughly speaking that it is asymptotically self-
similar [15].

2.2. Branching of magnetic domains. The branching of domains in a uniaxial
ferromagnet combines features of our 1D model problem (1) and our 2D example (5).
The problem is richer and more difficult, however, because the domain patterns are
fully three-dimensional. A sharp-interface version of this problem was treated in [13].
The following discussion, based on standard micromagnetics and drawn from [21],
is only slightly different.

The phenomenon we wish to capture is sketched in Figure 3b; experimental images
(which are of course much richer and more detailed) can be found in Section 5.2.1
of [34]. Briefly: we are considering a cylinder occupied by a uniaxial ferromagnet.
The magnetization has two preferred values, m = (1, 0, 0) or m = (−1, 0, 0). The
observed configurations are local minima of the micromagnetic energy, which is
defined by ∫

magnet
Q(m2

2 + m2
3) + ε2|∇m|2 +

∫
all space

|∇φ|2 (7)

where m is the magnetization (a unit vector field defined on the magnet, extended
by 0 outside) and φ is defined by solving

�φ = div m. (8)

x = 0 x = L/2 x = L

(a)

x = L/2 x = L

(b)

Figure 3. (a) Sketch of our uniaxial ferromagnet, with the preferred magnetization direction
parallel to the axis. (b) Sketch of the magnetic domain structure.
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The first term in (7) expresses the anisotropy of the crystal, in other words its preference
for m = (±1, 0, 0). The second term, known as the exchange energy, penalizes sharp
changes in m and is directly analogous to the term εu2

xx in our one-dimensional
example; when ε is small it forces the creation of walls and determines their energy.
The nonlocal magnetostatic energy

∫ |∇φ|2 comes from Maxwell’s equations. It
expresses a preference for m to be divergence-free, since (8) is equivalent to the
statement that

m = ∇φ + divergence-free.

(Thus, ∇φ is the Helmholtz projection of m onto the space of gradients.)
The origin of the microstructure sketched in Figure 3b is easy to explain heuristi-

cally. The magnetization wants to be (±1, 0, 0) in the cylinder, but its extension by 0 to
all R

3 wants to be weakly divergence-free. It cannot do both, since being divergence-
free would require m · n to vanish at the end of the cylinder. So the magnetization
compromises, making the magnetostatic energy small by oscillating rapidly in space
between the preferred values (±1, 0, 0) at the end of the cylinder. This requires the
introduction of walls across which m1 changes from 1 to −1. The magnetostatic
term likes walls parallel to the x1-axis (since such walls are weakly divergence-free).
However the walls carry surface energy, on account of the exchange term ε2|∇m|2.
So the domain structure coarsens away from the end of the cylinder – though this
means the walls are not exactly parallel to the axis.

Overall: the situation is quite similar to the twinning example discussed in Sec-
tion 2.1. There ∇u was two-dimensional and exactly curl-free; it developed fine-scale
structure near x = 0 due to the boundary condition u = 0 at x = 0. Here m is three-
dimensional and only approximately divergence-free; it develops fine-scale structure
so that m · n is approximately zero at the end of the cylinder.

Mathematically: the analogue of (6) in this setting is the assertion that for a
minimizer,

CQ1/3ε2/3L1/3 ≤ energy

cross-sectional area
≤ C′Q1/3ε2/3L1/3 (9)

provided Q is sufficiently large and ε/L sufficiently small.
Proving the upper bound is conceptually easy. One must simply give an example

of an m with the desired scaling. This is done in [12], [52] for a slightly different
model in which interfaces are sharp rather than diffuse. (See see also [21] for a
concise summary.) The convenient construction involves branching, but none of the
3D complexity of Figure 3b. Thus the magnetization patterns seen in real magnets are
geometrically complicated not because complexity is required for the optimal scaling
law, but rather because complexity is a feature of the many local minima consistent
with this scaling.

As in Section 2.1, the lower bound provides an entirely different and more inter-
esting challenge. It is natural to simplify the problem slightly by assuming periodicity
(rather than a finite-sized magnet) in the x2 and x3 variables. This helps by permitting
us to focus on the essential physics – namely the competing effects of the anisotropy,
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exchange and magnetostatic energies. The main steps are parallel to those of our
twinning example:

Fact 0. The energy controls wall area.

Fact 1. Consider a particular section x1 = a. If in this slice the perimeter of the
walls is small, then the H−1 norm of m1 must be large.

