
Prediction without probability:
a PDE approach to a two-player game

from machine learning

Robert V. Kohn
Courant Institute, NYU

Joint work with Nadejda Drenska

Indiana University
October, 2017

Robert V. Kohn Prediction without probability



Prediction without probability

A thread from machine learning: prediction with expert advice.

VERSION 1: (Not today’s focus, but still a natural
starting point)

a time series – eg a binomial stock price tree;

some notion of gain/loss due to good/bad predictions (eg buy or
stell stock);

N experts (eg public or private algorithms based on recent
history);

investor’s goal: do as well as the (retrospectively)
best-performing expert – or at least, don’t fall too far behind;

focus on worst-case scenario (malevolent market), so
probabilities are irrelevant.

Not today’s focus – that would be a different talk (eg thesis of
Kangping Zhu).
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Today’s focus

VERSION 2: Investor has no mind of his own – he just integrates the
advice of many experts. So let’s ignore any underlying time series.

N experts

investor’s action: at each time step, “choose an expert to follow”

to allow mixtures: investor chooses a prob distrn on
{1, . . . ,N} (follow expert j with prob pj )

market’s action: at each time step, “choose which experts
receive gains” (eg for 3 experts, vector of gains can be (1,0,0)
or (1,1,0) or . . . )

to allow mixtures: market chooses a prob distrn on {0,1}N

One interpretation: experts⇔ market sectors,
investor’s probabilities⇔ portfolio allocations.
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Prediction as a 2-player game
Recall: investor chooses a prob distrn (follow expert j with prob pj ); mkt
chooses a prob distrn on the 2N expert gain scenarios.

This is a 2-player, zero-sum game. The state variables are

xj = j th expert’s gain− investor’s gain = regret wrt j th expert.

The investor’s value function is:

u(x , t) = expected final time regret, under worst-case scenario.

The dynamic programming principle says (if game ends at time T ):

u(x , t) = min
investor′s

choices

max
market′s
choices

E[u(x + ∆x , t + 1)] for t < T

u(x ,T ) = φ(x) = max{x1, · · · , xN}

Note 1: Other choices of φ are possible. Mainly, we’ll use that φ is increasing
in each xi with linear growth at∞, and φ(x1 + c, . . . , xN + c) = φ(x) + c.

Note 2: If stopping is random (Poisson) rather than deterministic then value
function depends on space alone, and dyn prog prin becomes

w(x) = δφ(x) + (1− δ) min
investor′s

choices

max
market′s
choices

E[w(x + ∆x)]

where δ = stopping probability.
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Prediction as a PDE problem
We are interested in long-time behavior. In the ML lit, a typical
question is: estimate u(0, t) when T − t is large, and give an
easily-implemented strategy that does almost as well.

Continuum limits were designed for this. For example: the behavior of
a random walk after many time steps is captured by considering the
assoc diffusion process. Same idea is useful here; so we introduce a
small parameter ε:

- gains are ε or 0 (rather than 1 or 0); time step is ε2

- scaled version is equiv to unscaled version, if φ(λx) = λφ(x)

- for random stopping variant, the stopping prob δ should be ∼ ε2

Claim:

There is a meaningful PDE limit.

In finding it, we learn about both players’ optimal strategies.

In some cases (eg time-dependent version with 2 experts, and
random stopping version with 3 experts) we know the PDE soln
explicitly. (So we know the optimal strategies explicitly.)
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Relation to the ML literature

This game is a well-studied model problem. But our
PDE viewpoint is new.

ML lit gives upper and lower bounds, by considering particular
strategies – eg, for unscaled problem, u(0, t) ∼ CN

√
T − t .

PDE gives optimal prefactor.

Our attn was drawn by a recent paper Towards optimal
algorithms for prediction with expert advice (N Gravin, Y Peres,
B Sivan, Proc SODA ’16). Their treatment is discrete, and this
talk is roughly its PDE analogue.

For more ML perspective on prediction with expert advice, see
Prediction, Learning, & Games, N Cesa-Bianchi and G Lugosi,
Cambridge Univ Press, 2006.
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Mathematical context
Key features:

- a multiperiod decision-making process;

- two players (the investor and the market);

- decisions via worst-case analysis (hence the min-max);

- both players see the same value function (a zero-sum game).

