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Abstract The increasing use of micro- and nano-scale components in optical, electrical
and mechanical systems makes the understanding of loss mechanisms and their quan-
tification issues of fundamental importance. In many situations performance-limiting
loss is due to scattering and radiation of waves into the surrounding structure. In this
paper we study the problem of systematically improving a structure by altering its
design so as to decrease the loss. We use sensitivity analysis and local gradient opti-
mization, applied to the scattering resonance problem, to reduce the loss within the
class of piecewise constant structures. For a class of optimization problems where the
material parameters are constrained by upper and lower bounds, it is observed that an
optimal structure is piecewise constant with values achieving the bounds.
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1 Introduction and outline

There is great current interest in the design of micro- and nano-structures in dielectric
materials for storage, channeling, amplification, compression, filtering or, in general, of
light pulses. Such structures have a broad range of applications from optical commu-
nication technologies to quantum information science. Energy loss is a performance-
limiting concern in the design of micro- and nano-scale components. Thus the ques-
tion of how to design such components with very low radiative loss is a fundamental
question. Periodic structures are important classes of structures [7]. In practice, these
photonic crystals are structures with piecewise constant material properties. The abil-
ity of these structures to influence light propagation is achieved through variation of
the period, the choice of material contrasts and through the introduction of defects.

We study the problem of scattering loss from a photonic crystal (PC) with defects, for
a class of one-dimensional wave equations:

n’(x) F(w,t) = Bao(2)dath(x,1) (1)

The functions n(z) and o(x) are strictly positive, assumed to be variable within some
compact set, contained in a bounded open interval, a < = < b, and constant outside
of it. Without loss of generality, we assume o(z) = n(z) = 1 for x < a and = > b.
This corresponds to a normalization of the wave speed ¢ = 1 in the uniform medium.
The region where these functions vary with x is also referred to as the cavity. Since the
wave equation (1) has real-valued and time-independent coefficients, it models a system
which conserves energy. Therefore, by cavity loss we mean scattering loss, that is loss
due to leakage of energy from the cavity. This is in contrast to loss due to processes
such as material absorption.

Energy leakage or scattering loss from the cavity is governed by the scattering reso-
nances associated with the cavity. Scattering resonances are solutions to the eigenvalue
equation satisfied by time-harmonic solutions of (1) subject to outgoing radiation con-
ditions, imposed outside the cavity:

The Scattering Resonance Problem (SRP): Seek non-trivial u(x; k), such that

Oro(2)0ru(z) + k* n’(z)u(z) =0, (2)
(Or +ik)u=0, z=a
(Or —ik)u=0, =0 3)

At a point, £, jump discontinuity of o(x) or n(x), equation (2) is interpreted via the
flux continuity relation, obtained by integration across the discontinuity:

o(EN)0zu(e™) = o(67)deu(¢), (4)
where F(¢T) = limg o F'(§ & 0). Corresponding to a solution, u(z,k) of SRP is an
outgoing time-dependent solution ¢ (z,t) = e~ “u(x; k), w = ck = k.

Remark 11. The above one-dimensional SRP governs scattering resonances of slab
type structures. It is a consequence of Mazwell’s equations, under the assumption of
time-harmonic solutions. Variation in n(z) with o constant corresponds to the case of
TM polarization; variation in o(x) with n constant corresponds to TE polarization.



SRP is a non-selfadjoint boundary value problem having a sequence of complex eigen-
values {k;} satisfying Imk; < 0, and corresponding resonance modes u(z; k;). The
modes u(z; kj) are locally square integrable but not square integrable over all space.
Assuming there are no bound states (non-decaying in time, L? states), the evolu-
tion of an arbitrary initial condition for (1) admits a resonance expansion in terms of
time-exponentially decaying states of the form e "%ty (z; k;), where u(-; k;) € L} . Tn
particular, for any A > 0 and compact set K, there exist ¢(A, K) > 0 and 7(A, K) > 0,
such that for any compactly supported smooth initial conditions u(z,0) and dru(x,0),
the solution u(z,t) satisfies:

u(x,t) — Z Cm e Ckmt u(z; km) = O(eiA(1+€)t), t>T;
{km:Imk,, >—A} L2(K)
(5)
see, for example, [16]. Therefore, the rate at which energy escapes from the cav-
ity, for example measured by the rate of decay of field energy within the cavity
( fcavm] |u(z, t)|2dx)7 is controlled by the resonance, k«, with largest imaginary part.
The time it takes for the energy, associated with a general initial condition, localized
in the defect, to radiate away is 7« = (¢[Imks|) 1. In practice, for example in ex-
periments, initial conditions can be quite spectrally concentrated, and therefore the
observed time-decay rate is determined by the imaginary parts of resonances whose
real parts lie near the spectral support of the initial condition.

Results such as the resonance expansion (5) imply that to understand the dynamics of
scattering loss, it suffices to consider the time-independent spectral problem SRP.

