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Abstract

We are interested in the phase transformation from austenite to martensite. This
transformation is typically accompanied by the generation and growth of small
inclusions of martensite. We consider a model from geometrically linear elastic-
ity with sharp energy penalization for phase boundaries. Focusing on a cubic-
to-tetragonal phase transformation, we show that the minimal energy for an in-
clusion of martensite scales like maxfV 2=3; V 9=11g in terms of the volume V .
Moreover, our arguments illustrate the importance of self-accommodation for
achieving the minimal scaling of the energy. The analysis is based on Fourier
representation of the elastic energy. © 2012 Wiley Periodicals, Inc.

1 Introduction
The phase transformation from austenite to martensite (e.g., initiated by a change

of temperature) can be realized by the creation and growth of small inclusions of
martensite (see Figure 1.1). In this article, we investigate how the minimal energy
of such martensitic inclusions depends on their volume. In turn, this yields the
energy for the saddle point of the energy landscape that connects the two uniform
configurations.

More specifically, we consider the case of a material undergoing a cubic-to-
tetragonal phase transformation. We adopt the framework of geometrically linear
elasticity, where the elastic energy can be expressed in terms of the linearized strain
e.u/ D 1

2
.ruCr?u/; here u W �! R3 describes the displacement from a refer-

ence configuration. Choosing the austenite as the reference lattice, the stress-free
strains are given by the strain e.0/ D 0—representing the austenitic phase—and
by three different symmetry related strains e.1/, e.2/, and e.3/ corresponding to
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FIGURE 1.1. Inclusion of martensite within austenite. Experimental
pictures by Tan and Xu [23], courtesy of Springer.

the martensitic phase. Next to the elastic energy, we also include a sharp inter-
face energy in our model. This energy penalizes interfaces between austenite and
martensite as well as interfaces between the three martensite variants.

In the case of an inclusion with sufficiently small volume, the interfacial energy
is dominant. Clearly, in this case the energetically optimal inclusion has approx-
imately the shape of a ball and its energy scales like V 2=3. On the other hand,
the shape and minimal energy of a larger inclusion is determined by a competition
between elastic and interfacial energy. We will show that in this case, the minimal
energy scales like V 9=11. Our result is ansatz independent, which means that the
proof does not rely on any assumptions about the specific shape of the inclusion.

It turns out that two notions are essential for understanding the shape and energy
of the optimal inclusion for the cubic-to-tetragonal phase transformation: compat-
ibility and self-accommodation. Roughly speaking, compatibility (of two strains)
means the possibility of an interface separating these two strains. Furthermore,
self-accommodation of a set of strains (e.g., the variants of martensite) with respect
to another strain (e.g., austenite) means the ability to embed a combination of these
strains into a matrix of the reference strain. In the cubic-to-tetragonal phase trans-
formation, the situation is as follows: No single variant of martensite is compatible
with austenite. Furthermore, only all three variants of martensite together (i.e.,
at equal volume fraction) have the property of self-accommodation with respect
to the austenite. As we will see, this leads to formation of fine-scale twinning of
martensite variants near the martensite-austenite interface. Moreover, the minimal
scaling of the energy can only be achieved by an inclusion that contains all three
variants of martensite in almost equal volume fraction.

Pattern formation for the austenite-to-martensite phase transformation has been
investigated using geometrically nonlinear elasticity as well as in the framework
of geometrically linear elasticity. In the framework of the geometrically nonlinear
theory, most of the analysis of pattern formation has been focused on zero energy
states of the elastic energy (in particular, interfacial energy is not considered). For
a two-well potential, Dolzmann and Müller [10] showed that zero energy states are
locally laminar (one-dimensional) if the deformation is locally BV . Interestingly,
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the latter condition cannot be omitted [20]. For further results in this direction, see
also [1, 14].

For quantitative versions of the above rigidity results, it is necessary to consider
the full energy including the term penalizing interfacial energy. Most quantitative
analysis so far has been done in the framework of the geometrically linear theory:
The first rigorous analysis of pattern formation for the austenite-martensite inter-
face was given by Kohn and Müller in terms of a reduced scalar model [17, 19].
They showed the energetic optimality of a self-similar configuration of two marten-
sitic phases. Extending this result, Conti showed asymptotic self-similarity of min-
imizers [9]. The energetic scaling of an austenite-martensite mixture for a three-
dimensional model was recently addressed by Capella and Otto [4, 5] for the cubic-
to-tetragonal phase transformation.

The above results focus on the energy of planar austenite-martensite interfaces.
In particular, they do not capture the volume dependence of the energy of a marten-
site inclusion embedded into a three-dimensional austenitic environment. So far,
the only ansatz-independent result on the volume dependence of the energy of an
elastic inclusion (including interfacial energy) was given by Knüpfer and Kohn in
the case of a two-well potential [15]. In the present paper, we establish the volume
dependence of a martensitic inclusion in the case of the cubic-to-tetragonal phase
transformation. Our proof is based on the Fourier representation of the elastic
energy, including some precise results on the anisotropic Fourier multiplier repre-
senting the elastic energy.

Notation. The following notation will be used throughout the article: The sym-
bols �, ., and & indicate that an estimate holds up to a universal constant. For
example, A � B says that there are universal constants c; C > 0 such that
cA � B � CA. The symbols � and � indicate that an estimate requires a
small universal constant. If we, e.g., say that A . B for � � 1, this means that
A � CB holds for all � � �0 where �0 > 0 is a small universal constant. For
u 2 BV.E/, the total variation of u is sometimes denoted by kDukE . The strain
e.u/ of a function u 2 H 1.R3;R3/ is defined by e.u/ D 1

2
.ru C r?u/. The

tensor product u˝ v is defined as the 3� 3 matrix that is component-wise defined
by .u˝v/ij D uivj . Furthermore, we use the notation uˇv D 1

2
.u˝vCv˝u/

for the symmetrized tensor product. The set of symmetric 3 � 3 matrices is de-
noted by †.3/. Finally, for two 3 � 3 matrices A and B , the contraction is de-
fined by A W B D

P
i;j AijBij , and the corresponding matrix norm is given by

kAk D
p
A W A.

2 Model
2.1 Stress-Free Strains

Shape memory alloys have a high-temperature phase, the so-called austenite,
and a low-temperature phase, the so-called martensite. The austenite-to-martensite
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FIGURE 2.1. (a) In elasticity theory, the state of the elastic body is char-
acterized by the deformation v.x/ with respect to a reference configura-
tion. (b) Schematic picture for the cubic-tetragonal transformation.

phase transformation can, e.g., be initiated by a change of temperature. We con-
sider in particular the cubic-to-tetragonal phase transformation when the lattice
structure of austenite is cubic and the lattice structure of martensite is tetragonal (a
list of examples of materials undergoing this phase transformation can be found in
[3, table 4.1]). Since the symmetry of the cubic lattice is higher, the transforma-
tion can occur in three distinct ways, corresponding to stretching along one of the
three main axes of the cubic lattice; see Figure 2.1(b). The transformation is cor-
respondingly described by the three transformation matrices: U1 D diag.ˇ; ˛; ˛/,
U2 D diag.˛; ˇ; ˛/, and U3 D diag.˛; ˛; ˇ/, where ˛; ˇ > 0 are material param-
eters. By frame indifference, the set of all transformations leading to a stress-free
martensite lattice are then given by all strains of type RUi , where R 2 SO.3/ is
a rotation and for i D 1; 2; 3. Each transformation strain corresponds to a distinct
variant of martensite. We consider the case when the transformation is volume
preserving, i.e., detUi D 1.

We use the geometrically linear approximation of elasticity. In general, the po-
sition of each particle in an elastic body can be described by the deformation v.x/;
see Figure 2.1(a). In the linear elasticity theory, the transformation is expressed in
terms of the displacement u.x/ where v.x/ D xCıu.x/ for some small parameter
ı > 0 [12, 22]. In this approximation, it is assumed that the deformation gradient
is uniformly small throughout the material. In particular, the austenite strain, cor-
responding to the undeformed state, is represented by the trivial matrix e.0/ D 0.
The preferred strains for the three variants of martensite are given, after a suitable
normalization, by

(2.1)

e.1/ WD

0@�2 0 0

0 1 0

0 0 1

1A ; e.2/ WD

0@1 0 0

0 �2 0

0 0 1

1A ;
e.3/ WD

0@1 0 0

0 1 0

0 0 �2

1A ;
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see, e.g., [3, 4]. In the geometrically linear theory, the elastic energy depends only
on the symmetric part of the displacement gradient. In this sense, the elastic energy
in the geometrically linear theory is invariant with respect to infinitesimal rotations.

2.2 Compatibility and Incompatibility
Two strains A;B 2 †.3/ are called compatible (as linear strains) if they can

be connected through an interface: This means that there is a plane … � R3

and a continuous function with e.u/ D A and e.u/ D B on both sides of the
interface. The corresponding alternating pattern between the two strains is called
a twin pattern, while the corresponding stress-free interfaces are twin planes. The
direction normal to the twin planes is called the twin direction. A straightforward
calculation shows that two strains A and B are compatible if and only if A � B D
aˇ b for some vectors a; b 2 R3. The two possible twin directions are then given
by the directions parallel to a and b.

