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Prediction without probability

A thread from machine learning: prediction with expert advice.

VERSION 1: (Not today’s focus, but still a natural
starting point)

N
\ /N

AYIVAWA

/

@ atime series — eg a binomial stock price tree;

@ some notion of gain/loss due to good/bad predictions (eg buy or
stell stock);

@ N experts (eg public or private algorithms based on recent
history);

@ investor’'s goal: do as well as the (retrospectively)
best-performing expert — or at least, don’t fall too far behind;

@ focus on worst-case scenario (malevolent market), so
probabilities are irrelevant.

Not today’s focus — that would be a different talk (eg thesis of
Kangping Zhu).

Robert V. Kohn Prediction without probability



Today’s focus

VERSION 2: Investor has no mind of his own — he just integrates the
advice of many experts. So let’s ignore any underlying time series.
@ N experts
@ investor’s action: at each time step, “choose an expert to follow”

to allow mixtures: investor chooses a prob distrn on
{1,..., N} (follow expert j with prob p;)

@ market’s action: at each time step, “choose which experts
receive gains” (eg for 3 experts, vector of gains can be (1,0,0)
or(1,1,0)or...)

to allow mixtures: market chooses a prob distrn on {0, 1}V

One interpretation: experts < market sectors,
investor’s probabilities < portfolio allocations.
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Prediction as a 2-player game

Recall: investor chooses a prob distrn (follow expert j with prob p;); mkt
chooses a prob distrn on the 2V expert gain scenarios.

This is a 2-player, zero-sum game. The state variables are
x; = jth expert’s gain — investor’s gain = regret wrt jth expert.
The investor’s value function is:
u(x, t) = expected final time regret, under worst-case scenario.
The dynamic programming principle says (if game ends at time T):
u(x,t) = min max Eju(x + Ax,t+1)] fort<T

investor’s marlgel's
choices choices

o(x) = max{xi, -+, Xn}

u(x, T)
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Prediction as a 2-player game

Recall: investor chooses a prob distrn (follow expert j with prob p;); mkt
chooses a prob distrn on the 2V expert gain scenarios.

This is a 2-player, zero-sum game. The state variables are

x; = jth expert’s gain — investor’s gain = regret wrt jth expert.
The investor’s value function is:

u(x, t) = expected final time regret, under worst-case scenario.
The dynamic programming principle says (if game ends at time T):

u(x,t) = min max Efu(x +Ax,t+1)] fort<T
Mehoices Ehorces.
U(X7 T) = ¢(X):maX{X17--~ 7XN}

Note 1: Other choices of ¢ are possible. Mainly, we'll use that ¢ is increasing
in each x; with linear growth at co, and ¢(x1 + ¢, ..., xn + ¢) = ¢(x) + C.
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Prediction as a 2-player game

Recall: investor chooses a prob distrn (follow expert j with prob p;); mkt
chooses a prob distrn on the 2V expert gain scenarios.

This is a 2-player, zero-sum game. The state variables are

x; = jth expert’s gain — investor’s gain = regret wrt jth expert.
The investor’s value function is:

u(x, t) = expected final time regret, under worst-case scenario.
The dynamic programming principle says (if game ends at time T):

u(x,t) = min max Eju(x + Ax,t+1)] fort<T
o ket
U(X7 T) = ¢(X):maX{X17--~ 7XN}

Note 1: Other choices of ¢ are possible. Mainly, we'll use that ¢ is increasing
in each x; with linear growth at co, and ¢(x1 + ¢, ..., xn + ¢) = ¢(x) + C.

Note 2: If stopping is random (Poisson) rather than deterministic then value
function depends on space alone, and dyn prog prin becomes
w(x) = ¢(x) + (1 —4) min max E[w(x + Ax)]

investor’s market’s
choices choices

where § = stopping probability.
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Prediction as a PDE problem

We are interested in long-time behavior. In the ML lit, a typical
question is: estimate u(0, f) when T — t is large, and give an
easily-implemented strategy that does almost as well.

