

Non-uniform (zig-zag) microstructures mixing two variants of martensite

Robert V. Kohn
Courant Institute, NYU

Carnegie Mellon University
March 2019

Talk plan

Zig-zag microstructures (alternatively: tilted twin boundaries) as a consequence of elastic energy minimization in the presence of stress. Two distinct stories, sharing certain features:

(1) A scalar model – work with Alex Misiats and Stefan Müller

- Stress-free twins must be parallel. What if applied fields or bdry conds require vol fraction to vary?
- Energy scaling laws are nice, but we would like to understand the pattern itself.

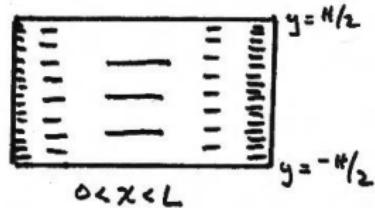
(2) A linear elastic model – work with Alex Misiats

- Motivated by experiments of Chopra, Bailly, Wuttig (1996)
- Cleaner than (1) wrt link to experiments; but “just” the energy scaling law.

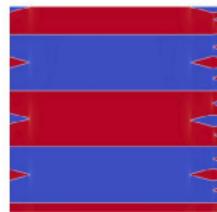
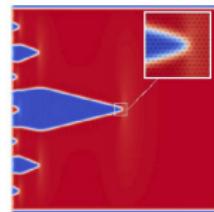
A scalar model

Recall K-M problem from the early 90's:

$$\min_{\substack{u=0 \text{ at } x=0, L \\ u_y = \pm 1}} \int_{\substack{0 < x < L \\ -H/2 < y < H/2}} u_x^2 + \varepsilon |u_{yy}|$$



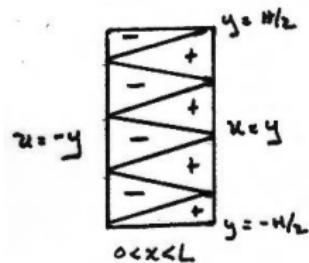
- min value $\sim \varepsilon^{2/3} L^{1/3} H$
- energy in $0 < x < \rho$ is $\varepsilon^{2/3} \rho^{1/3} H$
- Conti (2000): refinement at edges is (roughly speaking) self-similar
- Dondl, Heeren, Rumpf (2016): careful numerics using $u_x^2 + (u_y^2 - 1)^2 + \varepsilon^2 u_{yy}^2$.



Zig-zag microstructure

By changing the left and right boundary conditions, we can make the volume fraction of each phase vary with x

$$\min_{\substack{u=-y \text{ at } x=0 \\ u=y \text{ at } x=L \\ u_y = \pm 1}} \int_{\substack{0 < x < L \\ -H/2 < y < H/2}} u_x^2 + \varepsilon |u_{yy}|$$



Physical interpretation: stress may favor one phase over the other, eg

$$\min_{u_y = \pm 1} \int u_x^2 - (x - x_0) u_y + \varepsilon |u_{yy}|$$

$$u_y = -1 \quad \left| \quad \text{MIXTURE} \quad \text{(ZIG-ZAG?)} \quad \right| \quad u_y = 1$$

Not limited to martensite

Essential character: energy minimization requires laminated microstructure, but vol fractions must vary along the layers.

Classic example from optimal design: arrange two conducting materials in $\Omega \subset R^2$ (fixed area fractions). Heat uniformly, holding temp=0 at boundary. What arrangement minimizes the avg temp?

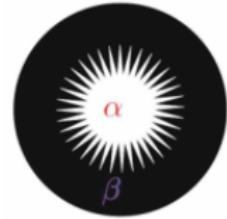
Mathematically: Let $-\nabla \cdot (A(x)\nabla u) = 1$ in Ω , where $A(x) = \alpha$ or β , with $\alpha < \beta$. What arrangement solves

$$\min_{\text{arrangements}} \int_{\Omega} u(x) dx + \ell (\text{Area where } A(x) = \beta) ?$$

$0 < r < R_0$: material α ,

$R_1 < r < 1$: material β , with $R_1 = 2\beta \sqrt{\frac{l}{\beta - \alpha}}$

$R_0 < r < R_1$: fine mixture of α and β

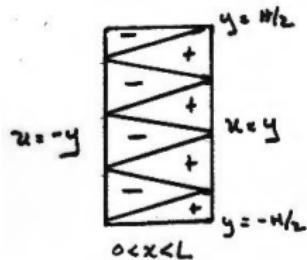


(Figure credit: F. Jouve, Structural shape and topology optimization, in a 2014 CISM volume ed by Rozvany and Lewinski).