Our goal is to apply sensitivity analysis and local gradient optimization methods to the
scattering resonance problem in the class of piecewise constant structures, in order to
systematically decrease a cavity’s loss in a particular frequency range. Our measure of
cavity loss is the magnitude of the imaginary part of a scattering resonance.

More specifically, we proceed as follows. Starting with a particular scattering reso-
nance, k(og,np), of a piecewise constant structure og(z),ng(x), we deform the cav-
ity structure, (og,n9) — (01 = oo + do,n1 = ng + on), within the class of piece-
wise constant structures, so as to increase the imaginary part (decrease | Imk |), i.e.
Imk(o1,n1) > Imk(og,ng). That is, we increase the lifetime 7 of the mode. Here, do
and 0n are chosen in the direction of the gradient of Im k(cq, ng), with respect to the
design parameters, which is computed using sensitivity analysis. For each structure,
along the constructed sequence of improving structures, the associated scattering res-
onance is computed via Newton iteration. In some eigenvalue optimization problems,
complications arise when eigenvalues coelesce or have multi-dimensional eigenspaces.
Such complications cannot arise in our setting because, in one space dimension, our
eigenvalue problem (SRP) is easily seen to have simple eigenvalues.

Summary: We present a study of three classes of optimization problems for SRP
with o(z) the parameter to be optimized and n(z) = 1:

(i) Opt, in which o is piecewise constant but unconstrained,

(ii) Optarea, in which o is piecewise constant with fixed ff o(s)ds, and



(iii) Optmaz, in which o is piecewise constant and upper and lower bounds 1 = g5, <
o(z) < omaz. Our structures lie in X'y, the set of piecewise constant structures [a, b],
with at most N jump discontinuities. We first explore all three classes of problems
fixing, throughout the optimization, the intervals on which o is constant,. Then, for
Optmaz, we relax this constraint and allow both the N values of o and the N —2 points
of discontinuity to be varied during the optimization. In the latter case, we find (when
N is taken large enough) that the optimal structure is one where o takes on the value
Omin OF Omaz ON each subinterval.

Gradient methods have also been applied to achieve better confinement, as measured
by, for example, mode-variance [4] and energy flux [10]. The objective function one
chooses to maximize is often called the Q— factor or quality factor. In this paper, we
apply gradient methods to the more natural measure of confinement, Q = | Imk |71,
the reciprocal imaginary part of the resonance. Kao and Santosa [8] recently used
discretization of an integral equation (in one and two space dimensions) and gradi-
ent methods to increase a slightly different quality factor, namely the ratio of real to
imaginary parts of k. (This measures the loss per cycle of the resonance, viewed an
oscillator.) Other, less systematic approaches have been used in the physics literature.
One such approach proceeds by first (i) specifying a proposed cavity mode profile,
engineered to minimize a physically motivated cost functional, then (ii) using the dif-
ferential equation to solve for the dielectric function (a coefficient in the equation)
in terms of the specified mode [6]. Optimally localizing the eigenmodes of an inho-
mogeneous membrane, a self-adjoint analogue of our problem, has been studied in [4].
Another class of self-adjoint problems is the maximization of photonic band gap widths
[1,2,11,12,15]. We also note that the optimization problems we consider can be viewed
in the context of the large class of shape optimization problems associated with elliptic
partial differential equations [13].

Finally, we remark that resonances are unforced or free modes of a leaky cavity. They
can be excited via scattering experiments, in which waves are incident on the cavity
from outside. In our simple one-dimensional setting, part of the energy is reflected and
part is transmitted. No energy is trapped because the structure has no bound states
and, since the medium is conservative, there is no loss to material absorbtion. Reso-
nances appear as peaks in the transmission coefficient as a function of wavelength, in
wavelength ranges where the transmission is typically low. The real part of a scattering
resonance energy corresponds to the location of the transmission peak and the imagi-
nary part, to the transmission peak width [14]. Thus, our optimization corresponds to
the sharpening of a transmission peak, by modification of the cavity.

1.1 General remarks on periodic or truncated periodic structures, and defects

The above remarks are general, applying to any structure which does not have non-
decaying (with time) L? bound states. We now discuss the class of structures which
motivate this study. Waves in periodic structures, e.g. electromagnetic, acoustic or
elastic are governed by a wave equation with periodic coefficients. These equations have
plane wave type states, parametrized by a continuous spectrum equal to the union of



closed intervals called bands (photonic pass-bands). The complement of the spectrum
(on the real axis) consists of the union of open intervals called gaps (photonic band-
gaps). Arbitrary spatially localized states can be represented as a generalized Fourier
superposition of such states. Furthermore, solutions to the initial value problem for the
time-dependent wave equation in a periodic structure, disperse to zero with advancing
time [9,3].

