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I'll be exploring connections between motion by curvature and
optimal control. Brief reminder about their importance:

MOTION BY CURVATURE arises in
@ materials science, as model of surface-energy-driven

coarsening; and

@ image processing, as scheme for denoising images
without blurring edges.

DETERMINISTIC AND STOCHASTIC OPTIMAL CONTROL are
connected with

@ Hamilton-Jacobi equations, for example through the
Hopf-Lax solution formula; and

@ finance, for example through Merton’s analysis of portfolio
optimization.
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Goals and perspective

Part 1: Motion by curvature has a deterministic control interpretation.
Part 2: So do uy = Uy and uy = f(Du, D?u)!

deterministic stochastic steepest
control control descent

1st order | Hamilton-Jacobi
nonlinear

2nd order | today, part 2 random walk [IVuP?
linear

2nd order today, part 1 controlled diffusion  perimeter
nonlinear
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Deterministic control and first-order PDE

Focus on basic example:
motion with velocity 1

Arrival time: The function u(x) = time of arrival to x solves
[Vul = 1in Q with u= 0 at 9Q

Level set method: If v(x, t) is such that level sets move with
velocity 1 then v;/|Vv| = —1

Equivalence: v(x,t) = u(x) —t
First-order HJ eqn: characteristics and shocks
Kinetic: models decay (or growth)

Optimal control: u(x) = MiNelocity <1, startingat x {tiMe to 0}
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Motion by curvature
Analogous basic example:
motion in R? with velocity «

Arrival time: The function u(x) = time of arrival to x solves
div(Vu/|Vu|) = —1/|Vu]|

Level set method: If v(x, t) is such that level sets move with
velocity r then v;/|Vv| = div(VVv/|VV])

Equivalence: v(x,t) = u(x) — t
Second-order parabolic: no characteristics

Thermodynamic: steepest descent for perimeter
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Goal, for next 20 minutes

These evolutions are actually very similar

@ Surprising: parabolic pde are very different from HJ eqgns.
@ Or maybe not: level-set methods used in both settings.
@ Argument provides something like characteristics.

@ Anlaysis extends to other geometric motions.

Work with Sylvia Serfaty. (Related work on similar lines,
focused on applications to image processing: Catté, Dibos,
Koepfler; Guichard; Cao; Pasquignon.)
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Paul wants to exit; Carol wants to stop him; step sizeise > 0

J @ Paul chooses dirn |v| = 1
@ Carol may reverse it b = +1
@ Paul goes x — x + v2ebv

Can Paul exit? Yes!

If domain is Bg, he can exit in Sets from which Paul can exit
one step from ball of radius in j steps shrink with velocity
approx R —<2/R 1/R; (after normalization)

Carol can’t stop Paul, but she can certainly slow him down
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Some properties
Geometric interpretation
Set from which Paul can exit in one
step is traced by midpoints of secants
of length 2v/2¢
Nonconvex case

Same as above, but he cannot exit
from concave part of 9Q

He can exit in O(¢—2) steps

ST Trial strategy: use v_Lx. Then
s
X1 P = [xk[? + 222,

Joel Spencer introduced this “pusher-chooser” game in 1986,
as heuristic for certain combinatorial problems.
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Going beyond pictures

Value function:
U-(x) = 2 [min number steps to exit, starting at x]
Simplest theorem: for convex plane domains,
lim._,qu. = arrival time of motion by curvature

Main tool is dynamic programming principle:

= mi 2 2 2
U (x) min max {u (X + V2¢ebv) 4 ¢ }
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Level-set PDE is the HJB egn assoc with this game

Formal derivation of Hamilton-Jacobi-Bellman equation:

U-(x) = lr;m max {ug(x+ V2ebv) + ¢ }

(1) Ignore dependence on ¢ and use Taylor expansion:

u(x) ~ min max {u(x) +V2¢ebv - Vu+e2(DPuv,v) + 52}
V=1 b=+1
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Level-set PDE is the HJB egn assoc with this game

Formal derivation of Hamilton-Jacobi-Bellman equation:

U-(x) = lr;m max {ug(x+ V2ebv) + ¢ }

(1) Ignore dependence on ¢ and use Taylor expansion:

u(x) ~ min max {u(x) +V2¢ebv - Vu+e2(DPuv,v) + 52}
V=1 b=+1

(2) Order ¢ term dominates unless Paul chooses v - Vu = 0. Thus:

o 2,12 2
u(x) ~ VT%’IU{U(X)JrE (DPuv,v) +¢e°}
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Level-set PDE is the HJB egn assoc with this game