Returning to martensite

The scalar model of twinning is perhaps the simplest problem of this type. So let's focus on it.

$$\min_{\substack{u = -y \text{ at } x=0 \\ u = y \text{ at } x=L \\ u_y = \pm 1}} \int_{\substack{0 < x < L \\ -H/2 < y < H/2}} u_x^2 + \varepsilon |u_{yy}|$$



Easy results

(1) As $\varepsilon \rightarrow 0$, minimizer u_ε tends to soln of **relaxed problem**

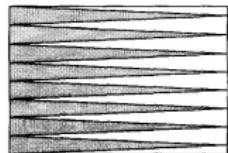
$$\min_{\substack{u=-y \text{ at } x=0 \\ u=y \text{ at } x=L \\ |u_y| \leq 1}} \int u_x^2$$

Its solution u_* is the linear interpolant $u_*(x, y) = \left(\frac{2x}{L} - 1\right) y$. So the limiting energy as $\varepsilon \rightarrow 0$ is

$$E_0 = \int (u_*)_x^2 = H^3/3L.$$

(2) Scaling law for the **excess energy** due to positive ε :

$$E_\varepsilon = \min_{\substack{u=-y \text{ at } x=0 \\ u=y \text{ at } x=L \\ u_y = \pm 1 \\ -H/2 < y < H/2}} \int_{0 < x < L} u_x^2 + \varepsilon |u_{yy}|$$



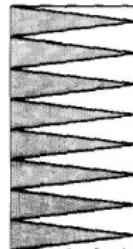
$$E_0 + C_1 \varepsilon^{2/3} L^{1/3} H \leq E_\varepsilon \leq E_0 + C_2 \varepsilon^{2/3} L^{1/3} H$$

We would like to say more

Energy scaling laws are known for many problems with microstructure.

Often the analysis stops there.
Describing the minimizing pattern requires a different type of analysis.

Geometric character of the K-M model makes it a good place to start.



- Is the zig-zag pattern optimal, for some top/bottom bdry condns?
(Open)
- Does the energy scaling law imply similarity to zig-zag? No.

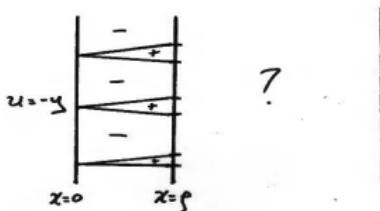
We would like to say more

- **Natural goal:** show that estimates valid for zig-zag test function are also satisfied by the optimal u_ε . Example: for zig-zag test function,

$$\int_{-H/2}^{H/2} \int_0^\rho (u - u_*)_x^2 + \varepsilon |u_{yy}| \leq CL^{-2/3} \varepsilon^{2/3} H \rho$$

Actual result: for minimizer u_ε we get a similar estimate – with RHS larger by factor $|\log(\rho/L)|$.

- **Natural tool:** minimizer does better than anything we can do by hand



Hints abt the math (i): the energy scaling law

$$E_0 + C_1 \varepsilon^{2/3} L^{1/3} H \leq E_\varepsilon \leq E_0 + C_2 \varepsilon^{2/3} L^{1/3} H$$

Upper bound: use the zig-zag test function (u is piecewise linear!).
Optimization indicates period wrt y is of order $\varepsilon^{1/3} L^{2/3}$.

Lower bound (assuming $u - u_*$ is periodic in y): for any x_0 , consider $y \mapsto u(x_0, y)$: avg slope is same as $(u_*)_y = \frac{2x_0}{L} - 1$, but $u_y = \pm 1$.

Few interfaces at some x_0 \Rightarrow large $(u - u_*)(x_0, y)$ (in L^2 wrt y)
 \Rightarrow excess relaxed energy $\int u_x^2$ (convexity!)