A localized defect in a periodic structure gives rise to discrete eigenvalues in the gaps
[5]. Thus, a periodic structure with a spatially localized defect may support local-
ized time-periodic (non-decaying) states. In applications, photonic structures are often
truncations of periodic structures with defects; see Figure 2, where outside a compact
set these structures have constant physical parameters. This finite structure no longer
has localized eigenstates. Its spectrum is continuous and, as in the case of the spatially
homogeneous wave equation or in the wave equation with globally periodic coefficients,
solutions tend to zero as t — oo locally on any compact set. As explained in the in-
troduction, the manner in which the local energy tends to zero is controlled by the
resonance expansion. Note that as the truncation is removed, certain scattering reso-
nance frequencies, associated with defect eigenstates of the infinite structure, approach
eigenvalues on the real axis, and become infinitely long lived (non-decaying) states.

1.2 Outline

The article is structured as follows. In section 2 we define Xy, the class of admissible
piecewise constant structures, with at most N jump discontinuities in o(x) and n(z).
Section 3 concerns sensitivity analysis, the computation of variations in a scattering
resonance with respect to changes in the design parameters. Section 4 describes two
approaches to the computation of scattering resonances: one based on use of the exact
solution in each interval where the material properties are constant, the other based
on finite differences. Section 5 contains a discussion of numerical optimization results
for the three classes of problems discussed above.

2 Admissible piecewise constant structures: The class X'

We shall investigate the scattering resonance problem for a class of piecewise constant
structures, which we denote by Xpn. A schematic diagram of a typical structure is
presented in figure 1. The set X'y consists of piecewise constant structures, (o(z),n(z)),
which for j = 2,..., N, take on the values (0j,n;) on the intervals (z;_1,z;). The
endpoints 1 = a and zy = b are fixed as are the values o(x) = 01 = ony41 =1 and
n(z) =ny =ny41 =1, for r < a and z > b.

711:1 : $<$1:a
n(z) = n; Doy <a<zj,j=2,...,N. (6)
nyy1=1 : b=zny <z
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Fig. 1 The functions o(x) and n(x) are step functions. They are assumed to have the value 1
to the left and right of the photonic crystal. The jump discontinuities of o(x) and n(z) occur
at the points x;.

o =1 x<a
o(z) = oj Doaj <z<azj,j=2,...,N . (7)
oN+1=1 : b<=x

Thus, a structure (o(z),n(z)) € Xy is a pair of piecewise constant functions deter-
mined by 3N — 4 parameters:

N — 2 interior points of discontinuity: xo,...,xNy_1 and
2(N—1) values: 0 and n; of o(x) and n(z), respectively, on the intervals (z;_1,x;), j =
2,....N.

For simplicity, we restrict to structures at which the set of possible points of disconti-
nuity of o(x) and n(z) is the same. Our study can easily be extended to more general
structures.

3 Local optimization and sensitivity analysis

As noted in the introduction, |Im kresrl, (Im kres < 0) is a measure of the decay rate
of the mode or life-time of the mode, u(z;kres).

Optimization problem:

Deform the structure, defined by (o(x),n(z)), so as to mazimize Im kres.
In fact, we shall consider several optimization problems:

(i) Opt: maximize Im kres over structures (o, n), defined on [a, b], with o(z) = n(z) =1
for z & [a, b].

(ii) Optareqa: maximize Im kres over structures (o,n), defined on [a,b], with o(z) =
n(z) =1 for z ¢ [a,b] and ff o(y)dy fixed.



(iii) Optmaz: maximize Im kres over structures (o,n), defined on [a,b], with o(z) =
n(z) =1 for = & [a, b], such that oy < 0(2) < omaz and Ny < 1) < Nmaz.

The direction of steepest ascent of the functional (o,n) — Im kres(o,n), is in the direc-
tion of the gradient, or in the case of constrained optimization, a projected gradient.
Hence, we seek expressions for the gradients of kres(o,n) with respect to the “design

parameters” o(z) and n(z): ‘”3% and 613;;5 , where the total variation of kyes is given

by:
[/ Okres Okres
ok = < o 5U> + < 5 5n>. (8)

The computation of such gradients is also called sensitivity analysis. We first imple-
ment sensitivity analysis in the setting of general structures, and then specialize to the
discrete setting associated with the class, X', of piecewise constant structures.

3.1 Sensitivity analysis - general setting

To avoid cumbersome notation, where it causes no confusion, we shall denote a reso-
nance, kres, simply by k. Also, when studying dkres/00, we suppress the dependence
of kres on n(x), and similarly we suppress the dependence on o(x), when we study
Okres/on.