Fact 2. The energy controls the variation of m1 in the H−1 norm.

Let us explain each assertion briefly. Our twinning example had the wall energy
built into the functional, so the analogue of Fact 0 was automatic there. In the present
setting we must instead argue as for (3). Since 2xy ≤ x2 + y2 we have

2εQ1/2|∇m1| ≤ ε2

1 − m2
1

|∇m1|2 + Q(1 − m2
1).

But by differentiating the constraint m2
1 + m2

2 + m2
3 = 1 one easily sees that

|∇m1|2
1 − m2

1

≤ |∇m|2.

Therefore

2εQ1/2
∫

|∇m1| ≤
∫

Q(m2
2 + m2

3) + ε2|∇m|2.
Since m1 ≈ ±1 in the domains, the left hand side is roughly a constant times the total
surface area of the walls. Thus the wall energy is controlled by the sum of anisotropy
and exchange energy.

The essence of Fact 1 is the following interpolation inequality: if S = [0, 1]n is
the unit cube in R

n and g : S → R is periodic with mean value 0 then

∫
S

g2 ≤ C‖g‖2/3
L∞

(∫
S

|∇g|
)2/3

‖g‖2/3
H−1(S)

(10)

where the H−1 norm is defined by

‖g‖2
H−1(S)

=
∫

S

|∇�−1g|2

Substituting m1 for g and a scaled section of our cylinder for S, the left hand side
of (10) is fixed so the right hand side stipulates a tradeoff between the perimeter∫ |∇m1| and the H−1 norm of m1. The interpolation inequality (10) is not exactly
standard, but the proof is relatively easy; see e.g. [16] for a concise proof and an
interesting extension. Such interpolation inequalities have been used a lot in recent
work on energy-driven pattern formation, not only for understanding the consequences
of energy minimization, but also for proving bounds on coarsening rates, see e.g. [16],
[41], [44]. Their broad importance is due to the special form of the right hand side,
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which relates the BV norm (a proxy for perimeter) to a negative norm (a proxy for the
length scale of microstructure). Our Fact 1 in Section 2.1 did not assume periodicity;
however when fy is periodic it is an immediate consequence of (10), obtained by
taking S = [0, 1] and g = fy .

The essence of Fact 2 is easiest to see in the special case when div m = 0. We
also assume m is periodic in x2 and x3 with period cell S. Then the variation of m1
with respect to x1 is estimated by

‖m1(a, ·) − m1(b, ·)‖H−1(S) = sup∫ |∇v|2≤1

∫
S

[m1(a, ·) − m1(b, ·)]v

and the right hand side equals

∫ b

a

∫
S

(∂1m1)v = −
∫ b

a

∫
S

(∂2m2 + ∂3m3)v

=
∫ b

a

∫
S

(m2, m3) · ∇v

≤
(∫ b

a

∫
S

m2
2 + m2

3

)1/2 (∫ b

a

∫
S

|∇v|2
)1/2

.

Thus when div m = 0 the variation of m1 with respect to x1 in the H−1 norm is
controlled by the anisotropy energy.

The argument for the lower bound in (9) is parallel to the one sketched in Section 2.1
for (6).

Step 1. If the energy is small then in a generic section the walls have small perimeter
(Fact 0). So the H−1 norm of m1 in the section is large (Fact 1).

Step 2. If the energy is small then the H−1 norm of m1 cannot change significantly
as x1 varies (Fact 2). So the H−1 norm is large at the end of the cylinder, and
(simplifying the argument a bit) this forces the magnetostatic energy to be large.

Step 3. Combining both steps, we find that the energy cannot be small after all.

We have cheated a little. In truthm1 is neither divergence-free nor exactly mean 0 in
each section. The full argument, presented in [13] and [21], proceeds a bit differently,
working in Fourier space to take full advantage of the magnetostatic energy. The
bottom line, however, is similar to the steps sketched above.

Our understanding of this problem is far less complete than the one discussed in
Section 2.1. In particular, while our methods give an estimate for the total area of all
the domain boundaries in the magnet, they do not give rigorous results on the local
length scale as a function of x.

There are many other problems where nonlocal effects promote microstructure.
Bounds analogous to (9) have been proved for a few of them, including diblock
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copolymers [11] and the intermediate state of a type-I superconductor [14]. However
there are limits to what can be achieved this way. For example, in diblock copolymers
the choice of microstructure seems to depend mainly on volume fraction. This cannot
be seen from the scaling law; rather, different patterns achieve different prefactors.

