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Preamble

I’ll be exploring connections between motion by curvature and
optimal control. Brief reminder about their importance:

MOTION BY CURVATURE arises in

materials science, as model of surface-energy-driven
coarsening; and
image processing, as scheme for denoising images
without blurring edges.

DETERMINISTIC AND STOCHASTIC OPTIMAL CONTROL are
connected with

Hamilton-Jacobi equations, for example through the
Hopf-Lax solution formula; and
finance, for example through Merton’s analysis of portfolio
optimization.
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Goals and perspective

Part 1: Motion by curvature has a deterministic control interpretation.

Part 2: So do ut = uxx and ut = f (Du, D2u)!

deterministic stochastic steepest
control control descent

1st order Hamilton-Jacobi
nonlinear

2nd order today, part 2 random walk
∫
|∇u|2

linear

2nd order today, part 1 controlled diffusion perimeter
nonlinear
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Deterministic control and first-order PDE

Focus on basic example:
motion with velocity 1

Arrival time: The function u(x) = time of arrival to x solves
|∇u| = 1 in Ω with u = 0 at ∂Ω

Level set method: If v(x , t) is such that level sets move with
velocity 1 then vt/|∇v | = −1

Equivalence: v(x , t) = u(x)− t

First-order HJ eqn: characteristics and shocks

Kinetic: models decay (or growth)

Optimal control: u(x) = minvelocity≤1, starting at x {time to ∂Ω}
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Motion by curvature

Analogous basic example:
motion in R2 with velocity κ

Arrival time: The function u(x) = time of arrival to x solves
div (∇u/|∇u|) = −1/|∇u|

Level set method: If v(x , t) is such that level sets move with
velocity κ then vt/|∇v | = div (∇v/|∇v |)

Equivalence: v(x , t) = u(x)− t

Second-order parabolic: no characteristics

Thermodynamic: steepest descent for perimeter
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Goal, for next 20 minutes

These evolutions are actually very similar

Surprising: parabolic pde are very different from HJ eqns.

Or maybe not: level-set methods used in both settings.

Argument provides something like characteristics.

Anlaysis extends to other geometric motions.

Work with Sylvia Serfaty. (Related work on similar lines,
focused on applications to image processing: Catté, Dibos,
Koepfler; Guichard; Cao; Pasquignon.)
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The game

Paul wants to exit; Carol wants to stop him; step size is ε > 0

x Paul chooses dirn |v | = 1
Carol may reverse it b = ±1
Paul goes x → x +

√
2εbv

Can Paul exit? Yes!

x

If domain is BR, he can exit in
one step from ball of radius
approx R − ε2/R

x

Sets from which Paul can exit
in j steps shrink with velocity
1/Rj (after normalization)

Carol can’t stop Paul, but she can certainly slow him down
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Some properties

Geometric interpretation
Set from which Paul can exit in one
step is traced by midpoints of secants
of length 2

√
2ε

Nonconvex case
Same as above, but he cannot exit
from concave part of ∂Ω

He can exit in O(ε−2) steps

x
x

n−1

n

0
Trial strategy: use v⊥x . Then
|xk+1|2 = |xk |2 + 2ε2.

Joel Spencer introduced this “pusher-chooser” game in 1986,
as heuristic for certain combinatorial problems.
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Going beyond pictures

Value function:

uε(x) = ε2 [min number steps to exit, starting at x]

Simplest theorem: for convex plane domains,

limε→0uε = arrival time of motion by curvature

Main tool is dynamic programming principle:

uε(x) = min
|v |=1

max
b=±1

{
uε(x +

√
2εbv) + ε2

}

x
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Level-set PDE is the HJB eqn assoc with this game
Formal derivation of Hamilton-Jacobi-Bellman equation:

uε(x) = min
|v |=1

max
b=±1

{
uε(x +

√
2εbv) + ε2

}
(1) Ignore dependence on ε and use Taylor expansion:

u(x) ≈ min
|v |=1

max
b=±1

{
u(x) +

√
2εbv · ∇u + ε2〈D2u v , v〉+ ε2

}
(2) Order ε term dominates unless Paul chooses v · ∇u = 0. Thus:

u(x) ≈ min
v⊥∇u

{
u(x) + ε2〈D2u v , v〉+ ε2}

(3) Simplify:

〈D2u · ∇u⊥

|∇u|
,
∇u⊥

|∇u|
〉+ 1 = 0

Equivalent in R2 to arrival-time formulation of motion by curvature:

|∇u|div (∇u/|∇u|) + 1 = 0

PDE is 2nd order since 1st order expansion was insufficient
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Paul’s paths are like characteristics

|∇u| = 1, u = 0 at ∂Ω

chars are shortest paths to bdry
PDE becomes ODE along path

x

uε = ε2[# steps to exit]
value increases by ε2 each time
Paul takes a step
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Selected extensions

Same game in R3?
Boundary moves with velocity = largest principal curvature

Can we get v = mean curvature?
Yes, with a modified game. In R3,

Paul chooses two orthog dirns |v | = |w | = 1, v⊥w
Carol may reverse either (or both), b = ±1, β = ±1
Paul goes x → x +

√
2εbv +

√
2εβw

What if Ω is not convex?
limε→0 uε is arrival time of flow
with velocity κ+.
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A related stochastic game

Consider the stochastic game in which
Carol just flips coins
Paul seeks to exit with prob one in min time

x

Then Paul’s optimal strategy is the same.

