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Abstract The increasing use of micro- and nano-scale components in optical, electrical

and mechanical systems makes the understanding of loss mechanisms and their quan-

tification issues of fundamental importance. In many situations performance-limiting

loss is due to scattering and radiation of waves into the surrounding structure. In this

paper we study the problem of systematically improving a structure by altering its

design so as to decrease the loss. We use sensitivity analysis and local gradient opti-

mization, applied to the scattering resonance problem, to reduce the loss within the

class of piecewise constant structures. For a class of optimization problems where the

material parameters are constrained by upper and lower bounds, it is observed that an

optimal structure is piecewise constant with values achieving the bounds.
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1 Introduction and outline

There is great current interest in the design of micro- and nano-structures in dielectric

materials for storage, channeling, amplification, compression, filtering or, in general, of

light pulses. Such structures have a broad range of applications from optical commu-

nication technologies to quantum information science. Energy loss is a performance-

limiting concern in the design of micro- and nano-scale components. Thus the ques-

tion of how to design such components with very low radiative loss is a fundamental

question. Periodic structures are important classes of structures [7]. In practice, these

photonic crystals are structures with piecewise constant material properties. The abil-

ity of these structures to influence light propagation is achieved through variation of

the period, the choice of material contrasts and through the introduction of defects.

We study the problem of scattering loss from a photonic crystal (PC) with defects, for

a class of one-dimensional wave equations:

n2(x) ∂2
t ψ(x, t) = ∂xσ(x)∂xψ(x, t) (1)

The functions n(x) and σ(x) are strictly positive, assumed to be variable within some

compact set, contained in a bounded open interval, a < x < b, and constant outside

of it. Without loss of generality, we assume σ(x) = n(x) = 1 for x < a and x > b.

This corresponds to a normalization of the wave speed c = 1 in the uniform medium.

The region where these functions vary with x is also referred to as the cavity. Since the

wave equation (1) has real-valued and time-independent coefficients, it models a system

which conserves energy. Therefore, by cavity loss we mean scattering loss, that is loss

due to leakage of energy from the cavity. This is in contrast to loss due to processes

such as material absorption.

Energy leakage or scattering loss from the cavity is governed by the scattering reso-

nances associated with the cavity. Scattering resonances are solutions to the eigenvalue

equation satisfied by time-harmonic solutions of (1) subject to outgoing radiation con-

ditions, imposed outside the cavity:

The Scattering Resonance Problem (SRP): Seek non-trivial u(x; k), such that

∂xσ(x)∂xu(x) + k2 n2(x)u(x) = 0, (2)

(∂x + ik)u = 0, x = a

(∂x − ik)u = 0, x = b (3)

At a point, ξ, jump discontinuity of σ(x) or n(x), equation (2) is interpreted via the

flux continuity relation, obtained by integration across the discontinuity:

σ(ξ+)∂xu(ξ
+) = σ(ξ−)∂xu(ξ

−), (4)

where F (ξ±) = limδ↓0 F (ξ ± δ). Corresponding to a solution, u(x, k) of SRP is an

outgoing time-dependent solution ψ(x, t) = e−iωtu(x; k), ω = ck = k.

Remark 11. The above one-dimensional SRP governs scattering resonances of slab

type structures. It is a consequence of Maxwell’s equations, under the assumption of

time-harmonic solutions. Variation in n(x) with σ constant corresponds to the case of

TM polarization; variation in σ(x) with n constant corresponds to TE polarization.
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SRP is a non-selfadjoint boundary value problem having a sequence of complex eigen-

values {kj} satisfying Im kj < 0, and corresponding resonance modes u(x; kj). The

modes u(x; kj) are locally square integrable but not square integrable over all space.

Assuming there are no bound states (non-decaying in time, L2 states), the evolu-

tion of an arbitrary initial condition for (1) admits a resonance expansion in terms of

time-exponentially decaying states of the form e−ickjtu(x;kj), where u(·; kj) ∈ L2
loc. In

particular, for any A > 0 and compact set K, there exist ε(A,K) > 0 and τ (A,K) > 0,

such that for any compactly supported smooth initial conditions u(x, 0) and ∂tu(x, 0),

the solution u(x, t) satisfies:‚‚‚‚‚‚ u(x, t) −
X

{km:Im km≥−A}
cm e−ickmt u(x;km)

‚‚‚‚‚‚
L2(K)

= O(e−A(1+ε)t), t ≥ τ ;

(5)

see, for example, [16]. Therefore, the rate at which energy escapes from the cav-

ity, for example measured by the rate of decay of field energy within the cavity“R
cavity |u(x, t)|2dx

”
, is controlled by the resonance, k∗, with largest imaginary part.

The time it takes for the energy, associated with a general initial condition, localized

in the defect, to radiate away is τ∗ = (c|Im k∗|)−1. In practice, for example in ex-

periments, initial conditions can be quite spectrally concentrated, and therefore the

observed time-decay rate is determined by the imaginary parts of resonances whose

real parts lie near the spectral support of the initial condition.

Results such as the resonance expansion (5) imply that to understand the dynamics of

scattering loss, it suffices to consider the time-independent spectral problem SRP.