About 10 years ago, two problems sharing these features were
considered at length, involving

(1) a two-person game interpretation of motion by curvature
(Kohn-Serfaty, CPAM 2006)

(2) a two-person game interpretation of the infinity Laplacian
(Peres-Schramm-Sheffield-Wilson, JAMS 2009).

Techniques used: mainly from optimal control (dynamic programming,
Hamilton-Jacobi-Bellman equation, viscosity solutions).

PDE’s are 2nd order (although we’re not doing stochastic control).
You’ll see why in a moment . . .
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Finding the PDE
Returning to our problem, let’s find the associated PDE. Overall strategy is
familiar:

SIMPLE VERSION: Scaled DPP defines value function uε. We expect uε → u.
Find the PDE by replacing uε by u in DPP and using Taylor expansion.

FANCIER VERSION: Scaled DPP is a semi-discrete numerical scheme for the
desired PDE. The simple version finds the PDE for which it is a consistent
numerical scheme.

Some notation for the players’ choices at a given time step:

investor’s choice : follow expert k with prob pk

market’s choice : prob distr of experts’ gains ε(g1, . . . , gN)

where g = (g1, . . . , gN) is a random variable taking values in {0, 1}N .

If the investor follows expert k , then the regret increment is

∆x = ε(g1 − gk , . . . , gN − gk ) = ε(g − gk
~1)

Scaled dyn prog prin:

uε(x , t) = min
pk≥0∑

pk=1

max
prob distr on
g∈{0,1}N

N∑
k=1

pk Eg [uε(x + ε(g − gk
~1), t + ε2)]
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Finding the PDE, cont’d

Substitute uε by u (soln of anticipated PDE) in DPP:

u(x , t) ≈ min
pk≥0∑

pk=1

max
prob distr on
g∈{0,1}N

N∑
k=1

pk Eg [u(x + ε(g − gk
~1), t + ε2)].

RHS = u(x , t) + ε[terms involving ∂k u] + ε2[terms involving ∂2
ij u and ut ] + . . .

Zeroth order term u(x , t) cancels LHS.

First order term seems to dominate. But min-max of first-order term alone is
a linear programming problem. Its value is 0, achieved (only) when

investor’s choice is pk = ∂k u/(∂1u + · · · ∂Nu);
market’s choices are balanced: E[g1] = . . . = E[gN ].

Consistency check: we expect ∂k u ≥ 0, since u(x ,T ) = φ(x) is monotone
increasing in each xk .

The investor’s strategies are fully determined but the market’s strategies are
not, so we must continue . . .
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Finding the PDE, cont’d
Second order term gives

ut + max
E[gj ] indep of j

1
2

N∑
k=1

pkE
[
〈D2u, (g − gk

~1)⊗ (g − gk
~1)〉
]

= 0

in which pk = ∂k u/(∂1u + · · · ∂Nu).

This can be greatly simplified, using that

(a) each gj takes only the values 0 or 1;

(b) u(x + c~1, t) = u(x , t) + c (proved by induction, since the final-time
function has this property);

(c) we are maximizing a linear function over a convex set.

N = 2 is misleadingly simple: (b) implies (∂1 + ∂2)u = 1 and ∂11u = ∂22u;
PDE simplifies to ut + 1

2 p1∂22u + 1
2 p2∂11u = 0, or equivalently

ut +
1
4

∆u = 0 for t < T , with u = max{x1, x2} at t = T .

Market advances each expert with prob 1
2 . (A discrete version of this was

understood by T. Cover in the 1960’s.)
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Finding the PDE, cont’d

The PDE is nonlinear for N ≥ 3.

When N = 3: we have (∂1 + ∂2 + ∂3)u = 1, which implies ∂11u = (∂2 + ∂3)2u,
etc; PDE reduces to

ut + 1
2 max{∂11u, ∂22u, ∂33u} = 0.