For the cubic-to-tetragonal phase transformation (2.1), the single variants of
martensite are mutually compatible. More precisely, for any permutation .ijk/
of .123/ we have

(2.2) e.i/ � e.j / D 6�ijk.bij ˇ bj i /;

where �ijk is the sign of this permutation (note that in the above formula no sum-
mation over i and j is taken). Furthermore, the vectors bij are given by

(2.3)

b12 D
1
p
2

0@11
0

1A ; b31 D
1
p
2

0@10
1

1A ; b23 D
1
p
2

0@01
1

1A ;
b21 D

1
p
2

0@�11
0

1A ; b13 D
1
p
2

0@ 1

0

�1

1A ; b32 D
1
p
2

0@ 0

�1

1

1A :
We introduce some further notation: The set of two possible twin directions for

laminates between the martensite variants i and j , i ¤ j , is denoted by Bij , i ¤ j ,
i.e.,

(2.4) Bij WD fbij ; bj igI

note that Bij D Bj i . The set of all four twin directions for laminates including
variant i is denoted by

(2.5) Bi WD Bij [ Bik D fbij ; bj i ; bik; bkig;

where .ijk/ is an arbitrary permutation of .123/. Finally, the set of all six twin
directions for any pair of martensite variants is denoted by

(2.6) B WD B1 [ B2 [ B3 D fb12; b21; b31; b13; b23; b32g:

A straightforward calculation shows that no single variant of martensite is com-
patible with the austenite. However, compatibility of the austenite with certain
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convex combinations of the martensite variants does hold. Indeed, for all i ¤ j

we have

(2.7)
�
1

3
e.i/ C

2

3
e.j /

�
� e.0/ D 2�ijk.bjk ˇ bkj /;

where .ijk/ is a permutation of .123/ and where �ijk is the sign of the permutation
.ijk/. We also recall that e.0/ D 0. The above calculation (2.7) shows that by
a fine-scale oscillation of two martensite variants, the corresponding macroscopic
strain allows for a (macroscopically) stress-free interface with the austenite. This
macroscopically stress-free interface separating the austenite and a pair of marten-
site variants is also called habit plane. The corresponding normal direction is called
habit direction.

2.3 Self-Accommodation
The notion of compatibility ensures that two strains can be connected via an

interface across which the displacement is continuous. However, in the situation
of a certain phase (e.g., martensite) embedded into a matrix of another phase (e.g.,
austenite), it is desirable to have a construction that avoids macroscopic stress in all
three spatial directions. In particular, a fine-scale oscillation of two martensite vari-
ants can avoid the creation of macroscopic stress along certain planes separating
martensite and austenite (habit planes; see also (2.7)). However, such a configura-
tion still may lead to the creation of macroscopic stress in the normal direction to
the interface. This issue motivates introducing the concept of self-accommodation.
In contrast to the notion of compatibility, which is concerned with the possibility
of stress-free interfaces, the notion of self-accommodation is concerned about the
possibility of stress-free three-dimensional configurations.

In the spirit of [2], we say that a set of strains fE1; : : : ; Eng � †.3/ is self-
accommodating with respect to another strain E0 if for any bounded smooth � �
R3, there is a sequence of functions uk 2 H 1

loc.R
3/ such that for some fixed

matrix norm e.uk/ ! fE1; : : : ; Eng a.e. in � and e.uk/ ! E0 a.e. in R3n�.
A particularly important situation is the case when the set of strains is the set of
all martensite strains and E0 is the austenite strain. Note that the set of martensite
strains (2.1) satisfies

(2.8) e.1/ C e.2/ C e.3/ D 0:

This cancellation indicates that self-accommodation is possible for our set of mar-
tensite strains. Indeed, our constructions show that the three strains e.1/, e.2/, and
e.3/ are self-accommodating. Note that self-accommodation in a more general
setting has been investigated by Bhattacharya for different types of phase transfor-
mations [2].

2.4 Energy
In the piecewise linear elasticity theory the deviation of the displacement strain

from the energy wells is penalized by Hooke’s law, see, e.g., [3, chap. 11]. In
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general, the energy is given by

(2.9) EelastŒu� D

Z
R3

min
iD0;1;2;3

n
!.i/C

X
˛;ˇ;
;ı

C.i/

˛ˇ
ı
.e.u/�e.i//˛ˇ .e.u/�e

.i//
ı

o
;

where the elastic rank-4 tensors C.i/ are the elastic moduli of the austenite and the
three martensite phases and where the constants !.i/ are the corresponding energy
densities of martensite and austenite. We assume that the variants of martensite
have the same energy, i.e., !.1/ D !.2/ D !.3/. By renormalization of the energy,
we may also assume that !.0/ D 0. Since we will consider the case when the
total volume of martensite is prescribed, we will even assume that !.i/ D 0 for
i D 1; 2; 3. We also assume that the phases are elastically isotropic with identical
strength of shear modus and vanishing second Lamé constant. We hence consider
the energy

(2.10) EelastŒu� D �

Z
R3

min
iD0;1;2;3

ke.u/ � e.i/k2:

In fact, since we are only concerned with the scaling of the minimal energy (but
not the leading-order constant), our results also extend to the general energy (2.9)
with !.i/ D 0, i D 1; 2; 3, as long as the tensors C.i/ are nondegenerate. The
extension of our results to the case of arbitrary !.i/ with !.1/ D !.2/ D !.3/ is
also straightforward; see [15]. Note that the minimization in (2.10) also determines
the areas that are occupied by the particular variants of martensite. We introduce
three characteristic functions �i , i D 1; 2; 3, for the region occupied by the i th

variant of martensite,

(2.11) �1; �2; �3 2 BV.R
3; f0; 1g/; �1 C �2 C �3 � 1:

Instead of defining the characteristic functions by minimization in (2.10), we rather
express the elastic energy directly in terms of �i . We therefore use the elastic
energy in the form

(2.12) EelastŒ�� D � inf
u2H1.R3;R3/

Z
R3




e.u/ � 3X
iD1

�ie
.i/



2dx:

Indeed, both energies (2.10) and (2.12) agree with each other if the functions �i
are the indicator functions for the region occupied by the martensite variant i and
if the displacement is u chosen to be energetically optimal. We refer to [3, p.102]
for further reading.

One benefit of this description of the energy is that the interfacial energy can be
defined conveniently. We define the following interfacial energy:

(2.13) EinterfŒ�� WD �

Z
R3

.jr�1j C jr�2j C jr�3j/dx;
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where the parameter � measures the strength of interfacial energy. The variational
model we consider consists of these two terms:

(2.14) E Œ�� WD EinterfŒ��C EelastŒ��:

3 Main Result and Overview of the Proof
3.1 Main Result

The main result in this paper is the dependence of the energy of martensitic
inclusions on their volume. Note that the total volume of martensite can be conve-
niently expressed in terms of the characteristic functions

(3.1) V D

Z
R3

.�1 C �2 C �3/dx:

With this notation, we have the following:

THEOREM 3.1. Suppose that � D .�1; �2; �3/ satisfies (3.1).
(1) (Minimal scaling of the energy) The minimal scaling of the energy (2.14)

is

(3.2) inf
� satisfies (2.11);(3.1)

E Œ�� �
(
�V 2=3 if V � �3��3;
�6=11�5=11V 9=11 if V � �3��3,

where V is defined by (3.1).
(2) (Equipartition of energy) Suppose that the minimal scaling of the energy

(3.2) is achieved by �. Then for large volumes, V � �3��3, we have
equipartition of energy in the sense that

(3.3) EinterfŒ�� � EelastŒ�� � �
6=11�5=11V 9=11:

Furthermore, for small volumes, V � �3��3, the interfacial energy domi-
nates, i.e., EelastŒ�� . EinterfŒ��.

Theorem 3.1 determines the scaling of the minimal energy up to a universal
constant. At the core of the analysis is the proof of the lower bound, which will be
given in Section 5. The proof of the upper bound follows by a specific construction
that is presented in detail in Section 6.

Notice that our estimate (3.2) only addresses the scaling (but not the leading-
order constant) of the minimal energy. For this reason it cannot predict the precise
shape of the minimizer. In fact, we believe that it would be necessary to use the
Euler-Lagrange equation to obtain the precise shape of the minimizer. However,
our analysis does give some necessary conditions on the qualitative shape of the
minimizer; these conditions are stated in Propositions 3.4 and 3.5.

In the following we motivate and sketch the shape and structure of an inclu-
sion that does achieve the minimal scaling of energy (3.2); see Figure 3.1. The
construction is motivated by the following three observations:
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n

FIGURE 3.1. Two-dimensional sketch for an inclusion achieving mini-
mal scaling of energy in Theorem 3.2. Created using MATLAB.

� Incompatibility of each single variant: No single variant of martensite is
compatible with the austenite.
� Compatibility of two variants: A convex combination of two martensite

variants is compatible with the austenite.
� Self-accommodation of three variants: The set of all three martensite vari-

ants together is self-accommodating.

These observations motivate the following ansatz for the optimal inclusion: In
order to achieve self-accommodation, the inclusion should contain all three variants
of martensite in equal volume fraction. Since, locally, laminates between two vari-
ants are preferred, the inclusion is divided into two macroscopic layers where the
first layer only consists of the martensitic variants 1 and 2, while the second layer
consists of the martensitic variants 1 and 3; see Figure 3.1. In each macroscopic
layer, the regions occupied by the single variants of martensite refine towards the
martensite-austenite surface. Furthermore, the shape of the inclusion as a whole
resembles a lens where the normals to the two large surfaces are oriented near one
of the habit directions between martensite and austenite. Notice that constructions
with self-similar refinement have been used before in linear elasticity theory; see
[4, 5, 19] and in other settings [6, 7, 8, 16, 21]. Furthermore, our construction can
be seen as a realization of the second-order twins of Bhattacharya [2].

Notice that the above theorem describes the energy barrier for the transforma-
tion from austenite to martensite. However, for the reverse transformation, the
result does not apply directly. In fact, in order to achieve self-accommodation, a
macroscopic change of the lattice pattern might be necessary. This consideration
suggests that there should be a higher energy barrier for the reverse transformation.
To analyze the precise energy barrier for this situation seems to be an interesting
open question.