Our goal is to apply sensitivity analysis and local gradient optimization methods to the

scattering resonance problem in the class of piecewise constant structures, in order to

systematically decrease a cavity’s loss in a particular frequency range. Our measure of

cavity loss is the magnitude of the imaginary part of a scattering resonance.

More specifically, we proceed as follows. Starting with a particular scattering reso-

nance, k(σ0, n0), of a piecewise constant structure σ0(x), n0(x), we deform the cav-

ity structure, (σ0, n0) → (σ1 = σ0 + δσ, n1 = n0 + δn), within the class of piece-

wise constant structures, so as to increase the imaginary part (decrease | Im k |), i.e.

Im k(σ1, n1) > Im k(σ0, n0). That is, we increase the lifetime τ of the mode. Here, δσ

and δn are chosen in the direction of the gradient of Im k(σ0, n0), with respect to the

design parameters, which is computed using sensitivity analysis. For each structure,

along the constructed sequence of improving structures, the associated scattering res-

onance is computed via Newton iteration. In some eigenvalue optimization problems,

complications arise when eigenvalues coelesce or have multi-dimensional eigenspaces.

Such complications cannot arise in our setting because, in one space dimension, our

eigenvalue problem (SRP) is easily seen to have simple eigenvalues.

Summary: We present a study of three classes of optimization problems for SRP

with σ(x) the parameter to be optimized and n(x) ≡ 1:

(i) Opt, in which σ is piecewise constant but unconstrained,

(ii) Optarea, in which σ is piecewise constant with fixed
R b
a σ(s)ds, and



4

(iii) Optmax, in which σ is piecewise constant and upper and lower bounds 1 = σmin ≤
σ(x) ≤ σmax. Our structures lie in ΣN , the set of piecewise constant structures [a, b],

with at most N jump discontinuities. We first explore all three classes of problems

fixing, throughout the optimization, the intervals on which σ is constant,. Then, for

Optmax, we relax this constraint and allow both the N values of σ and the N−2 points

of discontinuity to be varied during the optimization. In the latter case, we find (when

N is taken large enough) that the optimal structure is one where σ takes on the value

σmin or σmax on each subinterval.

Gradient methods have also been applied to achieve better confinement, as measured

by, for example, mode-variance [4] and energy flux [10]. The objective function one

chooses to maximize is often called the Q− factor or quality factor. In this paper, we

apply gradient methods to the more natural measure of confinement, Q = | Im k |−1,

the reciprocal imaginary part of the resonance. Kao and Santosa [8] recently used

discretization of an integral equation (in one and two space dimensions) and gradi-

ent methods to increase a slightly different quality factor, namely the ratio of real to

imaginary parts of k. (This measures the loss per cycle of the resonance, viewed an

oscillator.) Other, less systematic approaches have been used in the physics literature.

One such approach proceeds by first (i) specifying a proposed cavity mode profile,

engineered to minimize a physically motivated cost functional, then (ii) using the dif-

ferential equation to solve for the dielectric function (a coefficient in the equation)

in terms of the specified mode [6]. Optimally localizing the eigenmodes of an inho-

mogeneous membrane, a self-adjoint analogue of our problem, has been studied in [4].

Another class of self-adjoint problems is the maximization of photonic band gap widths

[1,2,11,12,15]. We also note that the optimization problems we consider can be viewed

in the context of the large class of shape optimization problems associated with elliptic

partial differential equations [13].

Finally, we remark that resonances are unforced or free modes of a leaky cavity. They

can be excited via scattering experiments, in which waves are incident on the cavity

from outside. In our simple one-dimensional setting, part of the energy is reflected and

part is transmitted. No energy is trapped because the structure has no bound states

and, since the medium is conservative, there is no loss to material absorbtion. Reso-

nances appear as peaks in the transmission coefficient as a function of wavelength, in

wavelength ranges where the transmission is typically low. The real part of a scattering

resonance energy corresponds to the location of the transmission peak and the imagi-

nary part, to the transmission peak width [14]. Thus, our optimization corresponds to

the sharpening of a transmission peak, by modification of the cavity.

1.1 General remarks on periodic or truncated periodic structures, and defects

The above remarks are general, applying to any structure which does not have non-

decaying (with time) L2 bound states. We now discuss the class of structures which

motivate this study. Waves in periodic structures, e.g. electromagnetic, acoustic or

elastic are governed by a wave equation with periodic coefficients. These equations have

plane wave type states, parametrized by a continuous spectrum equal to the union of
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closed intervals called bands (photonic pass-bands). The complement of the spectrum

(on the real axis) consists of the union of open intervals called gaps (photonic band-

gaps). Arbitrary spatially localized states can be represented as a generalized Fourier

superposition of such states. Furthermore, solutions to the initial value problem for the

time-dependent wave equation in a periodic structure, disperse to zero with advancing

time [9,3].

A localized defect in a periodic structure gives rise to discrete eigenvalues in the gaps

[5]. Thus, a periodic structure with a spatially localized defect may support local-

ized time-periodic (non-decaying) states. In applications, photonic structures are often

truncations of periodic structures with defects; see Figure 2, where outside a compact

set these structures have constant physical parameters. This finite structure no longer

has localized eigenstates. Its spectrum is continuous and, as in the case of the spatially

homogeneous wave equation or in the wave equation with globally periodic coefficients,

solutions tend to zero as t → ∞ locally on any compact set. As explained in the in-

troduction, the manner in which the local energy tends to zero is controlled by the

resonance expansion. Note that as the truncation is removed, certain scattering reso-

nance frequencies, associated with defect eigenstates of the infinite structure, approach

eigenvalues on the real axis, and become infinitely long lived (non-decaying) states.