Computation of dkres/do: Denote by og an initial structure and k(og), one of its
scattering resonance frequencies. Suppose we make a small perturbation in o, with
n(z) = no(x) fixed:

oo(z) — oo(z) + do(z). 9)

To compute 0kres/do, we expand the scattering resonance for the structure og + do
about the scattering resonance for the structure, og:

o = o9 + do
u(z;o0) = wup(x) + du
k(o) = k(og) + 0k (10)
Substitution of (10) into the Helmholtz equation, (2), and the outgoing boundary

conditions (3), and keeping only linear terms in the increments do, du and ok, we
obtain the system:

0x000z0u + ngkz(ao) du = —0z 60 Oz ug — 2k(og) ok n3 ug, (11)
(Ox + tk(0g)) du = —idkug, T=a (12)
(0x — ik(og)) du = +i 6k ug, x =0. (13)

An expression for 0k can be found by deriving the compatibility equation for the system
(11-13). To derive the compatibility condition, multiply (11) by ug, integrate by parts

L We define (f,g) = f: f(z)g(z)dz.



and use (i) the equation for ug, (2), (ii) the boundary conditions for ug and du, (iii)
that o(a) = o(b) = 1 and (iv) that do(a) = do(b) = 0 . This yields

b (Dwug(x))*
Sk — do(z) de, (14)
/a [Qk(ao) Sy ndud + i[u (b) + ud ()]
whence
2
g_(/:(o_o) _ (Ozuo(z)) . (15)

2k(00) [ n2u + i[u3 (b) + u3(a)]

We are interested in increasing the value of Im k(o) (decreasing [Imk(o)|). Note that,
to first order in do,

S[k(0)] = Imk(oo) + <%[§—§(UO)} 0 > (16)

Thus a small perturbation, do of og, will increase the value of Imk most rapidly,
provided we choose do to be in the direction of steepest ascent:

N (Orug (@)’
b0 = Lgo> @J. (7)

=9
] [ 2k(09) ff n3ud + i[u(b) + ud

Computation of §k/dn: We now consider variations in k due to changes in n(z), with
o = op(x) fixed. To compute dk/dn, we expand

n(z) = no(z) + on(x)
ug(z) + du(x)
k(n) = k(ng) + k. (18)

2
=
B
3
=
I

Proceeding in a manner analogous to the above computation, we obtain

b —2k*(no) no () ug(x)
Sk — on(z) dx. (19)
/a [Qk(no) [P n2u2 + ifud(b) + u(a)]
Therefore
By 2K (n0) nole) ud)
on mo) =

2k(no) [ ndud + ifud(b) + u3(a)]

and the direction of steepest ascent for dn is given by

on 2h(no) 7 ngud + ifud (b) + ud(a)]



3.2 Sensitivity analysis and gradient ascent in X'

In this subsection we restrict the results of the previous section on 6k/dc and dk/on
to structures (o,n) in the class Xy.

As introduced in section 2, the structure of a given photonic crystal structure is specified
by 3N — 4 “design” parameters:

t=(xg,...,zNy_1) possible points of discontinuity of o(z),n(zx)
s = (02,...,0y) values of o(z) on interval (z;_1,z;),
n=(ng,...,ny) values of n(x) on interval (z;_1,z;).

Given a resonance, koiq = k(oidsSold, Noid), associated with a structure defined by
(t,8,0)01d = (Yold, Solds Mold), We obtain an improved structure by deforming the ini-
tial structure in the direction of the gradient of the objective functional evaluated at
Imkyg = Imk(to1ds Soid, Noid)- Thus, we obtain a new or updated structure as follows:

(F757 n)update = (Fvgvn)old +e- (v Im k)old
(£,5,0)otq + € - (Ve Imk, Vs Tmk, Vi Imk),,, .

Here, we use the notation Vk to denote the gradient with respect to all parameters:
1,s,n, and Vi k, Vs k, Vi k to denote gradients with respect to the specified param-
eters. Equivalently and explicitly,

0 d
Inew = Ytold+ €- 20 Do T Imk
T2 ITN-1 (xold,SotdsNold)
0 0
Snew :501d+€‘<8—,...,8—)1mk
o2 ON (xold,SotdsNold)
0 0
NMnew = ﬂold+5'(a—,...,a—) Imk (20)
n2 nN (roldsSotdsMotd)

We discuss the choice of ¢ later in this section.

The following Proposition gives expressions for the partial derivatives of a scattering
resonance k(r,s,n), with respect to the design parameters:

Proposition 1 In the above notation, we have the following equations for the partial
derivatives of k(g,s,n) with respect to the design parameters:

(1) Variations in k with respect to the jump locations, ¥ = (x2,...,oN_1), for j =
2,...,N —1, are given by

Ok(r,s,n) (0j —0j41) 8xu(x;)8xu(x;r) + (n?Jrl — n?) k2 (x,s,n) uQ(xj,;,s,n)
837' B b 9
! i (u2(a,3,5,1) + u2(b,r,5,1)) + 2k(r, 5,0) [ n2(z, 1,5, 0)u2(z,1,5,0)dz