Continuum limits were designed for this. For example: the behavior of
a random walk after many time steps is captured by considering the
assoc diffusion process. Same idea is useful here; so we introduce a
small parameter ¢:

- gains are ¢ or 0 (rather than 1 or 0); time step is £°
- scaled version is equiv to unscaled version, if ¢(Ax) = Ap(x)
- for random stopping variant, the stopping prob ¢ should be ~ £2

Claim:
@ There is a meaningful PDE limit.
@ Infinding it, we learn about both players’ optimal strategies.

@ In some cases (eg time-dependent version with 2 experts, and
random stopping version with 3 experts) we know the PDE soln
explicitly. (So we know the optimal strategies explicitly.)
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Relation to the ML literature

@ This game is a well-studied model problem. But our
PDE viewpoint is new.

@ ML lit gives upper and lower bounds, by considering particular
strategies — eg, for unscaled problem, u(0,t) ~ Cyv/' T — t.
PDE gives optimal prefactor.
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Relation to the ML literature

@ This game is a well-studied model problem. But our
PDE viewpoint is new.

@ ML lit gives upper and lower bounds, by considering particular
strategies — eg, for unscaled problem, u(0,t) ~ Cyv/' T — t.
PDE gives optimal prefactor.

@ Our attn was drawn by a recent paper Towards optimal
algorithms for prediction with expert advice (N Gravin, Y Peres,
B Sivan, Proc SODA '16). Their treatment is discrete, and this
talk is roughly its PDE analogue.

@ For more ML perspective on prediction with expert advice, see
Prediction, Learning, & Games, N Cesa-Bianchi and G Lugosi,
Cambridge Univ Press, 2006.
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Mathematical context

Key features:
- a multiperiod decision-making process;
- two players (the investor and the market);
- decisions via worst-case analysis (hence the min-max);
- both players see the same value function (a zero-sum game).
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Mathematical context

Key features:

- a multiperiod decision-making process;

- two players (the investor and the market);

- decisions via worst-case analysis (hence the min-max);

- both players see the same value function (a zero-sum game).
About 10 years ago, two problems sharing these features were
considered at length, involving

(1) atwo-person game interpretation of motion by curvature
(Kohn-Serfaty, CPAM 2006)

(2) atwo-person game interpretation of the infinity Laplacian
(Peres-Schramm-Sheffield-Wilson, JAMS 2009).

Techniques used: mainly from optimal control (dynamic programming,
Hamilton-Jacobi-Bellman equation, viscosity solutions).
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Mathematical context

Key features:

- a multiperiod decision-making process;

- two players (the investor and the market);

- decisions via worst-case analysis (hence the min-max);

- both players see the same value function (a zero-sum game).
About 10 years ago, two problems sharing these features were
considered at length, involving

(1) atwo-person game interpretation of motion by curvature
(Kohn-Serfaty, CPAM 2006)

(2) atwo-person game interpretation of the infinity Laplacian
(Peres-Schramm-Sheffield-Wilson, JAMS 2009).

Techniques used: mainly from optimal control (dynamic programming,
Hamilton-Jacobi-Bellman equation, viscosity solutions).

PDE’s are 2nd order (although we’re not doing stochastic control).
You'll see why in a moment . ..
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Finding the PDE

Returning to our problem, let’s find the associated PDE. Overall strategy is
familiar:

SIMPLE VERSION: Scaled DPP defines value function u.. We expect u. — u.
Find the PDE by replacing u. by uin DPP and using Taylor expansion.

FANCIER VERSION: Scaled DPP is a semi-discrete numerical scheme for the
desired PDE. The simple version finds the PDE for which it is a consistent
numerical scheme.
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Finding the PDE

Returning to our problem, let’s find the associated PDE. Overall strategy is
familiar:

SIMPLE VERSION: Scaled DPP defines value function u.. We expect u. — u.
Find the PDE by replacing u. by uin DPP and using Taylor expansion.

FANCIER VERSION: Scaled DPP is a semi-discrete numerical scheme for the
desired PDE. The simple version finds the PDE for which it is a consistent
numerical scheme.

Some notation for the players’ choices at a given time step:

investor’s choice : follow expert k with prob px
market’s choice : prob distr of experts’ gains (g1, . .., gn)
where g = (g1, . .., gn) is a random variable taking values in {0, 1}".