- If max is achieved at ∂11u then market’s strategy is:
“advance expert 1 with prob 1

2 , advance all but 1 with prob 1
2 ”.

General N: PDE is

ut + 1
2 max

k
max

i1,...,ik
{(∂i1 + · · ·+ ∂ik )2u} = 0.

- If max is at (∂i1 + · · ·+ ∂ik )2u, then market’s strategy is:
“advance experts i1, . . . , ik with prob 1

2 , advance all the others 1
2 ”.
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How the PDE emerges
Focus on N = 3 as illustrative example: ut + Lu = 0 with

Lu = max
E[gj ] indep of j

1
2

∑
k=1N

pkE
[
〈D2u, (g − gk

~1)⊗ (g − gk
~1)〉
]

in which pk = ∂k u.

STEP 1: Let

a0 = Prob{(0, 0, 0) or (1, 1, 1)}, a1 = Prob{(1, 0, 0) or (0, 1, 1)}
a2 = Prob{(0, 1, 0) or (1, 0, 1)}, a3 = Prob{(0, 0, 1) or (1, 1, 0)}

and ignore the constraint of balance (E [gj ] indep of j). Then RHS becomes

1
2 max

aj≥0∑
aj=1


a1[(1− p1)∂11u + p1(∂2 + ∂3)2u]

+a2[(1− p2)∂22u + p2(∂1 + ∂3)2u]

+a3[(1− p3)∂33u + p3(∂1 + ∂2)2u].


STEP 2: If coefft of a1 is largest, then optimal choice is a1 = 1. Consistent
with balance, by taking Prob{(1, 0, 0)} = 1

2 and Prob{(0, 1, 1)} = 1
2 . Thus: if

coefft of a1 is largest,

Lu = 1
2 [(1− p1)∂11u + p1(∂2 + ∂3)2u].
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How the PDE emerges, cont’d
Thus far: if coefft of a1 is largest, Lu = 1

2 [(1− p1)∂11u + p1(∂2 + ∂3)2u]

STEP 3: From special structure of φ (and induction in time) we have
u(x + c~1, t) = u(x , t) + c, so (∂1 + ∂2 + ∂3)u = 1. Thus

∂11u + ∂1(∂2 + ∂3)u = 0 and(∂2 + ∂3)∂1u + (∂2 + ∂3)2u = 0,

whence (∂2 + ∂3)2u = ∂11u and

coefft of a1 = (1− p1)∂11u + p1∂11u = ∂11u.

CONCLUSION: Arguing similarly for coeffts of a2 and a3, we get

Lu = 1
2 max{∂11u, ∂22u, ∂33u, 0}.

But 0 should never be optimal: worst-case regret should increase with time.

N = 4 is similar, but analogue of step 1 involves

a0 = Prob{(0, 0, 0, 0) or (1, 1, 1, 1)}, a1 = Prob{(1, 0, 0, 0) or (0, 1, 1, 1)}
a2 = Prob{(0, 1, 0, 0) or (1, 0, 1, 1)}, a3 = Prob{(0, 0, 1, 0) or (1, 1, 0, 1)}
a4 = Prob{(0, 0, 0, 1) or (1, 1, 1, 0)} b12 = Prob{(1, 1, 0, 0) or (0, 0, 1, 1)}
b13 = Prob{(1, 0, 1, 0) or (0, 1, 0, 1)} b14 = Prob{(1, 0, 0, 1) or (0, 1, 1, 0)}
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The random-stopping version
Recall that if stopping is random (Poisson, rate δ), the value function satisfies:

wε(x) = δφ(x) + (1− δ) min
investor′s

choices

max
market′s
choices

E[wε(x + ∆x)].

Stopping rate should be of order ε2, so

game lasts O(ε−2) steps⇒ typical regret at stopping is O(1);
δ doesn’t affect the order ε min-max calculation;
δ interacts with O(ε2) Taylor expansion terms.

PDE is elliptic, with source term φ(x) = maxk{xk}, and the same 2nd order
operator as before.

If N = 3 and δ = 1
λ
ε2, then PDE is w − 1

2λmaxk{∂kk w} = φ.