" (21)
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(2) Variations in k with respect to s = (o2,...,0N) satisfy, for j =2,... N,

z
[ (Ozu(a’sx,5,n))? da’
Ok(x,s,n) T
aO'j - b ’
i(u?(a,1,5,0) +u?(b,1,5,0)) + 2k(x, 5,n) [ n?(z,1,5,n)u(z,1,5,n)de
a
(22)
(3) Variations in k with respect to n = (na,...,ny), forj=2,...,N are given by:
7
*2]‘52(%5’“) f nj axasan)d‘r/
Ok(x,s,n) _ L
on; -

MWW%mM+W&me+%ﬁﬁﬂfﬁw%mMW@%&wm
a
(23)

Proof : To prove (22) and (23) we can apply the formulas from section 3.1 with specially
chosen perturbations of (g, ng). The of (21) requires some more care because o(z) and
Ozu(x) are possibly discontinuous at z = ;.

Choose a' < a and b’ > b. Multiply equation (2) by u, integrate over [a’,’], and then
integrate by parts. Then, gives

udpull —/ (8pu)? /kQ 22 = (24)

The dependence of the terms in this equation on the design parameter z;, has been
suppressed. Denote by Z the derivative of a function z with respect to ;. We write the
integrals in (24) as the sum of integrals over [a’, ;) and (z;,b']. Note that & = 0,2 =0
for x # z;. Differentiation of (24) with respect to z; yields:
xj b/
9 (ug ul%) = |2 [ 00wudeti+2 | 08sudui + 0 (Brulz;))? — oj41(Beulzl))?
axj xU|q U0z U0z 7 \Vz 7 7j+1\Vz j
a’ Zj
b/
2/(kkn2u2 + k*n? ut) + k> n] (mj)2 — an?_,_lu(mj)Q =0.
a/

After a second integration by parts and using equation (2) we find

b’

9 (uc?zu|2//) — 2u03mu|2// + 2/kkn2u2
ij
a/
2 —\\2 2, 2 2 2 2 2
= 0j41(0u(x)))” = 0j(Oeu(z; ) + k*nju(z))? — k*nju(z;)?,
where we used the flux condition (4) at z;. Remembering o(a’) = o(b) = 1, the

outgoing boundary conditions (3) and the derivative of the boundary conditions, the
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above equation simplifies to
bl
il.f(uQ((JL')—i—uQ(b/))—&—Q/Icl.cnzu2 = (0;—0j41) 8xu(xj_)8xu(x;_)—|—k2n?+1u(xj)Q—an?u(xj)Q,
al

where we use the identity
aj_,_l(axu(x;r))Q — 0 (8mu(m;))2 = (aj+1c’)zu(m;r) - ch’)mu(m;)) (&gu(x;r) + axu(x;))

= oby (4)
+ (05 = 0j11) Owula; )Ozula)). (25)

Finally we note using the explicit exponential form of u on [a’,a] and [b, '], that the
equation (25) is independent of a’ < a and b’ > b. Letting a’ 1 @ and b’ | b, we yields
the expression in (21).

For expressions (22) and (23) we begin by computing, for structures in X, variations
of a resonance with respect to the design parameters g, s, n.

Let og(z),no(x) denote a structure in Xn. Admissible perturbations of (g, ng) are
achieved through variations of the values of o, 5, and n, n, on each subinterval. (§o, on),
the total variations of the coefficient functions, o and n, due to these two kinds of
variations, can therefore be expressed as:

ol oo
Jj=2
N

on
k=j

The terms on the right hand side of (26,27) are computed as follows. Note that general
variation of (&,n), within Xy, is of the form:

where [, ) () denotes the characteristic function of the interval [a, b]. Thus,

oo d

gj “boj = a o (05 + 1003) X(z,_1 2] = Xzj_1,2,] " 005 (28)
on

Wj . 5nj = @ o (’I”Lj -+ /L5nj) X[ijl,zj] = X[ijl,zj] . 5”3‘- (29)

To prove (22) and (23), for each fixed j € {2,...,N — 1}, consider the perturbation
0; — 0 + 0o respectively n; — n; + dn;, with other parameters held unchanged.
Then, by (26), (27), (28) and (29) we have

00 = X[z;_1,2;]0 O = X[a;_1,a;)
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Substitution into (14) and (19) yields the expression (21) for 0k/0c; and 0k/0n;.

3.3 Gradient ascent algorithm in X'

Using Proposition 1, we can now compute an updated structure and approzimate cor-
responding resonance from the old structure:

(I757 n)update = (I757 n)old +¢e-Im Vkgyq (30)
kapprox,update = kold +e- ( Vk"oldv Im vkold ) 5 (31)

see (20).
The parameter, ¢, is carefully chosen so to ensure convergence of the Newton method

resonance finder with kqppr0z update @8 initial guess; see subsection 4.2. To achieve this
we control the relative distance:

p=

kapprox,update -k
A .