3.2 Nondimensionalization
We nondimensionalize and rescale the model as follows: We measure length

in units of �
�

and energy in units of �3

�2 . The rescaled energy, expressed in the
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nondimensionalized variable, is then given by

(3.4) EelastŒ�� D inf
u2H1.R3;R3/

Z
R3




e.u/ � 3X
iD1

�ie
.i/



2 dx;

while the interfacial energy is given by

(3.5) EinterfŒ�� WD

Z
R3

.jr�1j C jr�2j C jr�3j/dx:

Finally, the total energy is determined by the relation

(3.6) EŒ�� WD EinterfŒ��CEelastŒ��:

With this rescaling, we obtain the following rescaled version of Theorem 3.1:

THEOREM 3.2. Suppose that � D .�1; �2; �3/ satisfies (3.1).
(1) (Minimal scaling of the energy) The minimal scaling of the energy (3.6) is

(3.7) inf
� satisfies (2.11);(3.1)

EŒ�� �

(
V 2=3 if V � 1;
V 9=11 if V � 1,

where V is defined by (3.1).
(2) (Equipartition of energy) Suppose that the minimal scaling of the energy

(3.7) is achieved by �. Then for large volumes, V � 1, we have equiparti-
tion of energy in the sense that

(3.8) EinterfŒ�� � EelastŒ�� � V
9=11:

Furthermore, for small volumes, V � 1, the interfacial energy dominates,
i.e., EelastŒ�� . EinterfŒ��.

3.3 Overview of the Proof of the Lower Bound
For the proof of the lower bound of the energy, we combine two estimates re-

lated to self-accommodation and compatibility. More precisely, we will use the
fact that in order to achieve self-accommodation, all three variants of martensite
have to appear in equal volume fractions. In fact, if the three variants (locally) do
not appear in equal volume fraction, then we obtain a lower bound on the elastic
energy (Proposition 3.4). On the other hand, due to the incompatibility of the sin-
gle martensite variants with the austenite, it is energetically expensive if (locally)
all three martensite variants appear, which yields another lower bound for the en-
ergy (Proposition 3.5). The proof of the lower bound of the theorem follows by
combining these two lower bounds.

For the proof of the lower bound it is essential to identify a suitable length
scale that connects interfacial energy with the elastic energy. We use the operation
of convolution to detect this local length scale. We recall the definition of the
convolution:
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DEFINITION 3.3. Consider a function f .x/. We denote by fL.x/ its mollification
on length scale L, that is, its convolution with the kernel �L.x/ D 1

L3�1.
x
L
/,

where �1 is a universally chosen radial function withZ
R3

�1 dx D 1; supp�1 � B1.0/; sup jF�1.k/j � C;
Z

R3

jF�1.k/j <1:

The first proposition is related to the phenomenon of self-accommodation and
involves only the elastic energy. By self-accommodation we mean the phenome-
non that by a suitable microstructure of martensitic twins, the elastic energy can
be made arbitrarily small for a martensitic inclusion of volume V and arbitrary
shape; see also Section 2.3. The lemma states that this can only be achieved for a
microstructure where the martensitic phases have identical volume fraction. Here
volume fraction is meant with respect to a given length scale L (which will be
chosen in the proof of Theorem 3.2) and defined via convolution.

PROPOSITION 3.4. For any �1, �2, and �3 satisfying (2.11) and for any L > 0,
we have

(3.9)
Z

R3

�
.�2;L � �3;L/

2
C .�3;L � �1;L/

2
C .�1;L � �2;L/

2
�
dx .

min
˚
E
1=2
elast.L

�3V 2/1=2; L�3V 2
	
;

where V is defined in (3.1)

The second proposition is related to the phenomenon of compatibility. It in-
volves both elastic and interface energy. At its core lies the fact that each single
variant of martensite is incompatible with the austenite. An inclusion of martensite
into a matrix of austenite hence requires fine twinning of the martensite variants.
The characteristic scaling L1=3 of the energy where L represents the thickness of
the martensite inclusion is also observed in other problems related to branching
phenomena; see, e.g., [19]. In particular, the proposition provides a full-space
variant of the rigidity result in [4]. With the notation

(3.10)

8̂<̂
:
z�1 WD �2�1 C �2 C �3;

z�2 WD �1 � 2�2 C �3;

z�3 WD �1 C �2 � 2�3;

we have the following:

PROPOSITION 3.5. For any �1; �2; �3 satisfying (2.11) and for any L > 0, we
have

(3.11)
ˇ̌̌̌Z
R3

.z�1 � z�1;L/.z�2 � z�2;L/.z�3 � z�3;L/dx

ˇ̌̌̌
.

L1=3
�
E
2=3
interfE

1=3
elast

�1=2
V 1=2;
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where V is defined in (3.1) and where the functions z�i , i D 1; 2; 3, are defined in
(3.10).

Let us sketch the argument how the proof of the lower bound follows from the
two propositions (the precise proof is given in Section 5.3). Consider a fixed length
scaleL > 0. We start with the following (mathematically not fully precisely stated)
dichotomy: Either (1) all three martensite variants appear in the same volume frac-
tion on length scales of size L, or (2) they do not appear in equal volume fraction
on length scales of size L. We will give a precise version of this dichotomy in the
proof of Theorem 3.2, showing that for any L > 0 at least one of the left-hand
sides of (3.9) or (3.11) scales like the volume. The lower bound then follows by
optimization in L. We remark that the length scale L that appears both in the proof
of the lower as well as the upper bound represents the thickness of the expected
optimal lens-shaped inclusion.

The detailed proofs of Propositions 3.4 and 3.5 and of the lower bound of The-
orem 3.2 will be given in Section 5.

4 Elastic Energy and Laminar Structure
4.1 Fourier Representation of the Elastic Energy

We start with the observation in [4] that the elastic energy can be written as

(4.1) EelastŒ�; u� D inf
e

Z
R3







e.u/ �
0@z�1 0 0

0 z�2 0

0 0 z�3

1A






2

dx;

where z� WD .z�1; z�2; z�3/ is given by (3.10).
Since this is a problem in the whole space, it is natural to appeal to the Fourier

transform F and express the energy in terms of the Fourier transformed function
F z� D .F z�1;F z�2;F z�3/. The Fourier representation of the elastic field has been
extensively studied in the literature; see, e.g., [13]. For the convenience of the
reader we sketch the proof. For details, we refer to a corresponding derivation in a
periodic geometry in [4, lemma 3.1].

LEMMA 4.1. The elastic energy, defined in (2.10), can be expressed by

(4.2) Eelast D

Z
R3

.F z�/TM.yk/F z�dk;

where the tensor-valued symmetric and positive semidefinite multiplier M.yk/ is
given by

(4.3) M.yk/ WD

0B@.
yk22 C

yk23/
2 yk21

yk22
yk21
yk23

yk22
yk21 .yk21 C

yk23/
2 yk22

yk23
yk23
yk21

yk23
yk22 .yk21 C

yk22/
2

1CA
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and where yk WD k
jkj

is the normalized wave vector k.

PROOF. In view of the representation (4.1) and by Plancherel, the elastic energy
can be expressed by

Eelast D

Z
R3







i.k ˇ Fu/ �

0@F z�1 0 0

0 F z�2 0

0 0 F z�3

1A






2

dk:

The Euler-Lagrange equation for the above functional can be explicitly solved: A
straightforward calculation yields that the solution Fu is given by

(4.4) i jkjFu.k/ D 2Qyk � .yk;Qyk/yk;

where we have introduced the notation Q D diag.F z�1;F z�2;F z�3/. In particular,
by testing (4.4) with ykˇ, we get

(4.5) i.k ˇ Fu/ D 2.Qyk ˇ yk/ � .yk;Qyk/.yk ˝ yk/

and hence

(4.6) ki.k ˇ Fu/ �Qk2 D k2.Qyk ˇ yk/ � .yk;Qyk/.yk ˝ yk/ �Qk2:

Note that since Q is symmetric, we have

(4.7) Qyk ˇ yk W Q D jQykj2 and yk ˝ yk W Q D .yk;Qyk/:

Also using the identities .a˝b/ W .c˝d/ D .a; c/.b; d/, 2kaˇbk2 D jaj2jbj2C
.a; b/2, and .a ˇ b/ W .b ˝ b/ D .a; b/jbj2, which hold for all a; b; c; d 2 R3,
equality (4.6) simplifies to

ki.k ˇ Fu/ �Qk2 D kQk2 � 2jQykj2 C .yk;Qyk/2:

We therefore get

ki.k ˇ Fu/ �Qk2 D
3X
iD1

jF z�i j2 � 2
3X
iD1

yk2i jF z�i j
2
C

ˇ̌̌ 3X
iD1

yk2i F z�i
ˇ̌̌2

D

3X
iD1

.1 � 2yk2i C
yk4i /jF z�i j

2
C

3X
i;jD1
i 6Dj

yk2i
yk2j F z�iF z�j

(4.3)
D .F z�/TM.yk/F z�:

This concludes the proof of the lemma. �
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4.2 Lower Bound for the Elastic Energy
It is helpful to characterize the elastic energy in terms of the modified character-

istic functions z�j and Fourier multipliers mj , which will be defined in (4.9). The
following lemma is taken from lemma 3.1 and step 1 in the proof of proposition
2.4 in [4]. We give the full proof, since there is a gap in the argument of step 1
in the proof of proposition 2.4 in [4]: the identity of the zero set of two (even
homogeneous) Fourier multipliers does not imply that they are comparable.

LEMMA 4.2. We have

(4.8) Eelast &
3X

jD1

Z
R3

mj jF z�j j2 dk;

where for j D 1; 2; 3 the multiplier mj .yk/, yk WD k
jkj

, is defined by

(4.9) mj .k/ WD dist2.yk;Bj /

and where Bj is defined in (2.5).