Formal derivation of Hamilton-Jacobi-Bellman equation:

U-(x) = lr;m max {ug(x+ V2ebv) + ¢ }

(1) Ignore dependence on ¢ and use Taylor expansion:

u(x) ~ min max {u(x) +V2¢ebv - Vu+e2(DPuv,v) + 52}
V=1 b=+1

(2) Order ¢ term dominates unless Paul chooses v - Vu = 0. Thus:
~ mi 2/m2 2
u(x) ~ VT%’IU{U(X) +e%(DPuv,v) +¢°}

(3) Simplify:
vut vut
D?y. — 1=

S TR T
Equivalent in R? to arrival-time formulation of motion by curvature:

[Vuldiv(Vu/IVul)+1=0

y+1=0

PDE is 2nd order since 1st order expansion was insufficient
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Paul’s paths are like characteristics

Robert V. Kohn

Courant Institute, NYU

|Vul =1, u=0at 9Q
chars are shortest paths to bdry
PDE becomes ODE along path

u. = £2[# steps to exit]
value increases by 2 each time
Paul takes a step
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Selected extensions

Same game in R%?
Boundary moves with velocity = largest principal curvature

Can we get v = mean curvature?
Yes, with a modified game. In R,

@ Paul chooses two orthog dirns |v| = |w| =1, viw
@ Carol may reverse either (or both), b = +1, § = +1
@ Paul goes x — x + v2ebv + v2e/w

What if Q is not convex?

lim._q u. is arrival time of flow
with velocity k. .
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A related stochastic game

Consider the stochastic game in which
@ Carol just flips coins
@ Paul seeks to exit with prob one in min time

Then Paul’s optimal strategy is the same.

Actually, stochastic version was studied first (in cont’s time):
Buckdawn, Cardaliaguet & Quincampoix; Soner & Touzi
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The analogous final-time game

To get a time-dependent PDE, consider our deterministic game
with a fixed final-time T. Same rules but Paul has a different
goal:

Ve(x,t) = min &y (T))

starting from x at t

y-(s) = Paul's path
¢ = Paul’s objective

Associated HJB equation is

vvi vt
DPv. —, — fi T
Vi + (D°v - v |Vv|> 0 fort<

withv=datt=T.

Each level set of v moves by curvature (backward in time)
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Two paths to rigorous analysis

Focus on original minimum-time problem. Two alternatives:

(1) Viscosity solutions

IirrgJ U, = unique viscosity solution of 2nd order PDE
£—

@ very general
@ gives convergence but no rate
@ uses uniqueness of viscosity solution

(2) Verification argument
u(x) — Ce < u(x) < u(x) + Ce
@ less general — requires u to be C3
@ stronger result (linear rate)

@ elementary (each bound proved by considering one
player’'s optimal strategy)
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Transition to Part 2

Obvious questions:

@ Is this idea limited to geometric problems?

@ Or might every 2nd order PDE have a deterministic game
interpretation?

@ For example, what about the linear heat equation . ..

Thanks to Soner for a crucial hint.
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What about the linear heat equation?

A deterministic game for the 1D linear heat equation:
U+ Uy =0fort< T, u=9¢ att=T.
Paul’s initial position is x at time t.

@ Paul chooses « € R, then Carol chooses b = +1

@ Paul moves x — x + v/2¢b and pays penalty v2:ab
@ clock steps forward &2

@ atfinal time T Paul gets bonus ®(x(T))
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What about the linear heat equation?

A deterministic game for the 1D linear heat equation:
U+ Uy =0fort< T, u=9¢ att=T.
Paul’s initial position is x at time t.

@ Paul chooses « € R, then Carol chooses b = +1

@ Paul moves x — x + v/2¢b and pays penalty v2:ab
@ clock steps forward &2

@ atfinal time T Paul gets bonus ®(x(T))

Paul’s value function: u.(x, t) = max{bonus - accumulated penalty}

Dyn prog: U.(x, t) = MaXaep MiNp—+1 U (X + V2eb, t + ) — V/2cab
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What about the linear heat equation?

A deterministic game for the 1D linear heat equation:
U+ Uy =0fort< T, u=9¢ att=T.

Paul’s initial position is x at time t.