If p is fixed as control parameter for the step length, then one finds

k
E_p“(wg,lmw)"

Algorithm 1 (Steepest Ascent).

Input: ko start guess, (r,s,n)o start structure, p control parameter, eps accuracy for
Newton’s method, M number of steepest descent steps.
Output: (r,s,n)opt optimized structure, kopt optimized resonance.

1 kopt «+— result of Newton’s method with accuracy eps and initial guess
k = ko for the initial structure (r,s,n)o.

2 For count =1,..., M
Let e —p- m , where VEo,pt is computed by Proposition
(1) with Eopt

4 kapprox,update — kopt +e- (Vk'opt7 Im vkoz!)t)

5 (r,8,M)opt «— (r,8,M)opt + € -Im Vkopt

6 kopt «+— result of Newton’s method with accuracy eps and initial guess
Eapproz,update for the structure (¢, s,n)opt.

7 end for

4 Numerical computation of scattering resonances

In this section we focus on the numerical determination of scattering resonances of
structures in the class Y. Then, we outline a gradient ascent method, which finds
locally optimal structures of class X' . For our numerical ascent scheme we need three
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different ingredients. First, we need a discretization of the scattering resonance problem
(SRP) (2, 3). Second we need a numerical routine to solve the discretized problem. The
starting point for this latter step is typically an approximate solution of the discretized
problem and a routine that corrects this guess. Finally, we perform a gradient ascent
step, which provides an approximate improved structure.

We will present two different ways for the discretization of (2). The first approach (see
section 4.1) exploits the property of piecewise constant one-dimensional structures,
that the equation is exactly solvable on each subinterval. The solution is determined
by matching conditions for the functions and fluxes at the subinterval endpoints. The
second approach (see section 4.3) uses a finite difference discretization for (2). The
corrector routine for both methods is a Newton root finder (section 4.2), which is
adapted for the particular discretization. The gradient ascent step is the same for both
methods and is based on Proposition 1.

4.1 Matching method

We introduce the following simplifying notation:

Mo i=1, . N+1 (32)
rj=——, j=1,..., .
VO
The solution of (2) is given by
cre kT z<a
u(x) = CQje“"j“kx + cszrle_“"j“m owj<z<zjp1,5=1,...,N—-1, (33)
cone’r® D b<zx
where the complex coefficients cj,...,con are determined from the conditions that

u(z) be continuous on R and such, that the flux continuity relations (4) are satisfied
at the jump locations, x;.

Writing down these matching conditions gives the following set of equations
at xq:
cle—ikxl — CQeirgkxl + cge—irgkxl

ikx1

—Cle_ — 7’2 (CQezrgkxl _ CBe—l'r‘Qkal)

)

at xj for j=2,...,N -1

C2j72ezrjkxj + C2j716—7/7'jk’<7:j — CQjezrj+1k:cj + 02j+16—m"j+1kgcj

irjkx; —irjkx; irjy1kT; —irjyi1ka;
7”]‘((32]'726 I —cgj1e Y J) Z"'jJrl(CZje JH1EE —C2j41€ irt J),
at TN
CQN QeiT'kaN +02N 1e—i'r‘Nk2':N — CQNeikxN
iT‘Nk:CN —i?"kaN ik‘xz\]
TN (can—2e —can-1€ ) =cane .
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This is a linear system of 2/N equations of the form
A(k)e = 0.

The matrix A(k) € C2N*2N depends nonlinearly on the wavenumber k and has a
narrow band structure, which will be exploited in the numerical scheme. The mode
u(x) is recovered from k and the amplitude vector c.

To impose that the solution we find is nontrivial, we impose a normalization condition
on the vector ¢, e.g. one can set the amplitude ¢y of the scattered part at the left end
to 1. Thus, one arrives at the following nonlinear discretized problem:

A(k)-c
F(k,c) = =0. 4
(o= (0 7) =0 (34)
This is a system of 2N + 1 nonlinear equations in the 2N 4+ 1 unknowns k, c1,...,conN.

Of course, one could reduce this system by one dimension by eliminating the fixed c¢;
but for notational ease, equation (34) will be used in the following.

Equation (34) can be solved by any kind of nonlinear solver. We use Newton’s method,
which is outlined in the next subsection.

4.2 Newton’s method

For a given structure in X, with resonance energy k£ and mode amplitude vector c,
we typically have an approximate or guessed resonance kY and amplitude vector AL It
(K%, ) — (k, c) | is sufficiently small, then Newton’s method applied to equation (34)
guarantees convergence. With a good initial guess Newton’s method converges quadrat-
ically and few iteration steps are necessary. Moreover, the error in the computation of
k and ¢ (and thus of u(z)) can be estimated by Newton’s method.