PROOF. Note that by definition we have z�1 C z�2 C z�3 D 0 so that F z�1 C
F z�2 C F z�3 D 0. Hence we need to show that

(4.10) cTM.yk/xc &
3X

jD1

mj .yk/jcj j
2

for all c D .c1; c2; c3/ 2 C3 with c1 C c2 C c3 D 0 and where the Fourier
multipliers mj are given by (4.9). By symmetry, we may assume without loss of
generality that c is ordered, i.e.,

(4.11) jc1j � jc2j � jc3j:

Under the assumption (4.11) we will even show that

cTM.yk/xc & jc1j2;(4.12)

cTM.yk/xc & dist2.yk;B23/jc2j2;(4.13)

cTM.yk/xc & dist2.yk;B23/jc3j2:(4.14)

Clearly, since B23 D B2 \ B3, these three estimates yield (4.10). Notice further-
more, that since c1C c2 D �c3 and by (4.11) we have jc2j � jc3j � jc1j C jc2j �
2jc2j and hence

(4.15) jc2j � jc3j;

i.e., the middle component of c still controls the length of the whole vector. In
particular, (4.13) and (4.14) are equivalent so that it suffices to prove (4.12) and
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(4.13). In view of (4.3), we calculate

cTM.yk/xc D
�
yk22 C

yk23
�2
jc1j

2
C
�
yk23 C

yk21
�2
jc2j

2
C
�
yk21 C

yk22
�2
jc3j

2

C 2yk21
yk22 Re.c1xc2/C 2yk21 yk

2
3 Re.c1xc3/C 2yk22 yk

2
3 Re.c2xc3/

D
ˇ̌
yk22c3 C

yk23c2
ˇ̌2
C
ˇ̌
yk23c1 C

yk21c3
ˇ̌2
C
ˇ̌
yk21c2 C

yk22c1
ˇ̌2(4.16)

C 2yk22
yk33 jc1j

2
C 2yk21

yk33 jc2j
2
C 2yk21

yk22 jc3j
2:

Replacing c3 D �c1 � c2 in the term jyk22c3 C yk
2
3c2j, we obtain

(4.17)
ˇ̌
yk22c3C

yk23c2
ˇ̌2
D
ˇ̌�
yk22 �
yk23
�
c2C yk

2
2c1

ˇ̌2
�
1

2

�
yk22 �
yk23
�2
jc2j

2
� yk42 jc1j

2:

where we used that .a C b/2 � 1
2
a2 � b2 for all a; b 2 R. Furthermore, we use

the estimate

jyk21c2 C
yk22c1j

2
� yk41 jc2j

2
C yk42 jc1j

2
� 2yk21

yk22 jc1jjc2j

(4.11)
� yk41 jc2j

2
C yk42 jc1j

2
� 2yk21

yk22 jc3j
2:(4.18)

Finally, we trivially have

(4.19)
ˇ̌
yk22c3 C

yk23c2
ˇ̌
� 0:

Inserting (4.18), (4.17), and (4.19) into (4.16), we infer that

(4.20) cTM.yk/xc �
1

2

�
yk22 �

yk23
�2
jc2j

2
C yk41 jc2j

2
C 2yk22

yk33 jc1j
2
C 2yk21

yk23 jc2j
2:

Now, in view of (4.11), this yields

cTM.yk/xc
(4.11)
�

�
1

2

�
yk22 �

yk23
�2
C yk41 C 2

yk22
yk33 C 2

yk21
yk23

�
jc1j

2

D

�
1

2

�
yk22 C

yk23
�2
C yk41 C 2

yk21
yk23

�
jc1j

2

& jc1j
2;

where the last estimate is a consequence of jykj D 1. This completes the proof of
(4.12).

We next turn to the proof of (4.13). Again from (4.20), we have

cTM.yk/xc �

�
1

2

�
yk22 �

yk23
�2
C yk41 C 2

yk21
yk23

�
jc2j

2:

Hence, in order to prove (4.13), we need to show that

(4.21)
1

2

�
yk22 �

yk23
�2
C yk41 C 2

yk21
yk23 & yk21 Cmin

˚�
yk2 C yk3

�2
;
�
yk2 � yk3

�2	
:
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Observe that (4.21) holds if jyk1j & 1 or jyk2 � yk3j & 1. Therefore we may assume
jyk1j � 1 and jyk2 � yk3j � 1 and in particular (also using that jykj D 1),

(4.22) jyk1j � 1 and jyk2j � jyk3j � 1:

The estimate (4.21) now follows easily: Since by (4.22) we have yk21 yk
2
3 �

yk21 , it
follows that

1

2

�
yk22 �

yk23
�
C yk41 C 2

yk21
yk23

(4.22)
&

�
yk22 �

yk23
�2
C yk21 D

yk21 C
�
yk2 � yk3

�2�yk2 C yk3�2
(4.22)
� yk21 Cminf.yk2 � yk3/2; .yk2 C yk3/2g:

This concludes the proof of (4.13) and hence of the lemma. �

4.3 Decomposition into Almost Laminates
In this section, we give two “rigidity results”; i.e., we show that the indicator

functions �k (and z�k), k D 1; 2; 3, can be decomposed into a set of functions
that are almost laminates if the energy is low. These results are global versions of
corresponding results in a periodic setting in [4]. We give a first decomposition in
Lemma 4.3; then this result is refined in Proposition 4.4.

LEMMA 4.3. There exist 18 functions fj;bij
, indexed by j D 1; 2; 3 and by the six

twin directions bij 2 B, such that

(4.23)

z�1 D f1;b23
C f1;b32

C f1;b31
C f1;b13

C f1;b12
C f1;b21

;

z�2 D f2;b23
C f2;b32

C f2;b31
C f2;b13

C f2;b12
C f2;b21

;

z�3 D f3;b23
C f3;b32

C f3;b31
C f3;b13

C f3;b12
C f3;b21

:

Furthermore, we have for any bij 2 Bij , i; j D 1; 2; 3, i ¤ j ,

(4.24) f1;bij
C f2;bij

C f3;bij
D 0I

see (2.4) and (2.6) for the definitions of the sets Bij and B. Additionally, the vari-
ation of fj;bij

within the twin plane with normal bij is controlled in the sense that
for all i; j D 1; 2; 3, i ¤ j , we have

(4.25)
1

jsj2=3

Z
R3

jfj;bij
� fj;bij

. � C sa/j2 dx . E
2=3
interfE

1=3
elast

for any unit vector a with a � bij D 0 and all s 2 R. Moreover, fj;bij
satisfies

(4.26)
Z

R3

jfj;bij
j
4 dx . V:

PROOF. We select a partition of unity fz�b.yk/gb2B of the unit sphere in Fourier
space such that for any b 2 B, �b D 1 in a neighborhood of b. Furthermore, we
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choose �b to be even, i.e., �b.�yk/ D �b.yk/. We set �b.k/ WD z�b.k=jkj/. We
define the 18 functions fi;b in (4.23) by using �b as Fourier multipliers, i.e.,

(4.27) fj;b WD .F�1�bF/z�j :

Since f�bgb2B is a partition of unity, it follows that (4.23) and (4.24) are satisfied.
It remains to give the proof of the estimates (4.25) and (4.26), which is divided into
several steps. We fix j 2 f1; 2; 3g, b 2 B, and a unit vector a with a � b D 0.

Step 1. We first consider the elastic energy: Note that by our definition of the
function �b we have �b D 0 in the neighborhood of any b0 with b0 2 B, b0 ¤ b. In
particular, in view of the definition of the functions mj , we have

(4.28) mj .yk/�b.k/ & .a � yk/2�b.k/:

for any unit vector a with a � b D 0. In view of Lemma 4.2 this yields

Eelast
(4.8)
&
Z

R3

.a � yk/2jF z�j j2 dk
(4.27)
&

Z
R3

1

jkj2
j.a � k/Ffj;bj2 dk

D

Z
R3

1

jkj2
jF@afj;bj2 dk:(4.29)

Clearly, this estimate still holds when the derivative is replaced by a corresponding
finite difference: For every s 2 R we have

Eelast &
Z

R3

1

s2jkj2
jF.fj;b � fj;b. � C sa//j2 dk:

We only need the control on the low frequencies; i.e., for any L > 0 (which will
be fixed later) we have

(4.30)
s2

L2
Eelast &

Z
fLjkj�1g

jF.fj;b � fj;b. � C sa//j2 dk:

Step 2. We now turn to the interfacial energy: In order to pass from the �j ’s via
the z�j ’s to the fj;b’s, we first express interfacial energy on an L2-level and then on
the Fourier level. We first pass from the functions �j to the functions z�j and from
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the perimeter to the L2-level: For all vectors c 2 R3, we have

Einterf &
3X
kD1

1

jcj

Z
R3

j�k � �k. � C c/jdx

&
1

jcj
sup
x
j z�j j

Z
R3

j z�j � z�j . � C c/jdx

&
1

jcj

Z
R3

j z�j � z�j . � C c/j
2 dx:(4.31)

By Plancherel’s theorem, (4.31) can be equivalently expressed in frequency vari-
ables. Furthermore, in terms of the frequency variables, we only need the control
of the interfacial energies over the high-frequency spectrum of fj;b . For any L (to
be fixed later), we hence estimate

jcjEinterf
(4.31)
&

Z
R3

j.1 � eic�k/F z�j j2 dk

�

Z
fLjkj�1g

j.1 � eic�k/F z�j j2 dk:(4.32)

We integrate (4.32) in c over the sphere @BL with radius L D jcj. Furthermore,
exchanging the order of integration, we get

L3Einterf &
Z
@BL

Z
fLjkj�1g

j.1 � eic�k/F z�j j2 dk dc

D

Z
fLjkj�1g

jF z�j j2
Z
@BL

j1 � eic�kj2 dc dk

& L2
Z

fLjkj�1g

jF z�j j2 dk;(4.33)

where in order to get the last line in the above argument we have usedZ
@BL

j1 � eic�kj2 dc �

Z L

�L

sin2.jkjx1/
q
L2 � x21 dx1

D L2
Z 1

�1

sin2.jkjLt/
p

1 � t2 dt

& L2
Z 1=2

�1=2

sin2.jkjLt/ dt � L2:(4.34)
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The last equivalence holds true since the sine function satisfies sin & 1 for a con-
siderable part (& 1) of its period (here the assumption Ljkj & 1 is needed). In
view of the definition (4.27), estimate (4.33) can also be expressed in terms of the
function fj;b ,

LEinterf &
Z

fLjkj�1g

jFfj;bj2 dk:

We reformulate the last estimate in terms of finite differences,

(4.35) LEinterf &
Z

fLjkj�1g

jF.fj;b � fj;b. � C sa//j2 dk;

since in this form, we may combine it with (4.30).
Step 3. We turn to the proof of (4.25)–(4.26). By (4.30) and (4.35), we have

(4.36)
Z

R3

jF.fj;b � fj;b. � C sa//j2 dk . s2L�2Eelast C LEinterf:

Minimizing the right-hand side of (4.36) in L yields L D jsj2=3E1=3elastE
�1=3
interf andZ

R3

jfj;b � fj;b. � C sa/j
2 dx D

Z
R3

jF.fj;b � fj;b. � C sa//j2 dk

. jsj2=3E2=3interfE
1=3
elast;

which concludes the proof of (4.25).