If the investor follows expert k, then the regret increment is
Ax=e(g1 — g, v — Gk) = (g — gT)
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Finding the PDE

Returning to our problem, let’s find the associated PDE. Overall strategy is
familiar:

SIMPLE VERSION: Scaled DPP defines value function u.. We expect u. — u.
Find the PDE by replacing u. by uin DPP and using Taylor expansion.

FANCIER VERSION: Scaled DPP is a semi-discrete numerical scheme for the
desired PDE. The simple version finds the PDE for which it is a consistent
numerical scheme.

Some notation for the players’ choices at a given time step:

investor’s choice : follow expert k with prob px
market’s choice : prob distr of experts’ gains (g1, . .., gn)
where g = (g1, . .., gn) is a random variable taking values in {0, 1}".

If the investor follows expert k, then the regret increment is
Ax=e(g1 — g, v — Gk) = (g — gT)
Scaled dyn prog prin:

N

— mi 7 2
U(x,t) = min  max ;pkEg[us(He(g gl), t+ &%)

> k=1 ge{o,1}N
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Finding the PDE, contd

Substitute u. by u (soln of anticipated PDE) in DPP:

N
u(x,ty~ min - max > peEg[u(x + (g — geT), t +°)].

Pk >0 probdistron
> k=1 gefo,1}N k=1

RHS = u(x, t) + c[terms involving dku] + £°[terms involving 5u and uf] + ...
Zeroth order term u(x, t) cancels LHS.

First order term seems to dominate. But min-max of first-order term alone is
a linear programming problem. lts value is 0, achieved (only) when

investor’s choice is px = Oku/ (01U + - - - Onu);
market’s choices are balanced: E[gi] = ... = E[gn].

Consistency check: we expect dxu > 0, since u(x, T) = ¢(x) is monotone
increasing in each x.

The investor’s strategies are fully determined but the market’s strategies are
not, so we must continue ...
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Finding the PDE, contd

Second order term gives

N
ur+ max %ZkaE[ (g—aoT)® (Q*ng»]:O

E[g;] indep of j P
in which p, = akU/((91 u-+--- 8Nu).

This can be greatly simplified, using that
(a) each g; takes only the values 0 or 1;
(b) u(x + cT,t) = u(x, t) + ¢ (proved by induction, since the final-time
function has this property);
(c) we are maximizing a linear function over a convex set.
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Finding the PDE, contd

Second order term gives

N
ur+ max %ZkaE[ (g—aoT)® (Q*ng»]:O

E[g;] indep of j P
in which p, = akU/((91 u-+--- 8Nu).

This can be greatly simplified, using that
(a) each g; takes only the values 0 or 1;

(b) u(x + cT,t) = u(x, t) + ¢ (proved by induction, since the final-time
function has this property);
(c) we are maximizing a linear function over a convex set.

N = 2 is misleadingly simple: (b) implies (91 + d2)u =1 and d11u = 92U;
PDE simplifies to u; + 3p1922u + $p2011u = 0, or equivalently

ur + %Au =0fort < T,withu=max{x,x}att=T.

Market advances each expert with prob 1. (A discrete version of this was
understood by T. Cover in the 1960’s.)
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Finding the PDE, contd

The PDE is nonlinear for N > 3.

When N = 3: we have (3 + 82 + 83)u = 1, which implies dy1u = (92 + 85)u,
etc; PDE reduces to

Ut + 3 max{11 U, Ora, dzzu} = 0.

- If max is achieved at 9;1u then market’s strategy is:
“advance expert 1 with prob 1, advance all but 1 with prob }”.
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Finding the PDE, contd

The PDE is nonlinear for N > 3.

When N = 3: we have (3 + 82 + 83)u = 1, which implies dy1u = (92 + 85)u,
etc; PDE reduces to

Ut + 3 max{11 U, Ora, dzzu} = 0.

- If max is achieved at 9;1u then market’s strategy is:
“advance expert 1 with prob 1, advance all but 1 with prob }”.

General N: PDE is

U+ 3 max max {(Jj + -+~ + 9 )?u} = 0.
1

,,,,, i

- If max is at (9j, + - - - + 8;,)?u, then market's strategy is:
“advance experts i, . . ., iy with prob 1, advance all the others 1”.
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How the PDE emerges

Focus on N = 3 as illustrative example: u; + Lu = 0 with
lu=_max ; ZkaE [(DPu (g — gk @ (g — ok T))]

E[gj] lndep of j
in which px = oku.