Newton iteration, applied to equation (34), reads

R AR o
DF0.9) (a1 ) =P,

where ,
DF(k,c) = <‘t(1Tk) A g")c)

is the Jacobian of F'(k,c). Written out, this equation yields
ARNIT 4 (9T — k) A () =0
el dth =1,
which is formulated in the Newton step
ARy H = A (R
. Jj+1
Y
(NA) dH = L
e{yﬂ"rl
1

R
e,{y]"rl
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Remarks:

— The matrices A(k) and A’(k) are explicitly known and their computation can easily
be implemented.

— Since A(k) is sparse, one can find /T efficiently.

— The matices A(k) and A’(k) can be stored with O(8N) memory.

4.3 Finite difference discretization of resonance problem

In this subsection, we present a second approach to computation of scattering reso-
nances, based on a finite difference solution of the scattering resonance problem. For
simplicity, we take n(x) = 1; the required modifications for general n(z) are straight-
forward.

Let U(x; k) and V (z; k) denote solutions of (2) which are outgoing at = a, respectively
T =b:

Oz +ik)U(x;k) | ,—q =0, Ulask)=1 (35)
(O —ik) V(@ k)| ,_p =0, V(bk)=1. (36)

For typical values of k, U(x; k) and V(z; k) are linearly independent. Let W (k) denote
the Wronskian of U and V:

W(k) = V(z;k)o(z)0:U(z; k) — Ul(w;k)o(x)0V (z; k). (37)

W (k) is independent of z. U and V are linearly dependent if and only if W (k) = 0.
In this case, U and V are proportional. Thus, if W (k«) = 0, then U(z;k) is outgoing
at © = a and x = b and the pair (U(x; k«), k«) is a scattering resonance. As remarked
in the introduction, scattering resonance energies (zeros of W (k)) are in the lower half
plane, Imk < 0.

We now turn to a finite difference implementation. Partition [a, b] into N intervals of
length Az = (b — a)/N. We introduce a scheme for approximating u(z) at discrete
grid-points

uj = u(y])’ y_] = (j - I)Ax7 .7 = 17 tt '7N' (38)

We use the symmetric discretization of (2) is

O']»Jr%(u]'_i_l 7Uj) a];%(uj 7Uj_1)

e - a2 + K u; =0 (39)

where y; = a+ (j — 1)Az. This discretization respects the continuity of flux condition
(4). The points of discontinuity of o(x) are chosen to be grid points. The scheme uses
values of o at staggered points Yirls where o(y; + %) =01

We shall use the scheme (39) to construct out fundamental set {U(z;k), V (z;k)}. To
do so, we require appropriate discretizations of the outgoing conditions (35) and (36).
These discrete outgoing conditions at x = a and x = b are derived as follows.
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At the ends of the domain, the equation becomes
Uj+1 — 2u5 + Ui
(Az)?

+ k2

Uj =0. (40)

This constant coefficient difference equation has, for kAx sufficiently small, oscillatory
exponential solutions 4 4

u=Ag + B¢, (41)
where ¢ is the root of the quadratic equation 2% — (2 — (kAz)?)z +1 = 0 corresponding
to the choice of positive square root:

(2 — (kAZ)?) +i/4 — (2 — (kAz)?)2
5 .

The discrete solution u; is outgoing to the right provided B = 0 . Therefore the discrete
boundary condition for a solution which is outgoing to the right t =z = b is

¢ = (42)

Vigr = €V, j=N-1. (43)

We also have from (36) the normalization Vv = 1, which together with (43) gives
—1
VNo1=¢ . (44)
Analogously, the discrete outgoing to the left condition at z = a is
1 .

Uj = & Uj—y, j=2, (45)

which together with the normalization from (35), Uy = 1, gives

Up=¢". (46)

To construct the approximation to U(z;k), we obtain Us from (46), and use the
expression for Uji; obtained from (39) to propagate this value forward to obtain
Uj, j =3,...,N. Similarly, to construct the approximation to V(z; k) we obtain Viy_
from (44) and then use the expression for V;_1, obtained from (39) to back-propagate
the solution obtaining V; for j = N —2,... 1.

Finally, we require a discretized version of the Wronskian, W (k). The discrete Wron-
skian is given by:

Uj (k) (Vig1(k) = Vi(k)) = Vi(k)(Uj1 (k) — U;(k))
Jjts Az ’

(47)
which is independent of j.

Scattering resonance frequencies of our discrete approximation, (39), (43), (45) are
values of k£ for which the discrete Wronskian is zero,

W(k) = 0. (48)

In this implementation, the numerical scheme for finding a scattering resonance of a
fixed structure, (o(x),n(z)), starts with an approximate scattering resonance kyes,o
(an approximate root of (48)) and improves it by Newton iteration:

W(]fres,r)

k =k - =0,1,... 49
res,r+1 res,r 8kW(kres,r)7 r s Ly ( )
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Remark 41. There are serious issues of instability in searching for approximate ze-
ros of W (k) by seeking zeros of the discrete Wronskian, W(k), constructed from the
numerical approrimations U; and Vj. Though in theory a constant in j, the numer-
tcally computed Wronskian, Wcomputed(k;yj) oscillates with j due to roundoff er-

ror. This can be overcome by applying Newton’s method to an averaged Wronskian:
W(k) — N71 Zj\;l Wcomputed(k;yj).