1.2 Outline

The article is structured as follows. In section 2 we define ΣN , the class of admissible

piecewise constant structures, with at most N jump discontinuities in σ(x) and n(x).

Section 3 concerns sensitivity analysis, the computation of variations in a scattering

resonance with respect to changes in the design parameters. Section 4 describes two

approaches to the computation of scattering resonances: one based on use of the exact

solution in each interval where the material properties are constant, the other based

on finite differences. Section 5 contains a discussion of numerical optimization results

for the three classes of problems discussed above.

2 Admissible piecewise constant structures: The class ΣN

We shall investigate the scattering resonance problem for a class of piecewise constant

structures, which we denote by ΣN . A schematic diagram of a typical structure is

presented in figure 1. The set ΣN consists of piecewise constant structures, (σ(x), n(x)),

which for j = 2, . . . , N , take on the values (σj , nj) on the intervals (xj−1, xj). The

endpoints x1 = a and xN = b are fixed as are the values σ(x) = σ1 = σN+1 = 1 and

n(x) = n1 = nN+1 = 1, for x < a and x > b.

n(x) =

8<
:

n1 = 1 : x < x1 = a

nj : xj−1 < x < xj , j = 2, . . . , N

nN+1 = 1 : b = xN < x

. (6)
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Fig. 1 The functions σ(x) and n(x) are step functions. They are assumed to have the value 1
to the left and right of the photonic crystal. The jump discontinuities of σ(x) and n(x) occur
at the points xj .

σ(x) =

8<
:

σ1 = 1 : x < a

σj : xj−1 < x < xj , j = 2, . . . , N

σN+1 = 1 : b < x

. (7)

Thus, a structure (σ(x), n(x)) ∈ ΣN is a pair of piecewise constant functions deter-

mined by 3N − 4 parameters:

N − 2 interior points of discontinuity: x2, . . . , xN−1 and

2(N−1) values: σj and nj of σ(x) and n(x), respectively, on the intervals (xj−1, xj), j =

2, . . . , N .

For simplicity, we restrict to structures at which the set of possible points of disconti-

nuity of σ(x) and n(x) is the same. Our study can easily be extended to more general

structures.

3 Local optimization and sensitivity analysis

As noted in the introduction, |Im kres|−1, (Im kres < 0) is a measure of the decay rate

of the mode or life-time of the mode, u(x;kres).

Optimization problem:

Deform the structure, defined by (σ(x), n(x)), so as to maximize Im kres.

In fact, we shall consider several optimization problems:

(i) Opt: maximize Im kres over structures (σ, n), defined on [a, b], with σ(x) = n(x) = 1

for x 6∈ [a, b].

(ii) Optarea: maximize Im kres over structures (σ, n), defined on [a, b], with σ(x) =

n(x) = 1 for x 6∈ [a, b] and
R b
a σ(y)dy fixed.
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(iii) Optmax: maximize Im kres over structures (σ, n), defined on [a, b], with σ(x) =

n(x) = 1 for x 6∈ [a, b], such that σmin ≤ σ(x) ≤ σmax and nmin ≤ n(x) ≤ nmax.

The direction of steepest ascent of the functional (σ, n) 7→ Im kres(σ, n), is in the direc-

tion of the gradient, or in the case of constrained optimization, a projected gradient.

Hence, we seek expressions for the gradients of kres(σ, n) with respect to the “design

parameters” σ(x) and n(x): δkres
δσ and δkres

δn , where the total variation of kres is given

by: 1

δk =

fi
δkres

δσ
, δσ

fl
+

fi
δkres

δn
, δn

fl
. (8)

The computation of such gradients is also called sensitivity analysis. We first imple-

ment sensitivity analysis in the setting of general structures, and then specialize to the

discrete setting associated with the class, ΣN , of piecewise constant structures.

3.1 Sensitivity analysis - general setting

To avoid cumbersome notation, where it causes no confusion, we shall denote a reso-

nance, kres, simply by k. Also, when studying δkres/δσ, we suppress the dependence

of kres on n(x), and similarly we suppress the dependence on σ(x), when we study

δkres/δn.

Computation of δkres/δσ: Denote by σ0 an initial structure and k(σ0), one of its

scattering resonance frequencies. Suppose we make a small perturbation in σ, with

n(x) = n0(x) fixed:

σ0(x) −→ σ0(x) + δσ(x). (9)

To compute δkres/δσ, we expand the scattering resonance for the structure σ0 + δσ

about the scattering resonance for the structure, σ0:

σ = σ0 + δσ

u(x;σ) = u0(x) + δu

k(σ) = k(σ0) + δk (10)

Substitution of (10) into the Helmholtz equation, (2), and the outgoing boundary

conditions (3), and keeping only linear terms in the increments δσ, δu and δk, we

obtain the system:

∂xσ0∂xδu + n2
0k

2(σ0) δu = −∂x δσ ∂x u0 − 2k(σ0) δk n
2
0 u0, (11)

(∂x + ik(σ0)) δu = −i δk u0, x = a (12)