STEP 1: Let
= Prob{(0,0,0) or (1,1,1)}, a; = Prob{(1,0,0) or (0,1,1)}
= Prob{(0,1,0) or (1,0,1)}, as = Prob{(0,0,1) or (1,1,0)}
and ignore the constraint of balance (E[g;] indep of j). Then RHS becomes

{ ai[(1 — p1)d1u + p1(d2 + 83)2u] }

1 max

2
aj=

> a=1

+ao[(1 — p2)d2u + P2(d1 + 83)?u]
+a3[(1 — p3)dssu + ps(01 + 02)2U].
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How the PDE emerges

Focus on N = 3 as illustrative example: u; + Lu = 0 with
lu=_max ; ZkaE [(DPu (g — gk @ (g — ok T))]

E[gj] lndep of j
in which px = dku.

STEP 1: Let
= Prob{(0,0,0) or (1,1,1)}, a; = Prob{(1,0,0) or (0,1,1)}
= Prob{(0,1,0) or (1,0,1)}, as = Prob{(0,0,1) or (1,1,0)}
and ignore the constraint of balance (E[g;] indep of j). Then RHS becomes

{ ai[(1 — p1)d1u + p1(d2 + 83)2u] }
1 max

2
aj=

> a=1

+ao[(1 — p2)d2u + P2(d1 + 83)?u]
+a3[(1 — p3)dssu + ps(01 + 02)2U].

STEP 2: If coefft of a; is largest, then optimal choice is a; = 1. Consistent
with balance, by taking Prob{(1,0,0)} = 1 and Prob{(0,1,1)} = 1. Thus: if
coefft of ay is largest,

Lu= %[(1 — p1 )811U+ P ((92 + 83)2Ll].
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How the PDE emerges, contd

Thus far: if coefft of a is largest, Lu = 3[(1 — p1)d11u + p1 (92 + 05)°u]

STEP 3: From special structure of ¢ (and induction in time) we have
u(x+ct,t)=u(x,t)+ c,s0 (01 + 9>+ 93)u = 1. Thus

O1U+01(82 4 83)u=0 and(dp + 03)d1 U+ (92 + 93)°u = 0,
whence (82 + 33)%u = dy1u and

coefft of a1 = (1 —p1)811u+p1811u = O11U.
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How the PDE emerges, contd

Thus far: if coefft of a is largest, Lu = 3[(1 — p1)d11u + p1 (92 + 05)°u]

STEP 3: From special structure of ¢ (and induction in time) we have
u(x+ct,t)=u(x,t)+ c,s0 (01 + 9>+ 93)u = 1. Thus

O1U+01(82 4 83)u=0 and(dp + 03)d1 U+ (92 + 93)°u = 0,
whence (82 + 33)%u = dy1u and

coefft of a1 = (1 —p1)811u+p1811u = O11U.

CONCLUSION: Arguing similarly for coeffts of a» and a3, we get
Lu = % max{811 u, 622U7 833U, O}

But 0 should never be optimal: worst-case regret should increase with time.
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How the PDE emerges, contd

Thus far: if coefft of a is largest, Lu = 3[(1 — p1)d11u + p1 (92 + 05)°u]

STEP 3: From special structure of ¢ (and induction in time) we have
u(x+ct,t)=u(x,t)+ c,s0 (01 + 9>+ 93)u = 1. Thus

O1U+01(82 4 83)u=0 and(dp + 03)d1 U+ (92 + 93)°u = 0,
whence (82 + 33)%u = dy1u and

coefft of a1 = (1 —p1)811u+p1611u = O11U.

CONCLUSION: Arguing similarly for coeffts of a» and a3, we get
Lu = % max{811 u, 622U7 833U, O}

But 0 should never be optimal: worst-case regret should increase with time.