Surpisingly, the solution is explicit: when x1 > x2 > x3,

w(x) = x1 +
1
c

(
1
2

ec(x2−x1) +
1
6

ec(2x3−x2−x1)

)
with c =

√
2/λ.

Another surprise: market has (at least) two optimal strategies. In fact: from
the formula, when x1 > x2 > x3 we have ∂11w = ∂22w .

Analogous soln for discrete pbm is in Gravin, Peres, and Sivan, SODA ’16.
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The random-stopping version, cont’d

In general: if time-dependent PDE is ut + Lu = 0 with u = φ at t = T , then
random-stopping PDE (with δ = ε2/λ) is u − λLw = φ.

N = 3 soln is explicit because market’s optimal strategy is very simple:
when expert j is ahead, advance him with prob 1

2 , and advance all the
others with prob 1

2 .

Thus: pde soln has reflection symmetry across planes where
experts’ order changes. Moreover, in sector x1 > x2 > x3 it solves
linear eqn w − 1

2λ∂11w = x1.

In ML lit, a common test-strategy for the investor uses probabilities pj

depending exponentially on the experts’ performance. For N = 3, the
investor’s optimal strategy pj = ∂jw has this character (since w is a sum
of exponentials). It also has a simple interpretation: pj = probability that
expert j is ahead when the game stops.

N = 4 is different. In fact, if market’s optimal strategy were directly
analogous to N = 3 (depending only on identity of leading expert) then
w would solve w − 1

2λmaxj{∂jjw} = φ. Soln of this PDE is explicit
(generalizing N = 3 calcn), and it does not solve w − λLw = φ.
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Rigorous results

(1) Our PDE’s have at most one viscosity soln (w lin growth at∞).

- from standard viscosity-solution theory

(2) For final-time pbm, limε→0 uε exists and solves the PDE (in the
viscosity sense).

- from Barles-Souganidis thm on conv of numerical schemes

(3) For the random-stopping problem, wε exists (ie the scaled DPP
has a solution); also, limε→0 wε exists and solves PDE.

- get wε as steady state of an assoc time-dependent pbm;
convergence via Barles-Souganidis.

(4) Uniform estimates on uε(x , t) and wε(x) give stability, and also
qualitative results about PDE solutions; for example,
supx |w(x)− φ(x)| ≤ C.
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Rigorous results – some hints about the methods
Focus for simplicity on the final-time version: ut + Lu = 0 for t < T ,
with w = φ at t = T .

(1) STABILITY Let φ̃ be a mollified version of φ (so φ̃ shares the
structural features of φ, but is C3). Then time-stepping changes
maxx |u(x , t)− φ̃(x)| by at most Cε2. So

max
x
|u(x , t)− φ̃(x)| ≤ C1 + C2(T − t).

(2) CONSISTENCY The formal calculation shows (when done more
carefully) that if u(t , x) is smooth and satisfies the structural
conditions (monotone in each xj , and u(t , x + c~1) = u(t , x) + c)
then

mininvestor maxmarket E [u(t + ε2, x + ε∆x)]− u(t , x)

ε2 ≈ ut + Lu.

Main point: structural conds assure that 2nd order part doesn’t
depend on player’s probabilities. Thus: in the min-max,
first-order term can really be handled separately (even for ε > 0).
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Stepping back
Mathematical messages

This approach to prediction leads, in a suitable limit, to some
interesting nonlinear PDE. Their solutions determine the optimal
strategies (at least if the solutions are smooth enough).

For classic goal of minimizing regret (φ(x) = maxk{xk}), explicit
solns are available in some cases (deterministic stopping – 2
experts; random stopping – 3 experts.) What about other cases,
and other φ?

Machine learning messages

ML literature is mainly discrete. This example suggests that PDE
can help. But full impact is far from clear.

In ML, focus is usually on easy-to-implement strategies (based
eg on schemes for weighting experts, using past performance).
PDE soln, if known, permits comparison to the optimal strategy.

For ML, focus is often on asymptotics as # experts→∞. PDE,
by contrast, are inconvenient in high dimensions (unless explicit
solns are available).
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