We now turn to the estimate of (4.26). Since �b.k/ 2 Œ0; 1� is smooth and 0-
homogeneous, we can apply the Hörmander-Mikhlin multiplier theorem [11, theo-
rem 5.2.7], which ensures L4.R3/-boundedness of �b as a multiplier, i.e.,Z

R3

jfj;bj
4 dx .

Z
R3

j z�j j
4 dx .

3X
kD1

Z
R3

j�kj
4 dx D

3X
kD1

Z
R3

�k dx D V:

This yields (4.26), thus concluding the proof of the lemma. �

The decomposition in 4.3 can be refined as follows:

PROPOSITION 4.4. There exist six functions fbij
with bij 2 Bij such that

z�1 D � fb31
� fb13

C fb12
C fb21

;

z�2 D Cfb23
C fb32

� fb12
� fb21

;

z�3 D �fb23
� fb32

C fb31
C fb13

:

(4.37)
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Furthermore, for any fbij
we have the following control on the variation in direc-

tions orthogonal to bij :

(4.38)
1

jsj2=3

Z
R3

jfbij
.x/ � fbij

.x C sa/j2 dx . E
2=3
interfE

1=3
elast

for any unit vector a with a � bij D 0 and all s 2 R. Moreover, fbij
satisfies

(4.39)
Z

R3

jfbij
.x/j4 dx . V:

PROOF. Note that the estimate (4.28) in the proof of Lemma 4.3 can be strength-
ened: Indeed, if b 2 BnBj , then (4.28) holds for any unit vector a, i.e.,

(4.40) mj .k/�b.k/
(4.9)
& �b.k/ & .a � yk/2�b.k/:

This estimate is stronger than the corresponding estimate (4.28), which only applies
if a and b are orthogonal. The functions fk;ij with k 62 fi; j g hence have a small
modulus of continuity independent of the direction. This will be used to reduce the
number of functions in the decomposition.

We first observe that in view of (4.24), we can rewrite the tableau (4.23) as

(4.41)

z�1 D C f1;b23
Cf1;b32

�f3;b31
:::::::

�f3;b13
:::::::

Cf1;b12
:::::::

Cf1;b21
:::::::

�f2;b31
�f2;b13

;

z�2 D C f2;b23
:::::::

Cf2;b32
:::::::

Cf2;b31
Cf2;b13

�f1;b12
:::::::

�f1;b21
:::::::

�f3;b12
�f3;b21

;

z�3 D � f2;b23
:::::::

�f2;b32
:::::::

Cf3;b31
:::::::

Cf3;b13
:::::::

Cf3;b12
Cf3;b21

�f1;b23
�f1;b32

;

where we have underlined the functions where the modulus of continuity is only
controlled in certain directions (the other function should be “absorbed” into these
functions). Note that all functions in the tableau (4.41) appear in pairs: twice in
every column and with alternating sign. This motivates defining the six functions
fb , b 2 B , as follows:

(4.42)

fb12
WD f1;b12

� f2;b31
; fb21

WD f1;b21
� f2;b13

;

fb23
WD f2;b23

� f3;b12
; fb32

WD f2;b32
� f3;b21

;

fb31
WD f3;b31

� f1;b23
; fb13

WD f3;b13
� f1;b32

:

Note that in view of (4.40), the functions fb still satisfy (4.28). By repeating the
arguments in the proof of the previous lemma, it is then clear that the functions fb
also satisfy estimates (4.38)–(4.39). Furthermore, in view of (4.41), it follows that
we indeed get (4.37). �
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5 Proof of the Lower Bound
5.1 Proof of Proposition 3.4

In this section, we give the proof of Proposition 3.4. For the proof, we use the
lower bound of the energy given in Lemma 4.2. Let

m.yk/ WD inffm1.yk/;m2.yk/;m3.yk/g:

By Lemma 4.2, we then have

Eelast &
Z

R3

m.yk/.jF z�1j2 C jF z�2j2 C jF z�3j2/dk:

Notice that, using definition (4.9), for 0 < � . 1 we have

(5.1) H2.fyk 2 S2 j m.yk/ � �2g/ . �2:

Indeed, because of the (at most) quadratic vanishing of m, the set

fyk 2 S2 j m.yk/ � �2gD fyk 2 S2 j dist.yk;B/2 � �2g

is contained in the union of 2 � 6 disks of radius � �, with a two-dimensional
measure � �2 each; see also (4.9) and (2.6). We have estimated Eelast in terms of
the functions z�; it remains to estimate it in terms of the characteristic functions �i .
We note that by definition (3.10) we have

(5.2)

8̂<̂
:
3.�2 � �3/ D z�3 � z�2;

3.�3 � �1/ D z�1 � z�3;

3.�1 � �2/ D z�2 � z�1:

Using (5.2), we obtain

(5.3)
Z

R3

m.yk/.jF.�2 � �3/j2 C jF.�3 � �1/j2 C jF.�1 � �2/j2/dk . Eelast:

By definition of our mollification (3.3), we have for all i; j D 1; 2; 3,

jF.�i;L � �j;L/.k/j D .2�/3=2jF�L.k/j jF.�i � �j /.k/j
. jF�1.Lk/j jF.�i � �j /.k/j

so that

(5.4)
Z

R3

�
.�2;L � �3;L/

2
C .�3;L � �1;L/

2
C .�1;L � �2;L/

2
�
dx .

Z
R3

jF�1.Lk/j
�
jF.�2 � �3/j2 C jF.�3 � �1/j2 C jF.�1 � �2/j2

�
dk:
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We need a last ingredient, which brings in the total martensitic volume: By defini-
tion of the Fourier transform we have for all k

jF�1j C jF�2j C jF�3j �
1

.2�/3=2

Z
.j�1j C j�2j C j�3j/dx

(3.1)
. V;

so that in particular

(5.5) jF.�2 � �3/j2 C jF.�3 � �1/j2 C jF.�1 � �2/j2 . V 2:

We now may conclude by splitting the integral in k-space; for any 0 < � . 1
we haveZ

R3

�
.�2;L � �3;L/

2
C .�3;L � �1;L/

2
C .�1;L � �2;L/

2
�
dx(5.6)

.5.4/
.

Z
fm.yk/��2g

jF�1.Lk/j
�
jF.�2 � �3/j2 C jF.�3 � �1/j2 C jF.�1 � �2/j2

�
dk

C

Z
fm.yk/��2g

jF�1.Lk/j
�
jF.�2 � �3/j2 C jF.�3 � �1/j2 C jF.�1 � �2/j2

�
dk �

�
1

�2

Z
R3

m.yk/
�
jF.�2 � �3/j2 C jF.�3 � �1/j2 C jF.�1 � �2/j2

�
dk

C

Z
fm.yk/��2g

jF�1.Lk/jdk

� sup
k

�
jF.�2 � �3/j2 C jF.�3 � �1/j2 C jF.�1 � �2/j2

�
.5.3/;.5.1/;.5.5/

.
1

�2
Eelast C

�2

L3
V 2;

where in order to get the last line we have calculatedZ
fm.yk/��2g

jF�1.Lk/jdk . H2.fm.yk/ � �2g/L�3
Z

R3

jF�1.q/jdq

. �2L�3:(5.7)

The proof is concluded by choosing � > 0 suitably. In the case

(5.8) Eelast � L
�3V 2;

we choose �2 D E1=2elast.L
�3V 2/�1=2, which yieldsZ

R3

�
.�2;L � �3;L/

2
C .�3;L � �1;L/

2
C .�1;L � �2;L/

2
�
dx

(5.6)
.

E
1=2
elast

�
L�3V 2

�1=2 (5.8)
� min

˚
E
1=2
elast.L

�3V 2/1=2; L�3V 2
	
:
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In the opposite case, that is, for L�3V 2 � Eelast, we choose � D 10. Arguing
as before—but observing that the set wherem.k/ � �2 is empty—(5.6) is replaced
by Z

R3

�
.�2;L � �3;L/

2
C .�3;L � �1;L/

2
C .�1;L � �2;L/

2
�
dx

. L�3V 2 � min
˚
E
1=2
elast

�
L�3V 2

�1=2
; L�3V 2

	
;

which concludes the proof.

5.2 Proof of Proposition 3.5
In this section we address the proof of Proposition 3.5. Before presenting the

proof of the proposition at the end of the section, we start by stating and proving
an auxiliary lemma. The following is a quantitative version of step 4 in the proof
of [4, theorem 2.1].