(∂x − ik(σ0)) δu = +i δk u0, x = b. (13)

An expression for δk can be found by deriving the compatibility equation for the system

(11-13). To derive the compatibility condition, multiply (11) by u0, integrate by parts

1 We define 〈f, g〉 =
R b

a f(x)g(x)dx.
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and use (i) the equation for u0, (2), (ii) the boundary conditions for u0 and δu, (iii)

that σ(a) = σ(b) = 1 and (iv) that δσ(a) = δσ(b) = 0 . This yields

δk =

Z b

a

"
(∂xu0(x))

2

2k(σ0)
R b
a n

2
0u

2
0 + i[u2

0(b) + u2
0(a)]

#
δσ(x) dx, (14)

whence

δk

δσ
(σ0) =

(∂xu0(x))
2

2k(σ0)
R b
a n

2
0u

2
0 + i[u2

0(b) + u2
0(a)]

. (15)

We are interested in increasing the value of Im k(σ) (decreasing |Im k(σ)|). Note that,

to first order in δσ,

= [k(σ)] = Im k(σ0) +

fi
=

»
δk

δσ
(σ0)

–
, δσ

fl
. (16)

Thus a small perturbation, δσ of σ0, will increase the value of Im k most rapidly,

provided we choose δσ to be in the direction of steepest ascent:

δσ = =
»
δk

δσ
(σ0)

–
= =

"
(∂xu0(x))

2

2k(σ0)
R b
a n

2
0u

2
0 + i[u2

0(b) + u2
0(a)]

#
. (17)

Computation of δk/δn: We now consider variations in k due to changes in n(x), with

σ = σ0(x) fixed. To compute δk/δn, we expand

n(x) = n0(x) + δn(x)

u(x;n) = u0(x) + δu(x)

k(n) = k(n0) + δk. (18)

Proceeding in a manner analogous to the above computation, we obtain

δk =

Z b

a

"
−2k2(n0) n0(x) u2

0(x)

2k(n0)
R b
a n

2
0u

2
0 + i[u2

0(b) + u2
0(a)]

#
δn(x) dx. (19)

Therefore

δk

δn
(n0) =

−2k2(n0) n0(x) u2
0(x)

2k(n0)
R b
a n

2
0u

2
0 + i[u2

0(b) + u2
0(a)]

,

and the direction of steepest ascent for δn is given by

δn = =
»
δk

δn
(n0)

–
= =

"
−2k2(n0) n0(x) u2

0(x)

2k(n0)
R b
a n

2
0u

2
0 + i[u2

0(b) + u2
0(a)]

#
.
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3.2 Sensitivity analysis and gradient ascent in ΣN

In this subsection we restrict the results of the previous section on δk/δσ and δk/δn

to structures (σ, n) in the class ΣN .

As introduced in section 2, the structure of a given photonic crystal structure is specified

by 3N − 4 “design” parameters:

x = (x2, . . . , xN−1) possible points of discontinuity of σ(x), n(x)

s = (σ2, . . . , σN ) values of σ(x) on interval (xj−1, xj),

n = (n2, . . . , nN ) values of n(x) on interval (xj−1, xj).

Given a resonance, kold = k(xold, sold, nold), associated with a structure defined by

(x, s, n)old = (xold, sold, nold), we obtain an improved structure by deforming the ini-

tial structure in the direction of the gradient of the objective functional evaluated at

Im kold = Im k(xold, sold, nold). Thus, we obtain a new or updated structure as follows:

(x, s, n)update = (x, s, n)old + ε · (∇ Im k)old

= (x, s, n)old + ε · (∇x Im k,∇s Im k,∇n Im k)old .

Here, we use the notation ∇k to denote the gradient with respect to all parameters:

x, s, n, and ∇x k, ∇s k, ∇n k to denote gradients with respect to the specified param-

eters. Equivalently and explicitly,

xnew = xold + ε ·
„

∂

∂x2
, . . . ,

∂

∂xN−1

«
Im k

˛̨̨
˛
(xold,sold,nold)

snew = sold + ε ·
„

∂

∂σ2
, . . . ,

∂

∂σN

«
Im k

˛̨̨
˛
(xold,sold,nold)

nnew = nold + ε ·
„

∂

∂n2
, . . . ,

∂

∂nN

«
Im k

˛̨̨
˛
(xold,sold,nold)

(20)

We discuss the choice of ε later in this section.

The following Proposition gives expressions for the partial derivatives of a scattering

resonance k(x, s, n), with respect to the design parameters:

Proposition 1 In the above notation, we have the following equations for the partial

derivatives of k(x, s, n) with respect to the design parameters:

(1) Variations in k with respect to the jump locations, x = (x2, . . . , xN−1), for j =

2, . . . , N − 1, are given by

∂k(x, s, n)

∂xj
=

(σj − σj+1) ∂xu(x
−
j )∂xu(x

+
j ) + (n2

j+1 − n2
j ) k2(x, s, n) u2(xj , x, s, n)

i (u2(a, x, s, n) + u2(b, x, s, n)) + 2k(x, s, n)
bR
a
n2(x, x, s, n)u2(x, x, s, n)dx

,

(21)
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(2) Variations in k with respect to s = (σ2, . . . , σN ) satisfy, for j = 2, . . . N ,

∂k(x, s, n)

∂σj
=

xjR
xj−1

(∂xu(x
′; x, s, n))2 dx′

i (u2(a, x, s, n) + u2(b, x, s, n)) + 2k(x, s, n)
bR
a
n2(x, x, s, n)u2(x, x, s, n)dx

.