3. Singular perturbation and the structure of walls

The problems considered in Section 2 develop microstructure, in the sense that min-
imizers become increasingly complex as ε → 0. In proving energy scaling laws, we
acquire insight about the character of this microstructure.

Here we turn to a different issue, namely the internal structure of a wall. This
question is meaningful and interesting even when there is no microstructure. We
begin with a problem of that type – the Aviles–Giga energy – which provides a
convenient warmup. Then we discuss the striking recent work of Alouges, Rivière,
and Serfaty on the internal structure of a cross-tie wall [1].

3.1. The Aviles–Giga problem. Aviles and Giga asked in [4], [5] what we know
about

min
u=0 at ∂�

∫
�

1

ε
(|∇u|2 − 1)2 + ε|∇∇u|2 (11)

where � is a bounded domain in R
2 and u is a scalar-valued function. Their motivation

came from the modeling of smectic liquid crystals, but the same functional arises in
the Cross–Newell approach to convective pattern formation [27] and in the modeling
of a soft, thin magnetic film with cross-section � [38], [63]. Explaining just the last
interpretation: the magnetostatic energy prefers div m = 0 in the film and m ·n = 0 at
its edges. If we suppose m depends only on (x, y) then these conditions are equivalent
to (m1, m2) = (uy, −ux) in � with u = 0 at ∂�. The magnetostatic term also prefers

m3 = √
1 − |∇u|2 to be zero. Thus the sum of magnetostatic and exchange energy

is a lot like (11).
As ε → 0 the energy clearly prefers |∇u| = 1. If � is not a circle then the

graph of u must have “folds,” and it is natural to guess that if uε minimizes (11) then
lim uε = u0 exists and solves a suitable “asymptotic problem” of the form

min
|∇u|=1

u=0 at ∂�

∫
folds

fold energy. (12)

Notice that the class of admissible functions for (12) is somewhat rigid; two examples
are shown in Figure 4a.

What is the fold energy? If we assume that the internal structure of a fold is
“one-dimensional,” i.e. that ∇u depends only on the variable transverse to the fold,
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(a)

 

 ux = a, uy = (1 − a2)1/2

L

ux = a, uy = −(1 − a2)1/2

(b)

Figure 4. (a) Two admissible configurations for the asymptotic energy (12) (the arrow shows the
direction of ∇u). (b) The boundary value problem used to determine the fold energy.

then the energy is easily calculated by an argument similar to (3). The answer is

fold energy =
∫

fold

1

3
|[∂u/∂n]|3 (13)

where the square bracket denotes the jump of the normal derivative of u across the
fold. Thus for a fold parallel to the x-axis across which ∇u jumps from (a,

√
1 − a2)

to (a, −√
1 − a2), the fold energy per unit arc length would be 8

3 (1 − a2)3/2.
But is this calculation right? A proper calculation of the fold energy should

assume nothing about its internal structure, proving rather than assuming that it is
one dimensional. A scheme for achieving this was introduced in [38]. Focusing for
simplicity on folds parallel to the x-axis, the idea is to consider theAviles–Giga energy
in a rectangle, with boundary conditions consistent with a fold as shown in Figure 4b.
The height of the strip is 1; the length is L; and ∇u is assumed to be periodic in x

with period L. If we can show for such u that

lim inf
ε→0

∫
1

ε
(|∇u|2 − 1)2 + ε|∇∇u|2 ≥ 8

3
(1 − a2)3/2L (14)

we will effectively have shown that folds are indeed one-dimensional – or more
precisely that there is no incentive to be otherwise.

The proof of (14) involves little more than a clever integration by parts. Suppose
we can find a smooth 
 : R

2 → R
2 such that

|div 
(∇u)| ≤ 1

ε
(|∇u|2 − 1)2 + ε|∇∇u|2 (15)

for any u(x, y), with the further property that


(a,
√

1 − a2) · (0, 1) + 
(a,−
√

1 − a2) · (0, −1) = 8

3
(1 − a2)3/2. (16)
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Then the integral of the Aviles–Giga energy is bounded below by

∫
|div 
(∇u)| ≥

∣∣∣∣
∫

div 
(∇u)

∣∣∣∣ = 8

3
(1 − a2)3/2L (17)

using the boundary conditions and periodicity in the last step. This is the desired
inequality.