LEMMA 5.1. Let the three unit vectors b1; b2; b3 form a basis of R3. Consider
three functions f; g; h that have the following moduli of continuity: Suppose that
the change of f is controlled in directions b1 and b2,

(5.9)
1

jsj2=3

Z
R3

jf � f . � C sb1/j
2 dxC

1

jsj2=3

Z
R3

jf � f . � C sb2/j
2 dx � Ccont

for s 2 R, and that the change of g and h is controlled in direction b3,

(5.10)
1

jsj2=3

Z
R3

jg � g. � C sb3/j
2 dxC

1

jsj2=3

Z
R3

jh� h. � C sb3/j
2 dx � Ccont:

Furthermore, suppose that the following integrability condition is satisfied:

(5.11)
Z

R3

jf j4 dx C

Z
R3

jgj4 dx C

Z
R3

jhj4 dx � Cint:

Then we have

1

L1=3

ˇ̌̌̌Z
R3

.f � fL/.g � gL/.h � hL/dx

ˇ̌̌̌
. C

1=2
contC

1=2
int :

PROOF. We start with two reformulations of the statement of the lemma. We
first note that it is sufficient to prove the following asymmetric version of Lemma
5.1:

(5.12)
1

L1=3

ˇ̌̌̌Z
R3

.f � fL/gh dx

ˇ̌̌̌
. C

1=2
contC

1=2
int ;
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since if we replace g and h by g�gL and h�hL, respectively, assumptions (5.9)–
(5.10) and (5.11) are preserved up to universal factors. Because the unit vectors
b1; b2; b3 form a basis, in order to show (5.12), it is enough to prove

1

jsj1=3

ˇ̌̌̌Z
R3

�
f .x/ � f .x C s1b1 C s2b2 C s3b3/

�
g.x/h.x/dx

ˇ̌̌̌
. C

1=2
contC

1=2
int

for each s D .s1; s2; s3/ 2 R3.
SettingG WD gh, we note that by the triangle inequality and Hölder’s inequality,

we have�Z
R3

jG.x/ �G.x C s3b3/j
4=3 dx

�3=4

�

�Z
R3

jg.x/ � g.x C s3b3/j
4=3
jh.x/j4=3 dx

�3=4

C

�Z
R3

jg.x C s3b3/j
4=3
jh.x/ � h.x C s3b3/j

4=3 dx

�3=4

�

�Z
R3

jg.x/ � g.x C s3b3/j
2 dx

�1=2�Z
R3

jh.x/j4 dx

�1=4

C

�Z
R3

jg.x/j4 dx

�1=4�Z
R3

jh.x/ � h.x C s3b3/j
2 dx

�1=2
. .Ccontjs3j

2=3/1=2C
1=4
int D js3j

1=3C
1=2
contC

1=4
int :

Moreover, by Hölder’s inequalityZ
R3

jGj2 dx �

�Z
R3

jgj4 dx

�1=2�Z
R3

jhj4 dx

�1=2
� Cint:

We hence have reduced Lemma 5.1 from its symmetric three-factor version to the
following asymmetric two-factor version: Under the assumptionsZ

R3

jf .x/ � f .x C s1b1 C s2b2/j
2 dx � .js1j C js2j/

2=3Ccont;(5.13)

Z
R3

jG.x/ �G.x C s3c/j
4=3 dx � js3j

4=9C
2=3
contC

1=3
int ;(5.14)

Z
R3

jf j4 dx C

Z
R3

jGj2 dx � Cint;(5.15)
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we need to show that

(5.16)
1

jsj1=3

ˇ̌̌̌Z
R3

�
f .x/ � f .x C s1b1 C s2b2 C s3b3/

�
G.x/dx

ˇ̌̌̌
. C

1=2
contC

1=2
int :

This estimate follows by a straightforward calculation using the triangle inequal-
ity and Hölder’s inequality:ˇ̌̌̌Z

R3

�
f .x/ � f .x C s1b1 C s2b2 C s3b3/

�
G.x/dx

ˇ̌̌̌

�

ˇ̌̌̌Z
R3

�
f .x/ � f .x C s1b1 C s2b2/

�
G.x/dx

ˇ̌̌̌

C

ˇ̌̌̌Z
R3

f .x C s1b1 C s2b2/.G.x/ �G.x � s3b3//dx

ˇ̌̌̌

�

�Z
R3

jf .x/ � f .x C s1b1 C s2b2/j
2 dx

�1=2�Z
R3

jG.x/j2 dx

�1=2

C

�Z
R3

jf .x/j4 dx

�1=4�Z
R3

jG.x/ �G.x � s3b3/j
4=3 dx

�3=4
.
�
.js1j C js2j/

2=3Ccont
�1=2

C
1=2
int C C

1=4
int

�
js3j

4=9C
2=3
contC

1=3
int

�3=4
� jsj1=3C

1=2
contC

1=2
int ;

which concludes the proof of (5.16) and thus the proof of the lemma. �

PROOF OF PROPOSITION 3.5. Recall that we need to show

(5.17)
ˇ̌̌̌Z
R3

.z�1� z�1;L/.z�2� z�2;L/.z�3� z�3;L/dx

ˇ̌̌̌
. L1=3

�
E
2=3
interfE

1=3
elast

�1=2
V 1=2:

In view of the representation (4.37), the triple product in (5.17) with factors of the
form z�j � z�j;L is the sum of triple products with factors of the form fb � fb;L;
i.e., the left-hand side in (5.17) can be expressed as a sum of terms of the form

(5.18)
Z

R3

.f � fL/.g � gL/.h � hL/dx;

where

f D fb1
; g D fb2

; h D fb3
;

and where b1; b2; b3 2 B. From the representation (4.23), it is also clear that not
all vectors are equal; i.e., the case b1 D b2 D b3 does not occur. It hence suffices
to consider the case when either b1; b2; b3 form a basis or otherwise b2 and b3 are
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linearly independent and b1 D b2. In the first case, we choose b01 WD b1, in the
second case we choose b01 to be any vector independent of b2 and b3. In particular,
b01; b2; b3 form a basis. We choose another basis a1; a2; a3 such that a3 ? b01; b2
and a1, a2 ? b3. Since a1, a2 ? b3 and by (4.38) we have

1

jsj2=3

Z
R3

jh � h. � C sa1/j
2 dx C

1

jsj2=3

Z
R3

jh � h. � C sa2/j
2 dx . E

1=3
interfE

2=3
elast

for s 2 R. Again by (4.38) and since a3 ? b01; b2 (and also a3 ? b1; b2), we have

1

jsj2=3

Z
R3

jf � f . � C sa3/j
2 dx C

1

jsj2=3

Z
R3

jg � g. � C sa3/j
2 dx . E

1=3
interfE

2=3
elast:

Moreover, by (4.39), we haveZ
R3

jf .x/j4 dx C

Z
R3

jg.x/j4 dx C

Z
R3

jh.x/j4 dx . V:

The above estimates show that the assumptions of Lemma 5.1 are satisfied for
integrals of type (5.18). The proof of Proposition 3.5 is then concluded by applying
Lemma 5.1.

�

5.3 Proof of Theorem 3.2—Lower Bound
Note that for V . 1, the lower bound is a direct consequence of the isoperimetric

inequality. Hence it remains to prove that E & V 9=11 for V � 1.
The crucial ingredient to pass from Proposition 3.4 and Proposition 3.5 to The-

orem 3.2 is the estimate

(5.19)

V .
ˇ̌̌̌Z
R3

.z�1 � z�1;LL/.z�2 � z�2;LL/.z�3 � z�3;LL/dx

ˇ̌̌̌

C

Z
R3

.�2;L � �3;L/
2
C .�3;L � �1;L/

2
C .�1;L � �2;L/

2 dx:

where the subscript LL stands for the twofold application of the convolution op-
erator. This elementary estimate is the only place where we use the nonconvexity,
that is, �i 2 f0; 1g. In fact, we will show

(5.20)

ˇ̌̌̌Z
R3

.z�1 � z�1;LL/.z�2 � z�2;LL/.z�3 � z�3;LL/dx C 2

Z
R3

.�1 C �2 C �3/dx

ˇ̌̌̌

� V C C

Z
R3

.�2;L � �3;L/
2
C .�3;L � �1;L/

2
C .�1;L � �2;L/

2 dx;

which yields (5.19) by application of the triangle inequality and using the defini-
tion of V . Recall definition (3.10) of the functions z�j as a linear combination of
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the functions �j . Observe that since the characteristic functions �j have disjoint
support, the triple product of the linear combinations z�i , i D 1; 2; 3, collapses to
the sum of the three characteristic functions �i ,

(5.21) z�1 z�2 z�3 D �2.�1 C �2 C �3/:

We calculate

.z�1 � z�1;LL/.z�2 � z�2;LL/.z�3 � z�3;LL/C 2.�1 C �2 C �3/

(5.21)
D .z�1 � z�1;LL/.z�2 � z�2;LL/.z�3 � z�3;LL/ � z�1 z�2 z�3

D �z�1;LL z�2 z�3 � z�2;LL z�3 z�1 � z�3;LL z�1 z�2

C z�1 z�2;LL z�3;LL C z�2 z�3;LL z�1;LL C z�3 z�1;LL z�2;LL

� z�1;LL z�2;LL z�3;LL:

Hence in order to establish (5.19), it is enough to show thatX
.ijk/

ˇ̌̌̌Z
R3

z�i;LL z�j z�k dx

ˇ̌̌̌
(5.22)

C

X
.ijk/

ˇ̌̌̌Z
R3

z�i;LL z�j;LL z�k dx

ˇ̌̌̌
C

X
.ijk/

ˇ̌̌̌Z
R3

z�i;LL z�j;LL z�k;LL dx

ˇ̌̌̌
(5.23)

� V C C

Z
R3

.�2;L � �3;L/
2
C .�3;L � �1;L/

2
C .�1;L � �2;L/

2 dx:(5.24)

where the sums are taken over all permutations .ijk/ of .123/.
Note that since the functions z�i are linear combinations of the functions �j and

since �j 2 f0; 1g, we have in particular

(5.25) kz�j;LLkL1 . kz�j kL1 . 1 for any j D 1; 2; 3.