5 Numerical results

We performed numerical gradient ascent for the three optimization problems Opt,
Optarea and Optmaz. For all simulations we use the same initial truncated periodic
structure with a defect. Both methods, matching and finite difference, were used to solve
for and optimize scattering resonances, and gave consistent results. We performed our
most extensive investigations using the matching approach, due to its greater efficiency.

The initial structure we used is shown in figure 2: o(z) is piecewise constant. There
is a central defect region of width 3A on which o(z) = 1. Moving outward from the
defect, o takes on the values o = 2 (barriers) and ¢ = 1 on alternating intervals of
width A = 0.0324. This particular example has 22 barriers.

We have chosen as initial resonance ky = 60.8183630665 — 0.0163109133¢ for all three
optimization problems. The associated resonance mode is also plotted in figure 2. To
find this kg, an initial approximation is guessed from the value of k£ at which the
transmission diagram has a peak; see figure 6 - top. Starting with this real value of
k as an initial guess, Newton iteration was then used to find an accurate kg. For the
problems Opt and Optareq we kept the jump positions fixed during the optimization,
while for problem Optmaz we also allowed the jump positions to vary.

5.1 Problem Opt

Gradient ascent was applied to the above structure and yielded a (local) optimal res-
onance kopt = 69.2633131254 — 0.0000004471¢. The @Q-factor is four orders of magni-
tude larger than that of the initial resonance. We stopped the ascent iteration with
[ VIm kopt || = 4.17053 - 107"

In figure 3 the optimal structure and optimal resonance mode are plotted. The path
of the resonance during the optimization in the complex plane is also plotted in that
figure. Observe the smooth turning point, indicating || VRe k(o¢ur)|| = O for a particular
structure oy, visited during optimization.
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Fig. 2 The initial structure for all three scenarios. It consists of 22 barriers and a missing
barrier in the middle. The outgoing wave conditions are imposed on the left resp. right end of
the structure. Below is the resonance mode (modulus squared) of the chosen initial resonance.

5.2 Problem Optarea

Fixing the initial area of o imposes an additional constraint. The optimal resonance
was found to be kgreqa = 57.1639554364 —0.00458942307, whose Q-factor is only a single
order of magnitude larger than that of the initial structure. The structure and resonance
mode are plotted in figure 4. Comparing the path of the resonance in figure 4 with the
path in Problem Opt, one sees that the additional constraint strongly influences the
search directions of the ascent method.

5.3 Problem Optmaz

Here we constrain the values of o(z), to lie between upper and lower bounds:
1=o0omin <0 < omaz = 3.

In contrast to the previous simulations the jump positions can now also vary. The
optimal resonance was found to be kopt = 66.55233131 — 0.000071246¢, whose Q-factor
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Fig. 3 Left: Optimal structure for Problem Opt together with optimized resonance mode.
The optimized mode is more concentrated within the defect than the initial mode. Right: The
path of the resonance during optimization.
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Fig. 4 Left: Optimal structure for Problem Optqreq together with optimized resonance mode.
Right: The path of the resonance during optimization for scenario Optgrea-

is three orders of magnitude larger than that of the initial structure. We stopped the
ascent iteration after the bounds for o were reached and ||V¢Im kopt | = 1.69 - 107"

We also ran the simulation with fixed jumps to compare the optimal structures and
resonances. For this case the optimal resonance was found to be kopr = 62.0211038345—
0.0002390987i.

In figure 6 the transmission diagram of the initial structure (top panel) together with
the optimized structure of Problem Optmaz (bottom panel) is shown. As expected, the
peak corresponding to the optimized resonance kop¢ is much sharper than the peak
belonging to kg. The band-gap shifted during the optimization and the resonance peak
of the optimized structure is nearly in the middle of the band-gap.

We note that when allowing, in addition to the values of o, the locations of possible
jumps, {z; }§V=_21, to vary, that the optimal structure is found to be one whose parameter
values achieve the bounds 7,5, and omaz; see Figure 5. We have also observed, in our
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Fig. 5 Top left: Optimal structure for Problem Optmqas together with optimized resonance
mode. Top right: The path of the resonance during optimization for problem Optyqq. Bottom

left:

Optimized structure with fixed jump positions. Bottom right: Path of the resonances

during optimization, solid line with varying jumps, scattered line with fixed jumps.

optimization, the emergence of structures, similar to Bragg resonators, whose intervals
of constant o are multiples of one quarter of the wavelength in the local material. These
properties are currently under investigation.
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