(22)

(3) Variations in k with respect to n = (n2, . . . , nN ), for j = 2, . . . , N are given by:

∂k(x, s, n)

∂nj
=

−2k2(x, s, n)
xjR

xj−1

nju
2(x′, x, s, n)dx′

i (u2(a, x, s, n) + u2(b, x, s, n)) + 2k(x, s, n)
bR
a
n2(x, x, s, n)u2(x, x, s, n)dx

.

(23)

Proof : To prove (22) and (23) we can apply the formulas from section 3.1 with specially

chosen perturbations of (σ0, n0). The of (21) requires some more care because σ(x) and

∂xu(x) are possibly discontinuous at x = xj .

Choose a′ < a and b′ > b. Multiply equation (2) by u, integrate over [a′, b′], and then

integrate by parts. Then, gives

u∂xu|b
′

a′ −
b′Z

a′

σ(∂xu)
2 +

b′Z
a′

k2n2u2 = 0. (24)

The dependence of the terms in this equation on the design parameter xj , has been

suppressed. Denote by ż the derivative of a function z with respect to xj . We write the

integrals in (24) as the sum of integrals over [a′, xj) and (xj , b
′]. Note that σ̇ = 0, ṅ = 0

for x 6= xj . Differentiation of (24) with respect to xj yields:

∂

∂xj

“
u∂xu|b

′
a′

”
−

2
642

xjZ
a′

σ∂xu∂xu̇+ 2

b′Z
xj

σ∂xu∂xu̇+ σj(∂xu(x
−
j ))2 − σj+1(∂xu(x

+
j ))2

3
75

+ 2

b′Z
a′

(kk̇n2u2 + k2n2uu̇) + k2n2
ju(xj)

2 − k2n2
j+1u(xj)

2 = 0.

After a second integration by parts and using equation (2) we find

∂

∂xj

“
u∂xu|b

′
a′

”
− 2u̇σ∂xu|b

′
a′ + 2

b′Z
a′

kk̇n2u2

= σj+1(∂xu(x
+
j ))2 − σj(∂xu(x

−
j ))2 + k2n2

j+1u(xj)
2 − k2n2

ju(xj)
2,

where we used the flux condition (4) at xj . Remembering σ(a′) = σ(b′) = 1, the

outgoing boundary conditions (3) and the derivative of the boundary conditions, the
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above equation simplifies to

ik̇(u2(a′)+u2(b′))+2

b′Z
a′

kk̇n2u2 = (σj−σj+1) ∂xu(x
−
j )∂xu(x

+
j )+k2n2

j+1u(xj)
2−k2n2

ju(xj)
2,

where we use the identity

σj+1(∂xu(x
+
j ))2 − σj(∂xu(x

−
j ))2 =

“
σj+1∂xu(x

+
j )− σj∂xu(x

−
j )

”
| {z }

= 0by (4)

“
∂xu(x

+
j ) + ∂xu(x

−
j )

”

+ (σj − σj+1) ∂xu(x
−
j )∂xu(x

+
j ). (25)

Finally we note using the explicit exponential form of u on [a′, a] and [b, b′], that the

equation (25) is independent of a′ < a and b′ > b. Letting a′ ↑ a and b′ ↓ b, we yields

the expression in (21).

For expressions (22) and (23) we begin by computing, for structures in ΣN , variations

of a resonance with respect to the design parameters x, s, n.

Let σ0(x), n0(x) denote a structure in ΣN . Admissible perturbations of (σ0, n0) are

achieved through variations of the values of σ, s, and n, n, on each subinterval. (δσ, δn),

the total variations of the coefficient functions, σ and n, due to these two kinds of

variations, can therefore be expressed as:

δσ =

NX
j=2

δσ

δσj
δσj (26)

δn =
NX

k=j

δn

δnj
δnj (27)

The terms on the right hand side of (26,27) are computed as follows. Note that general

variation of (σ̃, ñ), within ΣN , is of the form:

σα,µ = σ̃ +
NX

j=2

(σj + µδσj) χ[xj−1,xj ],

nα,µ = ñ+
NX

j=2

(nj + µδnj) χ[xj−1,xj],

where χ[a,b](x) denotes the characteristic function of the interval [a, b]. Thus,

δσ

δσj
· δσj =

d

dµ

˛̨̨
˛
µ=0

(σj + µδσj) χ[xj−1,xj] = χ[xj−1,xj ] · δσj (28)

δn

δnj
· δnj =

d

dµ

˛̨̨
˛
µ=0

(nj + µδnj) χ[xj−1,xj ] = χ[xj−1,xj] · δnj . (29)

To prove (22) and (23), for each fixed j ∈ {2, . . . , N − 1}, consider the perturbation

σj → σj + δσ respectively nj → nj + δnj , with other parameters held unchanged.

Then, by (26), (27), (28) and (29) we have

δσ = χ[xj−1,xj], δn = χ[xj−1,xj ]



12

Substitution into (14) and (19) yields the expression (21) for ∂k/∂σj and ∂k/∂nj .