Furthermore, we also have for all j 2 f1; 2; 3g,

(5.26)
Z

R3

j z�j;LLj
2 dx .

Z
R3

j z�j j
2 dx .

Z
R3

�j dx � V:

By using (5.25)–(5.26) on the term in line (5.22) and by application of Hölder’s
and Young’s inequalities, we getˇ̌̌̌Z

R3

z�i;LL z�j z�k dx

ˇ̌̌̌
� C�

Z
R3

j z�i;LLj
2 dx C �V

for any � > 0. An analogous estimate can also be applied to the terms in line (5.23)
so that in order to show (5.24), it suffices to show

(5.27)
Z

R3

j z�i;LLj
2 dx .

Z
R3

.�2;L��3;L/
2
C.�3;L��1;L/

2
C.�1;L��2;L/

2 dx
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for any i 2 f1; 2; 3g. In order to see this inequality, we rewrite definition (3.10) in
the form

z�i D .�j � �i /C .�k � �i /;

where .ijk/ is any permutation of .123/. This identity carries over to the convolved
functions, i.e.,

(5.28) z�i;LL D .�j;LL � �i;LL/C .�k;LL � �i;LL/:

In particular,

(5.29)
Z

R3

j z�i;LLj
2 dx .

Z
R3

.�2;LL � �3;LL/
2
C .�3;LL � �1;LL/

2
C .�1;LL � �2;LL/

2 dx:

Inequality (5.27) and hence also (5.24) now follow from (5.29) and the Hausdorff-
Young inequality, which implies that

(5.30)
Z
.�2;LL � �3;LL/

2
C .�3;LL � �1;LL/

2
C .�1;LL � �2;LL/

2 dx .Z
R3

.�2;L � �3;L/
2
C .�3;L � �1;L/

2
C .�1;L � �2;L/

2 dx:

This concludes the proof of estimate (5.22)–(5.23) and thus establishes (5.20) and
(5.19).

The conclusion of the proof of the theorem is now easy: Inserting Proposition
3.4 and Proposition 3.5 (applied to the twofold convolution that is of the same type
as the simple convolution) into (5.19), we obtain the estimate

V . L1=3
�
E
2=3
interfE

1=3
elast

�1=2
V 1=2 C L�3=2E

1=2
elastV:

With the help of Young’s inequality, we may upgrade this estimate to

(5.31) V . L2=3
�
E
2=3
interfE

1=3
elast

�
C L�3=2E

1=2
elastV:

We optimize estimate (5.31) in L by choosing

L D E
�4=13
interf E

1=13
elast V

6=13:

This leads to
V . E

6=13
interfE

5=13
elast V

4=13

and hence

(5.32) V 9=11 . E
6=11
interfE

5=11
elast . Einterf CEelast � E;

thus concluding the proof of the lower bound for Theorem 3.2. Note that the
equipartition of energy (3.8) follows by the multiplicative estimate in (5.32).
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FIGURE 6.1. Three-dimensional sketch for the (expected) total shape
for inclusions with large volume.

6 Proof of the Upper Bound
6.1 Construction

We present the construction of an inclusion that realizes the minimal scaling of
the energy (3.7) for inclusions with large volume V � 1. Notice that constructions
of the austenite-to-martensite interface have been given in the literature (e.g., [4,
5, 18, 19]). As in the previous constructions, our construction includes a self-
similar refinement of the regions related to the single martensite variants towards
the martensite-austenite interface. But in contrast to the previous constructions
we need to optimize our construction within a three-dimensional setting where the
martensite is surrounded by an austenite environment in all three directions. In
particular, the martensitic inclusion needs to be constructed such that it is self-
accommodating. Another technical difficulty that has to be taken into account is
that the martensite-austenite interface in our situation has macroscopic bending.

The displacement u we construct consists of a “macroscopic” part uM and a
“microscopic” part um,

u D uM
C um:

The function uM is related to the phenomenon of self-accommodation. The func-
tion um describes the fine-scale structure within the inclusion; it is related to the
phenomenon of compatibility.

Shape of Inclusion
In our construction, the region occupied by martensite has the shape of a thin

lens. The shape of the lens is described by the two parameters R and L, repre-
senting its radius and its thickness, respectively; see Figure 6.1. In particular, the
volume V occupied by martensite satisfies the relation

(6.1) V � R2L:

We assume that the lens is large and relatively thin,

(6.2) 1� L� RI

the precise value of the two parameters R and L will be fixed later. Furthermore,
the two large surfaces of the lens are approximately perpendicular to the vector

(6.3) n WD b32I
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FIGURE 6.2. Notation used in the construction.

see Figure 6.2. Recall that n is one of the two possible twin directions between
austenite and either one of the strains

1

3
e.1/ C

2

3
e.2/ or

1

3
e.1/ C

2

3
e.3/I

cf. (2.7).
We next choose a function � that represents the precise profile of the lens. We

choose � 2 W 1;1.Œ0;1// such that �.0/ D L, �.R/ D 0, and furthermore

(6.4) �0.0/ D 0; �0.t/ � 0; j�0.t/j .
L

R
:

In particular, � is compactly supported in Œ0; R�. The region � occupied by the
martensite is defined by

� WD fx 2 R3 W jPxj � R; jx � nj � �.jPxj/g;

where we have introduced the projection operator Px WD x � .x � n/n onto the
linear space orthogonal to n. The lens � is decomposed into two parts,

� D �C [�� where �˙ D � \ fx W ˙x � n � 0g:

Choice of Gradients
In our construction, we have fine-scale oscillation of the martensite variants 1

and 2 in the upper part of the lens �C, and we have fine-scale oscillation of the
martensite variants 1 and 3 in the lower part of the lens ��. The oscillation is
realized by a specific choice of gradients that is presented in the following.

We choose b21 as the direction of the fine-scale twinning between the martensite
variants 1 and 2 in the region�C. The gradientsD.i/

C
, i D 1; 2, are representations

of stress-free martensite strains related to variant i . They are chosen such thatD.1/
C

and D.2/
C

allow for twinning in direction b21, i.e.,

(6.5)
Sym.D.1/

C
/ D e.1/; Sym.D.2/

C
/ D e.2/;

D
.1/
C
�D

.2/
C
D 6.b12 ˝ b21/;
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where SymA WD 1
2
.ACAT/. Furthermore, their convex combination is compatible

with the austenite in direction n,

(6.6) DM
C WD

1

3
D
.1/
C
C
2

3
D
.2/
C
D 2.b23 ˝ b32/ D 2.b23 ˝ n/:

The above assumptions are satisfied by

(6.7)

D
.1/
C
D

0@�2 2 0

�2 1 1

0 �1 1

1A ; D
.2/
C
D

0@1 �1 0

1 �2 1

0 �1 1

1A ;
DM
C D

0@0 0 0

0 �1 1

0 �1 1

1A :
Analogous considerations lead to the following choice of gradients for the con-
struction in ��:

(6.8)

D.1/� D

0@�2 0 2

0 1 �1

�2 1 1

1A ; D.3/� D

0@1 0 �1

0 1 �1

1 1 �2

1A ;
DM
� D

0@0 0 0

0 1 �1

0 1 �1

1A I
in particular, Sym.D.1/� / D e.1/, Sym.D.3/� / D e.3/,D.1/� �D

.3/
� D 6.b31˝b13/,

and DM� WD
1
3
D.1/� C

2
3
D.3/� D �D

M
C

. This means that D.1/� and D.3/� allow for
twinning in direction b13 and their convex combinationDM

� D �D
M
C

is compatible
with the austenite in direction n D b32.

6.2 Decomposition of � into Cells
The microscopic displacement um models a fine-scale twinning and refinement

of two martensite variants towards the boundary of the lens and towards the plane
at its center; see Figure 3.1. We present the definition of the fine-scale displacement
um in the upper half of the lens �C; note that �3 D 0 in �C. The construction of
um in �� proceeds analogously.

It is convenient to introduce the (normalized but not orthogonal) basis b1; b2; b3
by

(6.9)

b3 WD
b21 � n

jb21 � nj
D

1
p
3

0@11
1

1A ; b2 WD
n � b3

jn � b3j
D

1
p
6

0@�21
1

1A ;
b1 WD

b3 � b21

jb3 � b21j
D

1
p
6

0@�1�1
2

1A
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(a)

b
12

b
2

n

(b)

FIGURE 6.3. (a) Unit cell. (b) Self-similar refinement. The green areas
are occupied by martensite variant 1; the orange regions are occupied by
variant 2.

and the corresponding coordinates yi D x � bi . The refinement of martensite
domains in �C occurs along the “transition” direction b1, oscillation occurs in
direction b2, and the microscopic displacement is constant in direction b3.
Construction of � and um on a “Cell” Z. The microscopic displacement is de-
scribed in terms of an approximately self-similar arrangement of elementary build-
ing blocks or cells; see, e.g., [7, 8, 21]. For w; h > 0, the cell Z of width w and
height h is given by

Z D fx W 0 � y1 � h; 0 � y2 � w; 0 � y3 � wgI

see Figure 6.3. We define �1 D 1 on the union of the three sets�ˇ̌̌̌
y2

w
�
1

6

ˇ̌̌̌
�
y1

18h

�
\Z;

�ˇ̌̌̌
y2

w
�
5

6

ˇ̌̌̌
�
y1

18h

�
\Z;�ˇ̌̌̌

y2

w
�
1

2

ˇ̌̌̌
�
1

6
�
y1

9h

�
\Z;

and �1 D 0 in the remaining part of Z. Furthermore, we set �2 D 1 � �1 and
�3 D 0 on Z. This construction satisfies �1 C �2 C �3 D 1; moreover, on each
fixed slice fy1 D constg in Z, the volume fraction of variant 1 is 1

3
and the volume

fraction of variant 2 is 2
3

, i.e.,

(6.10)
Z

fy1Dconstg\Z

�1 D
w

3
;

Z
fy1Dconstg\Z

�2 D
2w

3
:

The microscopic displacement um in Z is defined as follows: The displacement
um vanishes on the tangential components of the boundary of Z, i.e.,

(6.11) um
WD 0 on fx 2 Z W y2 2 f0;wg or y3 2 f0;wgg:

Furthermore, the derivatives of um in the b2- and b3-directions are

@b2
um
WD
��
D
.1/
C
�DM

C

�
�1 C

�
D
.2/
C
�DM

C

�
�2
�
b2

(6.7)
D .2�1 � �2/

1
p
6
.3; 3; 0/T;



NUCLEATION BARRIERS 33

@b3
um
WD
��
D
.1/
C
�DM

C

�
�1 C

�
D
.2/
C
�DM

C

�
�2
�
b3

(6.7)
D .0; 0; 0/T:

By (6.10), the above definition is consistent with the assumption (6.11). Further-
more, the derivative in the b1-direction is implicitly given by these assumptions. In
fact, @b1

um is constant on each connected component of the support of �1 and �2,
and it has jump of order w

h
at the interface of these sets.