The convenient choice of 
 is


(∇u) = 2
(

− 1

3
u3

x − uxu
2
y + ux,

1

3
u3

y + uyu
2
x − uy

)
.

It satisfies (16), and almost satisfies (15) – there is an extra term on the right hand
side, whose value after integration is a constant times ε. Thus the extra term does not
matter in the limit ε → 0, and our argument shows that a one-dimensional wall is
asymptotically optimal.

We call 
 an entropy. To explain why, notice that if 
 satisfies (15), then (by
letting ε → 0) 
(∇u) must be divergence-free wherever u is smooth and |∇u| = 1.
Thus 
 bears the same relation to the eikonal equation that an entropy entropy-flux
pair bears to a conservation law.

Our argument shows that a one-dimensional wall is optimal, but it does not show
the wall has to be one-dimensional. In fact it does not: when a = 0 the optimal fold
energy is also achieved as ε → 0 by a two-dimensional pattern similar to a cross-tie
wall [60].

We have focused rather narrowly, on the identification of the fold energy, but much
more is known. In writing (12) we implicitly assumed that ∇uε remains compact,
so |∇u0| = 1 in the limit; this is true, but the proof is far from trivial [2], [19]. The
introduction of entropies and the analogy with conservation laws has led to a lot of
progress on this and related problems, including [3], [6], [18], [36], [37], [38], [45],
[56], [57]. But the subject is far from finished. In particular, (12) has not yet been
shown to be the �-limit of (11) as ε → 0.

3.2. Cross-tie walls. The cross-tie wall is a specific type of domain wall seen in
ferromagnetic thin films. Its striking feature is that the cross-tie wall is not one di-
mensional; rather, its structure varies along the wall as well as across it. Its pattern is
certainly energy-driven: numerical minimization of the micromagnetic energy pro-
duces results quite similar to those seen in real materials. But the simulations do not
tell us why the pattern forms or what determines its structure. These questions were
recently addressed by Alouges, Rivière, and Serfaty [1]. Our summary will be a bit
different from their exposition, following instead the discussion in [21].

As in Section 2.2, our starting point is the micromagnetic energy

E =
∫

film
Q(m2

2 + m2
3) + ε2|∇m|2 +

∫
all space

|∇φ|2
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where |m| = 1 in the film, m = 0 outside, and

�φ = div m.

However we are now interested in a soft thin film. The term “soft” means Q is
small; in fact we shall take Q = 0. The film thickness t should be small, but not
too small; when the material is permalloy, cross-tie walls are seen for thicknesses of
order 30–80 nm. The model developed in [1] assumes the magnetization m depends
only on (x1, x2); this is not required energetically [51], but it seems to be a good
approximation for a cross-tie wall.

A cross-tie wall can have any angle greater than 90 degrees. To be specific,
however, we focus on the case of a 180-degree wall. Its structure is sketched in
Figure 5b. This is the magnetization, seen from the top of the film and zooming
in on the wall. Far from the wall (m1, m2) = (0, 1) at one extreme and (0, −1) at
the other. Within the wall m is piecewise smooth and weakly divergence-free. At
the discontinuities (which are themselves walls) the angle changes by 90 degrees or
less. Experimental images and numerical simulations very much like the figure can
be found in [50] (see also [34]).

t

(a) (b)

Figure 5. (a) A thin film with a cross-tie wall, viewed from afar. (b) Magnetization within a
180-degree cross-tie wall, viewed from above the film. In each of the squares along the axis
m is piecewise constant; outside those squares the lines of magnetization form circles. The
solid vertical and horizontal lines are 1D Néel walls. The dashed lines mark places where m is
continuous but not C1; they are not walls.

The cross-tie wall forms because one-dimensional walls are very expensive when
the wall angle is large. The structure shown in Figure 5b consists, in essence, of an
ensemble of one-dimensional low-angle walls, whose total energy is less than that of
a one-dimensional 180-degree wall.

The preceding intuition is old. It suffices to explain why one should not see large-
angle one-dimensional walls. But it does not explain why the specific pattern shown
in Figure 5b is optimal. Mathematically: the structure in the figure gives an upper
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bound on the wall energy. To know it is optimal we need a matching lower bound.
Its proof has three main steps:

Step 1. Simplification of the nonlocal term.