3.3 Gradient ascent algorithm in ΣN

Using Proposition 1, we can now compute an updated structure and approximate cor-

responding resonance from the old structure:

(x, s, n)update = (x, s, n)old + ε · Im∇kold (30)

kapprox,update = kold + ε · ( ∇kold, Im∇kold ) ; (31)

see (20).

The parameter, ε, is carefully chosen so to ensure convergence of the Newton method

resonance finder with kapprox,update as initial guess; see subsection 4.2. To achieve this

we control the relative distance:

p =

˛̨̨
˛kapprox,update − k

k

˛̨̨
˛ .

If p is fixed as control parameter for the step length, then one finds

ε = p ·
˛̨̨
˛ k

(∇k, Im∇k)
˛̨̨
˛ .

Algorithm 1 (Steepest Ascent).

Input: k0 start guess, (x, s, n)0 start structure, p control parameter, eps accuracy for

Newton’s method, M number of steepest descent steps.

Output: (x, s, n)opt optimized structure, kopt optimized resonance.

1 kopt ← result of Newton’s method with accuracy eps and initial guess

k = k0 for the initial structure (x, s, n)0.

2 For count = 1, . . . ,M

3 Let ε← p ·
˛̨̨

kopt

(∇kopt),Im∇kopt)

˛̨̨
, where ∇kopt is computed by Proposition

(1) with kopt

4 kapprox,update ← kopt + ε · (∇kopt, Im∇kopt)

5 (x, s, n)opt ← (x, s, n)opt + ε · Im∇kopt

6 kopt ← result of Newton’s method with accuracy eps and initial guess

kapprox,update for the structure (x, s, n)opt.

7 end for

4 Numerical computation of scattering resonances

In this section we focus on the numerical determination of scattering resonances of

structures in the class ΣN . Then, we outline a gradient ascent method, which finds

locally optimal structures of class ΣN . For our numerical ascent scheme we need three
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different ingredients. First, we need a discretization of the scattering resonance problem

(SRP) (2, 3). Second we need a numerical routine to solve the discretized problem. The

starting point for this latter step is typically an approximate solution of the discretized

problem and a routine that corrects this guess. Finally, we perform a gradient ascent

step, which provides an approximate improved structure.

We will present two different ways for the discretization of (2). The first approach (see

section 4.1) exploits the property of piecewise constant one-dimensional structures,

that the equation is exactly solvable on each subinterval. The solution is determined

by matching conditions for the functions and fluxes at the subinterval endpoints. The

second approach (see section 4.3) uses a finite difference discretization for (2). The

corrector routine for both methods is a Newton root finder (section 4.2), which is

adapted for the particular discretization. The gradient ascent step is the same for both

methods and is based on Proposition 1.

4.1 Matching method

We introduce the following simplifying notation:

rj :=
nj√
σj
, j = 1, . . . , N + 1. (32)

The solution of (2) is given by

u(x) =

8><
>:

c1e
−ikx : x < a

c2je
irj+1kx + c2j+1e

−irj+1kx : xj < x < xj+1, j = 1, . . . , N − 1

c2Ne
ikx : b < x

, (33)

where the complex coefficients c1, . . . , c2N are determined from the conditions that

u(x) be continuous on R and such, that the flux continuity relations (4) are satisfied

at the jump locations, xj .

Writing down these matching conditions gives the following set of equations

at x1:

c1e
−ikx1 = c2e

ir2kx1 + c3e
−ir2kx1

−c1e−ikx1 = r2(c2e
ir2kx1 − c3e−ir2kx1),

at xj for j = 2, . . . , N − 1:

c2j−2e
irjkxj + c2j−1e

−irjkxj = c2je
irj+1kxj + c2j+1e

−irj+1kxj

rj(c2j−2e
irjkxj − c2j−1e

−irjkxj ) = rj+1(c2je
irj+1kxj − c2j+1e

−irj+1kxj ),

at xN :

c2N−2e
irN kxN + c2N−1e

−irN kxN = c2Ne
ikxN

rN (c2N−2e
irN kxN − c2N−1e

−irN kxN ) = c2Ne
ikxN .
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This is a linear system of 2N equations of the form

A(k)c = 0.

The matrix A(k) ∈ C
2N×2N depends nonlinearly on the wavenumber k and has a

narrow band structure, which will be exploited in the numerical scheme. The mode

u(x) is recovered from k and the amplitude vector c.

To impose that the solution we find is nontrivial, we impose a normalization condition

on the vector c, e.g. one can set the amplitude c1 of the scattered part at the left end

to 1. Thus, one arrives at the following nonlinear discretized problem:

F (k, c) :=

„
A(k) · c
eT1 c− 1

«
= 0. (34)

This is a system of 2N + 1 nonlinear equations in the 2N + 1 unknowns k, c1, . . . , c2N .

Of course, one could reduce this system by one dimension by eliminating the fixed c1
but for notational ease, equation (34) will be used in the following.

Equation (34) can be solved by any kind of nonlinear solver. We use Newton’s method,

which is outlined in the next subsection.