Decomposition of�C (Up to a Boundary Layer) into Cylinders. Up to a bound-
ary layer with thickness of order 1, we shall cover the set�C by translation of cells
described above. On the set covered by these cells we then use the definition of �i
and u on Z. We need some notation: For any x 2 �C let

d.x/ D infft � 0 W x C tb1 2 @�Cg

be the distance between x and @�C in the b1-direction, and let

L.x/ D supfd.x C tb1/ W t 2 R; x C tb1 2 �Cg

be the thickness of �C at x in the b1-direction. Furthermore, we introduce the
following subset of the center plane of the lens:

A D fx 2 �C W x � n D 0 and L.x/ � 2g:

Let Q be a covering of A with two-dimensional squares Q � fx � n D 0g with
disjoint interior. For any Q 2 Q, let w.Q/ be its side length and let L.Q/ be the
minimal thickness of the set �C over Q in the b1-direction, i.e.,

L.Q/ D inffL.x/ W x 2 Qg:

We may furthermore assume that the covering Q is chosen such that

(6.12) L.Q/ � w.Q/3=2 for all Q 2 Q:
Note that condition (6.12) is chosen to minimize energy in the construction; see
Section 6.3. For every Q 2 Q, we define a corresponding cylinder †Q � �C that
has Q as its base:

†Q D fx 2 �C W x D q C ˛b1 for q 2 Q; 0 � ˛ � L.Q/ � 1g � �C:

The side lengths of the cylinder are correspondingly denoted by w.†Q/ D w.Q/,
and its length in the b1-direction is denoted by

L.†Q/ WD L.Q/ � 1:

Decomposition of Cylinder†Q into Cells. In the following, for any such cylinder
† D †Q, we construct a covering with a refining collection of the above-described
cells Z. The size of the cells is largest in the center of the cylinder and decreases
both towards the top and bottom of the cylinder; see Figure 6.3(b). We present the
construction of the cells only in the direction ofCb1; the construction for the cells
in the direction �b1 proceeds analogously.

Consider the slice at the center of the cylinder: fjx � b1j D
L.†/
2
g. This slice

represents the bottom of a cell of height h0 (to be fixed later) and width w0; this is
the zeroth generation of cells. On top of this cell, there are nine cells with height h1
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and width w1 D w0

3
; see Figure 6.3; this is the first generation of cells. Following

this algorithm, iteratively the cylinder is filled by M generations of cells. The
width and height of the i th generation of cells is defined by

(6.13) wj D
wj�1

3
; hj D C1w

3=2
j :

Note that the hj ratio is chosen in order to minimize the energy; see Section 6.3.
The algorithm is terminated after M iterations when reaching the termination cri-
terion

(6.14) hM � wM :

Now, the constant C1 is implicitly chosen such that theM generations of cells pre-
cisely fill out†Q, i.e.,

PM
jD0 hj D

L.†/
2

. Notice that the sequence hj is geometric;
in particular, by (6.12) it follows that C1 � 1.

Definition of � and u. Finally, let �int � � be the set covered by the union of the
above constructed cells and let �bl D �n�int, i.e.,

(6.15) � D �int
[�bl:

In our construction, we have covered �int
C

by “cells” Z. The functions �i and um

are defined on these cells as described before. This determines �i and um on �int.
We furthermore set

�1 D 1 and �2 D �3 D 0 in �bl;(6.16)

�1 D �2 D �3 D 0 in R3 n�:(6.17)

We also set um D 0 in R3n�. Note that the thickness of the transition layer �bl is
of order 1. We hence may extend um continuously onto �bl such that

(6.18) krum
kL1.�bl

C
/ . kum

kL1.@�bl
C
/ C kru

m
kL1.@�bl

C
/:

Construction of uM

Finally, the macroscopic displacement uM is chosen such that its gradient is
almost constant on each of the sets �˙,

uM.x/ D

(
˙
�
DM
˙
x � �.jPxj/DM

˙
n
�

in �˙;
0 outside �.

(6.19)

Recall that the JacobianDM
˙

allows for twins with the austenite in direction n since

DM
C D

1

3
D
.1/
C
C
2

3
D
.2/
C
D 2b23 ˝ n:

DM
� D

1

3
D.1/� C

2

3
D.3/� D �2b23 ˝ n:

(6.20)
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6.3 Proof of Theorem 3.2—Upper Bound
We first note that for V . 1, the upper bound follows by choosing an inclusion

in the shape of a ball, filled with a single variant of martensite (for details, see
[15]). Hence, in the following we consider the case V � 1.

Since in our construction we have u D 0 outside of �, elastic energy is created
only within the inclusion. Furthermore, by symmetry the total energy is estimated
by its contribution within �C. Also using the triangle inequality, we hence obtain

E .
Z
�C

2X
iD0

jr�i j C

Z
�C




e.u/ � 2X
iD0

�ie
.i/



2

.
Z
�C



e.uM/ � e
�
DM
C

�

2(6.21)

C

Z
�int

C

2X
iD0

jr�i j C

Z
�int

C




e.um/ �

2X
iD0

�i
�
e.i/ � e

�
DM
C

��


2(6.22)

C

Z
�bl

C

2X
iD0

jr�i j C

Z
�bl

C



e.um/ �
�
e.1/ � e

�
DM
C

��

2:(6.23)

The estimate for the macroscopic contribution to the energy in line (6.21) is
straightforward: Noting thatDuM D DM

C
��0DM

C
n˝Px=jPxj in�C, we obtainZ

�C



e.uM / � e�DM
C

�

2 � Z
�C



DuM �DM
C



2
.
Z
�C

j�0j2
ˇ̌
DM
Cn
ˇ̌2 . k�0k2L1 j�Cj . L3;

where we have used k�0kL1 . L=R and j�Cj � R2L.
We next address the estimate of the terms in line (6.22): We first consider the

energy of a single cellZ with height h and width a and where the functions �i and
u are defined as in the construction in Section 6.1. Note that in the construction,
the derivatives of @b2

u and @b3
u agree exactly with the corresponding entries of the

strainD.1/
C
�DM

C
(respectivelyD.2/

C
�DM). Since, furthermore .D.1/

C
�DM

C
/b2 D

0 and .D.2/
C
�DM

C
/b3 D 0, we have

Z
Z




e.um/ �

2X
iD0

�i
�
e.i/ � e.DM

C/
�


2 � Z

Z

j@b1
uj2 .

w4

h
;
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where we have used jZj D w2h and j@b1
uj . w

h
. Also, since by (6.14) we have

w . h, it follows that the interfacial energy of the cell is estimated by Ch. HenceZ
Z

2X
iD1

jr�i j C

Z
Z




e.um/ �

2X
iD1

�i
�
e.i/ �DM

C

�


2 . hw C
w4

h
� w5=2;

where we have chosen h by (6.13), thus optimizing the estimate.
Recalling the definitions of wj and hj in the construction, the corresponding

energy of each cylinder† of width w0 D w.†/ and length L.†/ is then estimated
byZ
†

2X
iD1

jr�i j C

Z
†




e.um/ �

2X
iD1

�i
�
e.i/ � e

�
DM
C

��


2 .

w
5=2
0

1X
jD0

32j
�
1

3

�5j=2
. w

5=2
0 . L1=3w20 ;

where we have used (6.12) and L.†/ . L. Summing the energy over all cylinders
† in �C, we obtain

(6.24)
Z
�int

C

2X
iD1

jr�i j C

Z
�int

C




e.um/ �

2X
iD1

�i
�
e.i/ �DM

C

�


2 . L1=3R2:

It remains to give the estimate of the term in line (6.23): By construction, the
thickness of �bl in the b1-direction is of order 1. In particular, its surface area and
volume are estimated by

(6.25) j@�bl
j . R2; j�bl

j . R2:

We furthermore notice that in view of (6.13) and (6.14) the last generation of cells
satisfies wM � 1. In particular, we obtain kDumkL1.@�bl

C
/ C ku

mkL1.@�bl
C
/ . 1.

By (6.18), we hence get

(6.26)
Z
�bl

C

2X
iD1

jr�i j C

Z
�bl

C



e.um/ �
�
e.1/ �DM

C

�

2 . R2 � L1=3R2;

where we have used that L� 1.

The estimates (6.24), (6.26), and (6.24) together show that the energy is esti-
mated above by

(6.27) E . L1=3R2 C L3
(6.1)
� L�2=3V C L3:

Optimizing in L yields L D V 3=11 and E . V 9=11. By (6.1) we get R � V 4=11;
in particular, the consistency condition 1 � L � R is satisfied for V � 1. This
concludes the proof of the upper bound in Theorem 3.2.
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