Actually, stochastic version was studied first (in cont’s time):
Buckdawn, Cardaliaguet & Quincampoix; Soner & Touzi

Robert V. Kohn Courant Institute, NYU Parabolic PDEs and Deterministic Games



The analogous final-time game

To get a time-dependent PDE, consider our deterministic game
with a fixed final-time T . Same rules but Paul has a different
goal:

vε(x , t) = min
starting from x at t

Φ(yε(T ))

yε(s) = Paul’s path
Φ = Paul’s objective

Φ=8

Φ=9

Associated HJB equation is

vt + 〈D2v · ∇v⊥

|∇v |
,
∇v⊥

|∇v |
〉 = 0 for t < T

with v = Φ at t = T .

Each level set of v moves by curvature (backward in time)
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Two paths to rigorous analysis

Focus on original minimum-time problem. Two alternatives:

(1) Viscosity solutions

lim
ε→0

uε = unique viscosity solution of 2nd order PDE

very general
gives convergence but no rate
uses uniqueness of viscosity solution

(2) Verification argument

u(x)− Cε ≤ uε(x) ≤ u(x) + Cε

less general – requires u to be C3

stronger result (linear rate)
elementary (each bound proved by considering one
player’s optimal strategy)
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Transition to Part 2

Obvious questions:

Is this idea limited to geometric problems?

Or might every 2nd order PDE have a deterministic game
interpretation?

For example, what about the linear heat equation . . .

Thanks to Soner for a crucial hint.
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What about the linear heat equation?

A deterministic game for the 1D linear heat equation:

ut + uxx = 0 for t < T , u = Φ at t = T .

Paul’s initial position is x at time t .

Paul chooses α ∈ R, then Carol chooses b = ±1

Paul moves x → x +
√

2εb and pays penalty
√

2εαb

clock steps forward ε2

at final time T Paul gets bonus Φ(x(T ))

Paul’s value function: uε(x , t) = max{bonus - accumulated penalty}

Dyn prog: uε(x , t) = maxα∈R minb=±1 uε(x +
√

2εb, t + ε2)−
√

2εαb

Formal HJB eqn: 0 = maxα∈R minb=±1
√

2εb(ux − α) + ε2(ut + uxx)

So optimal α = ux and limiting value function solves ut + uxx = 0.
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What about Rn? Fully nonlinear PDE?

A slightly different approach extends to fully nonlinear PDE in Rn:

ut + f (Du, D2u) = 0 for t < T , u = Φ at t = T

assuming parabolicity: f (p, Γ) ≤ f (p, Γ′) if Γ ≤ Γ′.

Paul’s initial position is again x at time t .

Paul chooses p ∈ Rn and Γ ∈ Rn×n
sym , then Carol chooses w ∈ Rn

Paul moves x → x + εw and pays εp · w + ε2

2 〈Γw , w〉 − ε2f (p, Γ)

clock steps forward ε2; Paul gets bonus Φ(x(T )) at final time T

Paul’s value function: uε(x , t) = max{bonus - accumulated penalty}

Formal HJB eqn: usual argument gives

0 = max
p,Γ

min
w

εw · (∇u − p) + ε2 ( 1
2 〈(D

2u − Γ)w , w〉+ f (p, Γ) + ut
)

Paul prefers p = Du and Γ ≤ D2u to neutralize w-terms. He prefers
Γ = D2u by parabolicity. So value function solves ut + f (Du, D2u) = 0
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What’s going on?

Our games are semi-discrete numerical schemes, whose
time-step problem is a max-min.

Scheme for ut + f (Du, D2u) = 0 is like explicit Euler. Min
over w picks out p and Γ as proxies for Du and D2u, even if
u is not differentiable.

Not recommended for linear heat equation. But perhaps
useful for nonlinear PDE whose solutions are not smooth.

Paul behaves optimally ⇒ he’s indifferent to Carol’s
choices. She might as well choose randomly. Related to
representation formulas via backward stochastic
differential equations (Cheredito, Soner, Touzi, Victoir).
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Conclusion

New viewpoint on motion by curvature and related PDE’s
(Kohn-Serfaty, CPAM 2006)
Semidiscrete numerical scheme for fully nonlinear PDE’s
(Kohn-Serfaty, in progress)

x
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