N = 4 is similar, but analogue of step 1 involves

a, = Prob{(0,0,0,0) or (1, 171,1)} a; = Prob{(1,0,0,0) or (0,1,1,1)}
a, = Prob{(0,1,0,0) or (1,0,1,1)}, as= Prob{(0,0,1,0) or(1,1,0,1)}
as = Prob{(0,0,0,1) or (1,1,1,0)} b2 = Prob{(1,1,0,0) or (0,0,1,1)}
biz = Prob{(1,0,1,0) or (0,1,0,1)} bys = Prob{(1,0,0,1) or (0,1,1,0)}
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The random-stopping version

Recall that if stopping is random (Poisson, rate §), the value function satisfies:
W:(x) = dp(x) + (1 —d) min max E[w.(x + Ax)].

investor”s market’s
choices  choices

Stopping rate should be of order €2, so
@ game lasts O(e~?) steps = typical regret at stopping is O(1);
@ ¢ doesn't affect the order e min-max calculation;
@ J interacts with O(£?) Taylor expansion terms.
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The random-stopping version

Recall that if stopping is random (Poisson, rate §), the value function satisfies:
W:(x) = dp(x) + (1 —d) min max E[w.(x + Ax)].

investor”s market’s
choices  choices

Stopping rate should be of order €2, so
@ game lasts O(e~?) steps = typical regret at stopping is O(1);
@ ¢ doesn't affect the order e min-max calculation;
@ J interacts with O(£?) Taylor expansion terms.

PDE is elliptic, with source term ¢(x) = max,{xx}, and the same 2nd order
operator as before.

If N =3andd = 1e?, then PDE is w — JAmaxx{Ouww} = ¢
Surpisingly, the solution is explicit: when x; > X > x3,
w(x) = x + 15 (%e“*ﬂ” - %e“%”rm) with ¢ = \/2/X.

Another surprise: market has (at least) two optimal strategies. In fact: from
the formula, when x; > xo > x3 we have 011w = O w.

Analogous soln for discrete pbm is in Gravin, Peres, and Sivan, SODA '16.
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The random-stopping version, cont'd

In general: if time-dependent PDE is u; + Lu =0 withu= ¢ at t = T, then
random-stopping PDE (with § = 2/)\) is u — \Lw = ¢.

@ N = 3 solnis explicit because market's optimal strategy is very simple:
when expert j is ahead, advance him with prob % and advance all the
others with prob }.

Thus: pde soln has reflection symmetry across planes where
experts’ order changes. Moreover, in sector x; > xo > xs it solves
linear eqn w — J A0 w = x;.
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The random-stopping version, cont'd

In general: if time-dependent PDE is u; + Lu =0 withu= ¢ at t = T, then
random-stopping PDE (with § = 2/)\) is u — \Lw = ¢.

@ N = 3 solnis explicit because market's optimal strategy is very simple:
when expert j is ahead, advance him with prob % and advance all the
others with prob }.

Thus: pde soln has reflection symmetry across planes where
experts’ order changes. Moreover, in sector x; > xo > xs it solves
linear eqn w — J A0 w = x;.

@ In ML lit, a common test-strategy for the investor uses probabilities p;
depending exponentially on the experts’ performance. For N = 3, the
investor’s optimal strategy p; = d;w has this character (since w is a sum
of exponentials). It also has a simple interpretation: p; = probability that
expert j is ahead when the game stops.
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The random-stopping version, cont'd

In general: if time-dependent PDE is u; + Lu =0 withu= ¢ at t = T, then
random-stopping PDE (with § = 2/)\) is u — \Lw = ¢.

@ N = 3 solnis explicit because market's optimal strategy is very simple:
when expert j is ahead, advance him with prob % and advance all the
others with prob }.

Thus: pde soln has reflection symmetry across planes where
experts’ order changes. Moreover, in sector x; > xo > xs it solves
linear eqn w — J A0 w = x;.

@ In ML lit, a common test-strategy for the investor uses probabilities p;
depending exponentially on the experts’ performance. For N = 3, the
investor’s optimal strategy p; = d;w has this character (since w is a sum
of exponentials). It also has a simple interpretation: p; = probability that
expert j is ahead when the game stops.

@ N = 4 is different. In fact, if market’s optimal strategy were directly
analogous to N = 3 (depending only on identity of leading expert) then
w would solve w — A max;{9;w} = ¢. Soln of this PDE is explicit
(generalizing N = 3 calcn), and it does not solve w — A\Lw = ¢.