Step 2. Evaluation of the energy of a one-dimensional wall.

Step 3. Use of an appropriate entropy to show the cross-tie pattern is optimal.

We summarize each in turn.

Step 1. The hypothesis that m depends only on (x1, x2) makes it easy to evaluate the
magnetostatic energy

∫ |∇φ|2 in terms of the Fourier transform of m. If we assume
the relevant spatial frequencies ξ satisfy t |ξ | 
 1 then the expression simplifies and

∫
R3

|∇φ|2 dx ≈ t

∫
R2

|ξ · m̂′|2
|ξ |2 dξ +

∫
R2

|m̂3|2
|ξ | dξ

= t‖div m′‖2
H−1 + ‖m3‖2

H−1/2 (18)

with the convention m = (m1, m2, m3) = (m′, m3). In assuming t |ξ | 
 1 we are
not assuming that t is large compared to the width of the cross-tie wall; rather, we
are assuming that it is large compared to the width of the low-angle one-dimensional
walls inside it. In practice this means t/ε 
 1. For permalloy the value of ε is
5–10 nm and cross-tie walls are seen when the thickness t is 30–80 nm. Therefore the
simplification leading to (18) is plausible, if not entirely compelling.

Step 2. The analysis of a one-dimensional wall in this regime is classical (it is some-
times called a “thick-film Néel wall”). Since the term involving m3 in (18) has
no factor of t , nonzero m3 is very expensive. Therefore it is natural to assume that
m3 = 0. Suppose the wall is perpendicular to thex-axis, withm = (cos θ∞, sin θ∞, 0)

at one extreme and m = (cos θ∞, − sin θ∞, 0) at the other. If the wall profile is
m = (cos θ(x), sin θ(x), 0) then its energy per unit length is∫

film
ε2|∇m|2 +

∫
space

|∇φ|2 = t

∫
ε2|θx |2 dx + t‖m1x‖2

H−1

= t

∫
ε2|θx |2 + | cos θ − cos θ∞|2 dx.

(19)

This is a one-dimensional variational problem, similar to (1). Solving it, one finds

energy density of a 1D wall = 4εt (sin θ∞ − θ∞ cos θ∞). (20)

Step 3. It is easy to see that the pattern sketched in Figure 5b does better than a
one-dimensional 180-degree wall. Indeed, using (20) and doing some elementary
integrations one finds that the figure achieves energy per unit length

4εt (
√

2 − 1). (21)

This beats 4εt
(

sin π
2 − π

2 cos π
2

) = 4εt , the energy of the one-dimensional wall.
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But why is the figure optimal? Proceeding as we did for the Aviles–Giga problem,
it is natural to consider a rectangle with (m1, m2) = (0, 1) on the left, (m1, m2) =
(0, −1) on the right, and periodic boundary conditions on the top and bottom. Let
us focus for simplicity on magnetizations m that are piecewise smooth, with m3 = 0
and m2

1 + m2
2 = 1, such that div m = 0 weakly (even across any walls). Suppose we

can find a differentiable function 
 = [
1(m1, m2), 
2(m1, m2)] such that

div 
(m) = 0 when m is smooth with div m = 0 and |m| = 1, (22)

and such that when m has a weakly divergence-free wall

|[
(m) · n]| ≤ 1D wall energy density, (23)

where [
(m) · n] is the jump in 
(m) · n. Then arguing as in (17), we find that the
total energy of the walls in the rectangle is bounded below by the integral of 
(m) ·n
over the boundary. This shows that

energy density of any pattern ≥ 
(0, 1) · (−1, 0) + 
(0, −1) · (1, 0). (24)

If in addition to (22) and (23) the right side of (24) is equal to (21) then this argument
shows the pattern is optimal within the class under consideration. Remarkably such
a 
 exists! The formula is

1

2εt

(m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θm + m⊥ + (0, −√
2) for − π

4 ≤ θ ≤ π
4(

π
2 − θ

)
m − m⊥ + (−√

2, 0) for π
4 ≤ θ ≤ 3π

4

(θ − π)m + m⊥ + (0,
√

2) for 3π
4 ≤ θ ≤ 5π

4(3π
2 − θ

)
m − m⊥ + (

√
2, 0) for 5π

4 ≤ θ ≤ 7π
4

(25)

when m = (cos θ, sin θ) and m⊥ = (− sin θ, cos θ). We emphasize that 
(m) is
well-defined for any m ∈ S1, though θ is only defined modulo 2π . This is important,
because there is no reason for θ to be well-defined throughout the rectangle. Rather,
the internal walls (where m is discontinuous) can contain vortices – indeed, this is the
case for the pattern in Figure 5b.