@ Paul chooses « € R, then Carol chooses b = +1

@ Paul moves x — x + v/2¢b and pays penalty v2cab

@ clock steps forward £2

@ atfinal time T Paul gets bonus ®(x(T))
Paul’s value function: u.(x, t) = max{bonus - accumulated penalty}
Dyn prog: U.(x, t) = MaXaep MiNp—+1 U (X + V2eb, t + ) — V/2cab

Formal HJB eqn: 0 = maxaep MiNp—1 v2eb(Uy — ) + £2(Us + Uyy)

Robert V. Kohn  Courant Institute, NYU Parabolic PDEs and Deterministic Games



What about the linear heat equation?

A deterministic game for the 1D linear heat equation:
U+ Uy =0fort< T, u=9¢ att=T.
Paul’s initial position is x at time t.

@ Paul chooses « € R, then Carol chooses b = +1

@ Paul moves x — x + v/2¢b and pays penalty v2:ab

@ clock steps forward &2

@ atfinal time T Paul gets bonus ®(x(T))
Paul’s value function: u.(x, t) = max{bonus - accumulated penalty}
Dyn prog: U.(x, t) = MaXaep MiNp—+1 U (X + V2eb, t + ) — V/2cab
Formal HJB eqn: 0 = maxaep MiNp—1 v2eb(Uy — ) + £2(Us + Uyy)

So optimal o« = uy, and limiting value function solves u; + uy, = 0.
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What about R"? Fully nonlinear PDE?

A slightly different approach extends to fully nonlinear PDE in R":
ur+f(Du,D?u) =0fort< T, u=¢ att=T

assuming parabolicity: f(p,I") < f(p, ") if I <T'.
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What about R"? Fully nonlinear PDE?

A slightly different approach extends to fully nonlinear PDE in R":
ur+f(Du,D?u) =0fort< T, u=¢ att=T
assuming parabolicity: f(p,I") < f(p, ") if I <T'.
Paul’s initial position is again x at time t.
@ Paul chooses p € R" and I' € R{L", then Carol chooses w € R"
@ Paul moves x — x +ew and pays ep- w + 52—2<rw, w) — e2f(p,T)

@ clock steps forward £2; Paul gets bonus ®(x(T)) at final time T
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What about R"? Fully nonlinear PDE?

A slightly different approach extends to fully nonlinear PDE in R":
ur+f(Du,D?u) =0fort< T, u=¢ att=T

assuming parabolicity: f(p,I") < f(p, ") if I <T.

Paul’s initial position is again x at time t.
@ Paul chooses p € R" and I' € R{L", then Carol chooses w € R"
@ Paul moves x — x +ew and pays ep- w + 52—2<rw, w) — e2f(p,T)
@ clock steps forward £2; Paul gets bonus ®(x(T)) at final time T

Paul’s value function: u.(x, t) = max{bonus - accumulated penalty}

Formal HJB eqgn: usual argument gives

0 = maxminew - (Vu - p) + &2 (3{(DPu—T)w,w) + f(p,T) + uy)
P,
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What about R"? Fully nonlinear PDE?

A slightly different approach extends to fully nonlinear PDE in R":
ur+f(Du,D?u) =0fort< T, u=¢ att=T

assuming parabolicity: f(p,I") < f(p, ") if I <T.

Paul’s initial position is again x at time t.
@ Paul chooses p € R" and I' € R{L", then Carol chooses w € R"
@ Paul moves x — x +ew and pays ep- w + 52—2<rw, w) — e2f(p,T)
@ clock steps forward £2; Paul gets bonus ®(x(T)) at final time T

Paul’s value function: u.(x, t) = max{bonus - accumulated penalty}

Formal HJB eqgn: usual argument gives

0 = maxminew - (Vu - p) + &2 (3{(DPu—T)w,w) + f(p,T) + uy)
P,

Paul prefers p = Du and I < D?u to neutralize w-terms. He prefers
I = D?u by parabolicity. So value function solves u; + f(Du, D?u) = 0
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What'’s going on?

@ Our games are semi-discrete numerical schemes, whose
time-step problem is a max-min.

@ Scheme for u; + f(Du, D?u) = 0 is like explicit Euler. Min
over w picks out p and I as proxies for Du and D?u, even if
u is not differentiable.

@ Not recommended for linear heat equation. But perhaps
useful for nonlinear PDE whose solutions are not smooth.

@ Paul behaves optimally = he’s indifferent to Carol’s
choices. She might as well choose randomly. Related to
representation formulas via backward stochastic
differential equations (Cheredito, Soner, Touzi, Victoir).
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Conclusion

@ New viewpoint on motion by curvature and related PDE’s
(Kohn-Serfaty, CPAM 2006)

@ Semidiscrete numerical scheme for fully nonlinear PDE’s
(Kohn-Serfaty, in progress)
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