4.2 Newton’s method

For a given structure in ΣN , with resonance energy k and mode amplitude vector c,

we typically have an approximate or guessed resonance k0 and amplitude vector c0 . If

‖(k0, c0)− (k, c) ‖ is sufficiently small, then Newton’s method applied to equation (34)

guarantees convergence. With a good initial guess Newton’s method converges quadrat-

ically and few iteration steps are necessary. Moreover, the error in the computation of

k and c (and thus of u(x)) can be estimated by Newton’s method.

Newton iteration, applied to equation (34), reads

DF (kj , cj)

„
cj+1 − cj
kj+1 − kj

«
= −F (kj , cj),

where

DF (k, c) =

„
A(k) A′(k)c
eT1 0

«
is the Jacobian of F (k, c). Written out, this equation yields

A(kj)cj+1 + (kj+1 − kj) · A′(kj)cj = 0

eT1 c
j+1 = 1,

which is formulated in the Newton step

A(kj)yj+1 := A′(kj)cj ,

(NA) cj+1 :=
yj+1

eT1 y
j+1

kj+1 := kj − 1

eT1 y
j+1

.
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Remarks:

– The matrices A(k) and A′(k) are explicitly known and their computation can easily

be implemented.

– Since A(k) is sparse, one can find yj+1 efficiently.

– The matices A(k) and A′(k) can be stored with O(8N) memory.

4.3 Finite difference discretization of resonance problem

In this subsection, we present a second approach to computation of scattering reso-

nances, based on a finite difference solution of the scattering resonance problem. For

simplicity, we take n(x) ≡ 1; the required modifications for general n(x) are straight-

forward.

Let U(x; k) and V (x;k) denote solutions of (2) which are outgoing at x = a, respectively

x = b:

(∂x + ik)U(x; k) |x=a = 0, U(a; k) = 1 (35)

(∂x − ik)V (x; k) |x=b = 0, V (b; k) = 1. (36)

For typical values of k, U(x; k) and V (x; k) are linearly independent. Let W (k) denote

the Wronskian of U and V :

W (k) = V (x;k)σ(x)∂xU(x; k) − U(x;k)σ(x)∂xV (x;k). (37)

W (k) is independent of x. U and V are linearly dependent if and only if W (k) = 0.

In this case, U and V are proportional. Thus, if W (k∗) = 0, then U(x; k) is outgoing

at x = a and x = b and the pair (U(x;k∗), k∗) is a scattering resonance. As remarked

in the introduction, scattering resonance energies (zeros of W (k)) are in the lower half

plane, Im k < 0.

We now turn to a finite difference implementation. Partition [a, b] into N intervals of

length ∆x = (b − a)/N . We introduce a scheme for approximating u(x) at discrete

grid-points

uj = u(yj), yj = (j − 1)∆x, j = 1, . . . , N. (38)

We use the symmetric discretization of (2) is

σj+ 1
2
(uj+1 − uj)

(∆x)2
−
σj− 1

2
(uj − uj−1)

(∆x)2
+ k2uj = 0 (39)

where yj = a+ (j − 1)∆x. This discretization respects the continuity of flux condition

(4). The points of discontinuity of σ(x) are chosen to be grid points. The scheme uses

values of σ at staggered points yj+ 1
2
, where σ(yj + 1

2 ) = σj+ 1
2
.

We shall use the scheme (39) to construct out fundamental set {U(x; k), V (x;k)}. To

do so, we require appropriate discretizations of the outgoing conditions (35) and (36).

These discrete outgoing conditions at x = a and x = b are derived as follows.
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At the ends of the domain, the equation becomes

uj+1 − 2uj + uj−1

(∆x)2
+ k2uj = 0. (40)

This constant coefficient difference equation has, for k∆x sufficiently small, oscillatory

exponential solutions

uj = A ξj + B ξ−j , (41)

where ξ is the root of the quadratic equation z2− (2− (k∆x)2)z+1 = 0 corresponding

to the choice of positive square root:

ξ =
(2− (k∆x)2) + i

p
4− (2− (k∆x)2)2

2
. (42)

The discrete solution uj is outgoing to the right provided B = 0 . Therefore the discrete

boundary condition for a solution which is outgoing to the right x = xN = b is

Vj+1 = ξ Vj , j = N − 1. (43)

We also have from (36) the normalization VN = 1, which together with (43) gives

VN−1 = ξ−1. (44)

Analogously, the discrete outgoing to the left condition at x = a is

Uj = ξ−1 Uj−1, j = 2, (45)

which together with the normalization from (35), U1 = 1, gives

U2 = ξ−1. (46)

To construct the approximation to U(x; k), we obtain U2 from (46), and use the

expression for Uj+1 obtained from (39) to propagate this value forward to obtain

Uj , j = 3, . . . , N . Similarly, to construct the approximation to V (x; k) we obtain VN−1

from (44) and then use the expression for Vj−1, obtained from (39) to back-propagate

the solution obtaining Vj for j = N − 2, . . . , 1.

Finally, we require a discretized version of the Wronskian, W (k). The discrete Wron-

skian is given by:

W(k) = σj+ 1
2

»
Uj(k)(Vj+1(k)− Vj(k))− Vj(k)(Uj+1(k)− Uj(k))

∆x

–
, (47)

which is independent of j.