Why, exactly, does the pattern in the figure achieve equality in the lower bound?
The formula (25) specifies 
 separately in four quadrants. One can show that if the
internal walls remain in a single quadrant then equality holds in (24). Thus the crucial
feature of Figure 5b is that it achieves the effect of a 180-degree wall using only walls
with angle 90 degrees or less.

We assumed m was piecewise smooth to capture the main ideas in their sim-
plest possible form. The micromagnetic energy does not permit sharp discontinuities.
Therefore the one-dimensional walls in the pattern should be diffuse not sharp; more-
over inside such walls we must expect that div m �= 0, and even (near vortices) that
m3 �= 0. The argument in [1] addresses these subtleties.

It is natural to ask what sets the internal length scale of a cross-tie wall. The
answer involves effects we have thus far ignored [20]. Briefly: the anisotropy energy
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is small but nonzero; it prefers the length scale to be as small as possible. But at
finite t/ε, one-dimensional Néel walls have long tails, which interact repulsively; this
favors longer length scales. The internal period of the wall structure is set by the
competition between these two effects.

The cross-tie wall is not the only case of a singularly perturbed variational problem
whose transition layers are multidimensional. This example is special, however,
because we have matching upper and lower bounds – i.e. we know the wall energy,
and an optimal wall profile.

4. Action rather than energy minimization

We have been discussing nonconvex variational problems from materials science.
Their local minima represent stable states. Since the nonconvexity is extreme, we
expect the energy to have multiple minima. We have nevertheless focused on upper
and lower bounds rather than on identifying the local minima. This approach is
reasonable: in some cases (such as cross-tie walls) nature seems to find the ground
state, and in other cases (such as uniaxial ferromagnets) the accessible local minima
seem to share many features with the ground state.

But the fact remains: nature finds local not global minima. The evidence is all
around us. Crystals have defects. Water can be heated above 100 degrees. The
bubbles atop a glass of beer appear stable, but they eventually disappear.

These examples reveal more than the mere existence of local minima. They also
show that nature escapes from local minima, as a consequence of thermal fluctuation.
For a finite-dimensional system with energy E(z), the competition between energy
minimization and thermal fluctuation is captured by the stochastic differential equation

dz = −∇E dt + √
2γ dw (26)

where w is Brownian motion [32]. If γ is small then the system spends most of its
time near the local minima of E. Transitions between the local minima are rare, but
they do occur. Their timescales and pathways are predicted by the theory of large
deviations [30].

4.1. Action minimization. Suppose E(z) has local minima at z0 and z1. The large
deviation principle says, roughly speaking, that if a transition from z0 to z1 occurs
within time T then its pathway is (with very high probability) near the minimizer of
the deterministic variational problem

ST = min
z(0)=z0
z(T )=z1

1

4

∫ T

0
|zt + ∇E|2 dt. (27)

Moreover the transitions are Poisson events, with timescale e−ST /γ .
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The right hand side of (27) is called the action. It amounts in this example to the
integrated “equation error” of the deterministic dynamics zt = −∇E.

In the limit T → ∞ the action-minimizing path is easy to describe: it goes directly
uphill to the lowest mountain pass (saddle point) between z0 and z1, then proceeds
directly downhill from there. The optimality of this choice is a consequence of the
elementary relation

1

4

∫ τ

0
|zt + ∇E|2 dt = 1

4

∫ τ

0
|zt − ∇E|2 dt +

∫ τ

0
〈zt , ∇E〉 dt. (28)

The first term is nonnegative, and the second term is E(z(τ)) − E(z0). Let τ be
the time when the trajectory crosses the ridge between z0 and z1. Then the right-
hand side of (28) is minimized by the path for which the first term vanishes and z(τ )

is the saddle point. Thus the action-minimizing path goes through the saddle, and
the minimal action is the height of the mountain pass. This calculation explains why
many studies of phase transition and nucleation reduce to the analysis of saddle points,
viewed as “critical nuclei.”