Robert V. Kohn Prediction without probability



Rigorous results

(1) Our PDE’s have at most one viscosity soln (w lin growth at oo).
- from standard viscosity-solution theory
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Rigorous results

(1) Our PDE’s have at most one viscosity soln (w lin growth at oo).
- from standard viscosity-solution theory

(2) For final-time pbm, lim._. u. exists and solves the PDE (in the
viscosity sense).

- from Barles-Souganidis thm on conv of numerical schemes
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Rigorous results

(1) Our PDE’s have at most one viscosity soln (w lin growth at oo).
- from standard viscosity-solution theory

(2) For final-time pbm, lim._. u. exists and solves the PDE (in the
viscosity sense).

- from Barles-Souganidis thm on conv of numerical schemes

(3) For the random-stopping problem, w. exists (ie the scaled DPP
has a solution); also, lim._,o w. exists and solves PDE.

- get w. as steady state of an assoc time-dependent pbm;
convergence via Barles-Souganidis.
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Rigorous results

(1) Our PDE’s have at most one viscosity soln (w lin growth at oo).
- from standard viscosity-solution theory

(2) For final-time pbm, lim._. u. exists and solves the PDE (in the
viscosity sense).

- from Barles-Souganidis thm on conv of numerical schemes

(3) For the random-stopping problem, w. exists (ie the scaled DPP
has a solution); also, lim._,o w. exists and solves PDE.

- get w. as steady state of an assoc time-dependent pbm;
convergence via Barles-Souganidis.

(4) Uniform estimates on u.(x, t) and w.(x) give stability, and also
qualitative results about PDE solutions; for example,
sup, [w(x) — ¢(x)| < C.
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Rigorous results — some hints about the methods

Focus for simplicity on the final-time version: u; + Lu=0fort < T,
withw=¢att=T.

(1) STABILITY Let ¢ be a mollified version of ¢ (so ¢ shares the
structural features of ¢, but is C®). Then time-stepping changes
maxy |u(x, t) — ¢(x)| by at most Ce?. So

max [u(x, t) = §(x)| < Ci + Cao(T — 1)
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Rigorous results — some hints about the methods

Focus for simplicity on the final-time version: u; + Lu=0fort < T,
withw=¢att=T.

(1) STABILITY Let ¢ be a mollified version of ¢ (so ¢ shares the
structural features of ¢, but is C®). Then time-stepping changes
maxy |u(x, t) — ¢(x)| by at most Ce?. So

max [u(x, t) = §(x)| < Ci + Cao(T — 1)

(2) CONSISTENCY The formal calculation shows (when done more
carefully) that if u(t, x) is smooth and satisfies the structural

conditions (monotone in each x;, and u(t, x + cl) = u(t, x) + ¢)
then
mininvestor MaXmarket E[U(t + 523 X+ EAX)] — U(t, X)
82
Main point: structural conds assure that 2nd order part doesn’t
depend on player’s probabilities. Thus: in the min-max,
first-order term can really be handled separately (even for ¢ > 0).

~ U+ Lu.
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Stepping back

Mathematical messages

@ This approach to prediction leads, in a suitable limit, to some
interesting nonlinear PDE. Their solutions determine the optimal
strategies (at least if the solutions are smooth enough).

@ For classic goal of minimizing regret (¢(x) = maxx{xx}), explicit
solns are available in some cases (deterministic stopping — 2
experts; random stopping — 3 experts.) What about other cases,
and other ¢?

Robert V. Kohn Prediction without probability



Stepping back

Mathematical messages

@ This approach to prediction leads, in a suitable limit, to some
interesting nonlinear PDE. Their solutions determine the optimal
strategies (at least if the solutions are smooth enough).

@ For classic goal of minimizing regret (¢(x) = maxx{xx}), explicit
solns are available in some cases (deterministic stopping — 2
experts; random stopping — 3 experts.) What about other cases,
and other ¢?

Machine learning messages

@ ML literature is mainly discrete. This example suggests that PDE
can help. But full impact is far from clear.

@ In ML, focus is usually on easy-to-implement strategies (based
eg on schemes for weighting experts, using past performance).
PDE soln, if known, permits comparison to the optimal strategy.

@ For ML, focus is often on asymptotics as # experts — oo. PDE,
by contrast, are inconvenient in high dimensions (unless explicit
solns are available).

Robert V. Kohn Prediction without probability