Scattering resonance frequencies of our discrete approximation, (39), (43), (45) are

values of k for which the discrete Wronskian is zero,

W(k) = 0. (48)

In this implementation, the numerical scheme for finding a scattering resonance of a

fixed structure, (σ(x), n(x)), starts with an approximate scattering resonance kres,0

(an approximate root of (48)) and improves it by Newton iteration:

kres,r+1 = kres,r − W(kres,r)

∂kW(kres,r)
, r = 0, 1, . . . (49)
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Remark 41. There are serious issues of instability in searching for approximate ze-

ros of W (k) by seeking zeros of the discrete Wronskian, W(k), constructed from the

numerical approximations Uj and Vj . Though in theory a constant in j, the numer-

ically computed Wronskian, Wcomputed(k; yj) oscillates with j due to roundoff er-

ror. This can be overcome by applying Newton’s method to an averaged Wronskian:

W(k) = N−1 PN
j=1 Wcomputed(k; yj).

5 Numerical results

We performed numerical gradient ascent for the three optimization problems Opt,

Optarea and Optmax. For all simulations we use the same initial truncated periodic

structure with a defect. Both methods, matching and finite difference, were used to solve

for and optimize scattering resonances, and gave consistent results. We performed our

most extensive investigations using the matching approach, due to its greater efficiency.

The initial structure we used is shown in figure 2: σ(x) is piecewise constant. There

is a central defect region of width 3∆ on which σ(x) = 1. Moving outward from the

defect, σ takes on the values σ = 2 (barriers) and σ = 1 on alternating intervals of

width ∆ = 0.0324. This particular example has 22 barriers.

We have chosen as initial resonance k0 = 60.8183630665 − 0.0163109133i for all three

optimization problems. The associated resonance mode is also plotted in figure 2. To

find this k0, an initial approximation is guessed from the value of k at which the

transmission diagram has a peak; see figure 6 - top. Starting with this real value of

k as an initial guess, Newton iteration was then used to find an accurate k0. For the

problems Opt and Optarea we kept the jump positions fixed during the optimization,

while for problem Optmax we also allowed the jump positions to vary.

5.1 Problem Opt

Gradient ascent was applied to the above structure and yielded a (local) optimal res-

onance kopt = 69.2633131254 − 0.0000004471i. The Q-factor is four orders of magni-

tude larger than that of the initial resonance. We stopped the ascent iteration with

‖∇Im kopt‖ = 4.17053 · 10−7.

In figure 3 the optimal structure and optimal resonance mode are plotted. The path

of the resonance during the optimization in the complex plane is also plotted in that

figure. Observe the smooth turning point, indicating ‖∇Re k(σtur)‖ = 0 for a particular

structure σtur visited during optimization.
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Fig. 2 The initial structure for all three scenarios. It consists of 22 barriers and a missing
barrier in the middle. The outgoing wave conditions are imposed on the left resp. right end of
the structure. Below is the resonance mode (modulus squared) of the chosen initial resonance.

5.2 Problem Optarea

Fixing the initial area of σ imposes an additional constraint. The optimal resonance

was found to be karea = 57.1639554364−0.0045894230i, whose Q-factor is only a single

order of magnitude larger than that of the initial structure. The structure and resonance

mode are plotted in figure 4. Comparing the path of the resonance in figure 4 with the

path in Problem Opt, one sees that the additional constraint strongly influences the

search directions of the ascent method.

5.3 Problem Optmax

Here we constrain the values of σ(x), to lie between upper and lower bounds:

1 = σmin ≤ σ ≤ σmax = 3.

In contrast to the previous simulations the jump positions can now also vary. The

optimal resonance was found to be kopt = 66.55233131−0.000071246i, whose Q-factor
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Fig. 3 Left: Optimal structure for Problem Opt together with optimized resonance mode.
The optimized mode is more concentrated within the defect than the initial mode. Right: The
path of the resonance during optimization.
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Fig. 4 Left: Optimal structure for Problem Optarea together with optimized resonance mode.
Right: The path of the resonance during optimization for scenario Optarea.

is three orders of magnitude larger than that of the initial structure. We stopped the

ascent iteration after the bounds for σ were reached and ‖∇xIm kopt‖ = 1.69 · 10−7.

We also ran the simulation with fixed jumps to compare the optimal structures and

resonances. For this case the optimal resonance was found to be kopt = 62.0211038345−
0.0002390987i.

In figure 6 the transmission diagram of the initial structure (top panel) together with

the optimized structure of Problem Optmax (bottom panel) is shown. As expected, the

peak corresponding to the optimized resonance kopt is much sharper than the peak

belonging to k0. The band-gap shifted during the optimization and the resonance peak

of the optimized structure is nearly in the middle of the band-gap.

We note that when allowing, in addition to the values of σ, the locations of possible

jumps, {xj}N−1
j=2 , to vary, that the optimal structure is found to be one whose parameter

values achieve the bounds σmin and σmax; see Figure 5. We have also observed, in our
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Fig. 5 Top left: Optimal structure for Problem Optmax together with optimized resonance
mode. Top right: The path of the resonance during optimization for problem Optmax. Bottom
left: Optimized structure with fixed jump positions. Bottom right: Path of the resonances
during optimization, solid line with varying jumps, scattered line with fixed jumps.

optimization, the emergence of structures, similar to Bragg resonators, whose intervals

of constant σ are multiples of one quarter of the wavelength in the local material. These

properties are currently under investigation.
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