Saddle points are only relevant in the limit T → ∞. Indeed, our argument
suggested that

∫ τ

0 |zt −∇E|2 dt should vanish for the optimal trajectory. But climbing
from z0 to the saddle along the steepest-ascent trajectory zt = ∇E takes an infinite
amount of time. So our calculation is only valid in the limit of large transition times.

Transitions occurring at shorter times T need not go through saddle points, but
they are still interesting. This may seem counterintuitive, since such transitions are
atypical and extremely rare (the minimum action ST is a decreasing function of T ).
But rare, atypical events are often the ones we care about most. For example, suppose
the typical lifespan of the hard disk in a computer is 10 years – longer than the lifespan
of the machine itself. Then failures within the first year are rare and atypical – but
hardly unimportant.

4.2. Ginzburg–Landau. What about infinite dimensional energy-driven systems,
like those considered in Sections 2 and 3? Can we understand the character of action-
minimizing pathways in the limit ε → 0? For problems with the complexity of micro-
magnetics or martensitic phase transformation this question remains open. However
for the simpler case of a scalar Ginzburg–Landau model there has been some progress
[42], [43].

The Ginzburg–Landau functional is

E =
∫

�

1

4ε
(u2 − 1)2 + ε

2
|∇u|2 (29)

where u is scalar valued. In one space dimension this is essentially our warmup
problem (4) with α = 0. In higher dimensions it is sometimes called the Modica-
Mortola functional, and its �-limit as ε → 0 is a constant times the perimeter of
the interface separating the two “phases” u = 1 and u = −1 [46]. The associated
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steepest-descent PDE u̇ = −∇E is known as the Allen–Cahn equation. Its natural
timescale (in dimension n ≥ 2) is 1/ε. Rescaling time so the dynamics proceeds with
velocity of order 1, i.e. taking u̇ = εut , the evolution becomes

εut = ε�u − 1

ε
(u3 − u). (30)

We can write this as ε1/2ut = −ε−1/2∇E. If � is bounded and convex then u ≡ +1
and u ≡ −1 are the only stable local minima of E [10].

The modeling of thermal fluctuation in this setting is a bit subtle. The analogue
of (26) is a stochastic partial differential equation obtained by adding noise to the right
hand side of (30). There is no problem if the noise is smooth enough in space. But for
modeling thermal fluctuation the noise should be white in space as well as time. The
interpretation of such stochastic PDE’s and the development of an associated large
deviation theory is only complete in space dimension one [28], [31].

Never mind. Action minimization is a deterministic variational problem. It is
known to give the pathways and timescales of thermally-activated transitions for the
Ginzburg–Landau energy (29) when � is one-dimensional. And it seems likely that
the same is true when � is multidimensional.

Thus we are interested in the minimization of
∫ T

0

∫
�

|ε1/2ut + ε−1/2∇E|2 dx dt .
With less shorthand: we are interested in the limiting behavior of

min
u≡−1 at t=0
u≡+1 at t=T

1

4

∫ T

0

∫
�

∣∣ε1/2ut − ε−1/2(ε�u − ε−1(u3 − u))
∣∣2

dx dt (31)

as ε → 0. For simplicity we focus on the case when the domain � is a cube in R
n

with periodic boundary conditions.
In one space dimension the answer was found numerically and formally in [24]

(see also [29]) and proved in [43]. The optimal pathway is shown schematically in
Figure 6. Starting from u = −1, it begins by nucleating N equispaced seeds of the
u = 1 phase (creating 2N interfaces). The seeds then grow at constant velocity,

0 00 L LL

Figure 6. The action-minimizing path for 1D Ginzburg–Landau, if the optimal number of seeds
is N = 2. The configuration is shown at t = δ, t = T/2, and t = T − δ.

colliding at exactly time T , leaving the entire interval filled with the u = 1 phase.
The associated action is

min
N≥1

{
2Nc0 + L2

9NT c0

}
(32)

where N is the number of seeds, c0 = 2
√

2/3 is the energy of an interface, and L is
the length of the interval. The first term in (32) is the cost of nucleating 2N interfaces;
the second is the cost of their constant-velocity motion.
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In two space dimensions the problem has been studied numerically in [24] and
analytically in [42], but a complete analysis is still lacking. The anticipated answer is
similar to the one-dimensional case, except that (i) if the seeds are points rather than
lines then their nucleation cost is negligible; and (ii) if a boundary moves via motion
by mean curvature then its propagation cost is negligible. The analogue of (32) is
thus

min
pathways

[
(nucleation cost, if any) +

∫ T

0

∫
(vnor + κ)2

]

where vnor is the normal velocity of the moving phase boundary and κ is its curvature.
A candidate pathway involving two seeds is shown in Figure 7.

Figure 7. A candidate pathway for 2D Ginzburg–Landau, if the optimal number of seeds is
N = 2. The configuration is shown at t = δ, t = T/2, and t = T − δ.

To give a flavor of the analysis, we show under two simplifying assumptions that
in one space dimension (with periodic boundary conditions) the action can be no
smaller than (32).

Assumption 1. All interfaces are created at t = 0 and all annihilations occur at
t = T .

Assumption 2. The energy is “equipartitioned,” i.e.
∫ L

0

ε

2
u2

x dx =
∫ L

0

1

4ε
(u2 − 1)2 dx = 1

2
E

at each time 0 < t < T .

If one accepts these, the argument is elementary:

Step 1. If N nuclei form at time 0 (creating 2N interfaces), then an application of
(28) with τ = δ > 0 gives

1

4

∫ δ

0

∫ L

0

∣∣ε1/2ut + ε−1/2∇E
∣∣2

dx dt ≥ E(δ) − E(0) ≥ 2Nc0.

This accounts for the first term in (32) (the “nucleation cost”). In the rest of argument,
we shall show that the remaining action

1

4

∫ T −δ

δ

∫ L

0

∣∣ε1/2ut + ε−1/2∇E
∣∣2

dx dt

is bounded below by the second term in (32) (the “propagation cost”).
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Step 2. Since no interfaces are created or annihilated at intermediate times (Assump-
tion 2), we have

1

4

∫ T −δ

δ

∫ L

0
εu2

t dx dt ≤ 1

4

∫ T −δ

δ

∫ L

0
εu2

t + ε−1|∇E|2 dx dt

= 1

4

∫ T −δ

δ

∫ L

0

∣∣ε1/2ut + ε−1/2∇E
∣∣2

dx dt.

Step 3. If N nuclei form (creating 2N interfaces), then from Assumptions 1 and 2 we
get ∫ T −δ

δ

∫ L

0
ε−1(1 − u2)2 dx dt =

∫ T −δ

δ

2E dt = 4c0N(T − 2δ).

where c0 is the energy of a wall.

Step 4. Using the end conditions u ≡ −1 at t = 0 and u ≡ 1 at t = T we get

∫ T −δ

δ

∫ L

0
ut (1 − u2) dx dt = 4

3
L + o(1)

where o(1) indicates a term tending to 0 with δ. Now,

∫ T −δ

δ

∫ L

0
ut (1 − u2) dx dt ≤

(∫ T −δ

δ

∫ L

0
εu2

t

)1/2 (∫ T −δ

δ

∫ L

0
ε−1(1 − u2)2

)1/2

.

Step 5. Combining Steps 2, 3, and 4, we find that

lim inf
δ→0

1

4

∫ T −δ

δ

∫ L

0

∣∣ε1/2ut + ε−1/2∇E
∣∣2 ≥ 1

4

(4L/3)2

4c0NT
= L2

9c0NT
.

This is the desired bound on the propagation cost.

The rigorous proof in [43] is a bit different. It does not start by demonstrating our
two assumptions; rather, their validity becomes clear in the course of the argument.
Interestingly, the analysis shares many elements with work on the ε → 0 limit of
the Allen–Cahn equation [35], [61]. The multidimensional problem is also closely
related to a conjecture of DeGiorgi concerning the sharp-interface limits of variational
problems like ∫

�

|∇E|2 dx =
∫

�

∣∣∣ε�u − 1

ε
(u3 − u)

∣∣∣2
dx;

for recent progress on this topic see [47], [49], [58].
We have focused on the singular limit ε → 0, but there are many other issues in

the analysis of thermally-activated transitions. As T → ∞ the pathways go through
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mountain passes (saddle points). Surprisingly, though the “mountain pass lemma” has
been used by analysts for decades, methods for finding saddle points and transition
pathways numerically in high-dimensional systems have mainly been developed by
chemists and physicists rather than mathematicians. This is beginning to change; in
particular, the “string method” introduced by E, Ren, and Vanden-Eijnden represents
an important algorithmic development [22], [23], [25], [26], [53].
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