Many interfaces at all x_0 \Rightarrow large surface energy

Optimize tradeoff \Rightarrow lower bound

Hints about the math (ii): the local estimate

The result: assume $u - u_*$ is periodic in y , and take $L = H = 1$ for simplicity. Then the minimizer satisfies

$$\int_{-1/2}^{1/2} \int_0^\rho (u - u_*)_x^2 + \varepsilon |u_{yy}| \leq C \varepsilon^{2/3} \rho |\ln \rho|$$

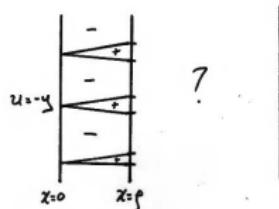
Idea: Note that

$$\iint_{0 < x < \rho} u_x^2 + \varepsilon |u_{yy}| = \iint_{0 < x < \rho} (u_\rho^{\text{lin}})_x^2 + \iint_{0 < x < \rho} (u - u_\rho^{\text{lin}})_x^2 + \varepsilon |u_{yy}|$$

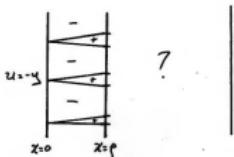
where u_ρ^{lin} is the linear (wrt x) interpolant btwn $u(0, y) = -y$ and $u(\rho, y)$. So the minimizer of E_ε also minimizes

$$\iint_{0 < x < \rho} (u - u_\rho^{\text{lin}})_x^2 + \varepsilon |u_{yy}|.$$

Call the value $F(\rho)$. We get an estimate on $F(\rho)$ by using the comparison function sketched in the figure.



Hints about the math (ii): the local estimate



Outcome (after some work): for a minimizer,

$$F(\rho) = \iint_{0 < x < \rho} (u - u_{\rho}^{\text{lin}})_x^2 + \varepsilon |u_{yy}|$$

satisfies

$$F(\rho) \leq \rho F'(\rho) + C \int_{-1/2}^{1/2} (u - u_*)^2(\rho, y) dy.$$

The local estimate follows using “only” calculus and the global bound.

Some other results:

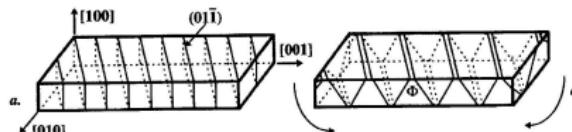
- With natural bc at top and bottom boundaries things change a bit. Our local lower bound is no longer almost linear in ρ (RHS is $C\varepsilon^{2/3}\rho^{1/2}$).
- With natural bc at top and bottom, relaxed energy is unchanged but E_{ε} is smaller, so (global) excess energy is smaller than when $u - u_*$ is periodic in y . But not much smaller: difference $\leq C\varepsilon^{\delta}$ with $\delta > \frac{2}{3}$.

Outline

- (1) A scalar model – work with Alex Misiats and Stefan Müller
 - Stress-free twins must be parallel. What if applied fields or bdry conds require vol fraction to vary?
 - Energy scaling laws are nice, but we would like to understand the pattern itself.
- (2) A linear elastic model – work with Alex Misiats
 - Motivated by experiments of Chopra, Bailly, Wuttig (1996)
 - Cleaner than (1) wrt link to experiments; but “just” energy scaling law.

The experiment

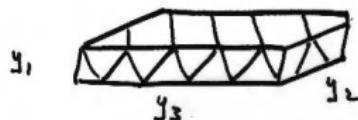
Chopra, Bailly, Wuttig: *Domain structures in bent InTl polydomain crystals*, Acta Mater 1996



- start with twinned plate (two variants, stress-free, not periodic)
- bend, by wrapping around a cylinder
- observation: zig-zag microstructure (periodic)
- release bending: parallel twins again, but periodic

Variants prefer strains

$$e(u) = \pm \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$



Bending favors $e_{33} > 0$ at top, $e_{33} < 0$ at bottom

Elastic + surface energy

More convenient to work in a rotated frame, $(x_2, x_3) = R_{\pi/4}(y_2, y_3)$.

Then

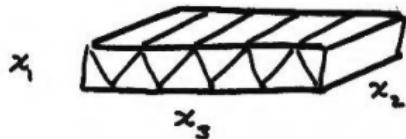
$$\text{preferred strains are } e(u) = \pm \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

and (choosing a particular Hooke's law) elastic + surface energy is

$$\int_{\text{plate}} e_{11}^2 + e_{22}^2 + e_{33}^2 + e_{12}^2 + e_{13}^2 + \varepsilon |\nabla e_{23}|$$

constrained by $e_{23} = \pm 1$ (and of course $e = e(u)$).

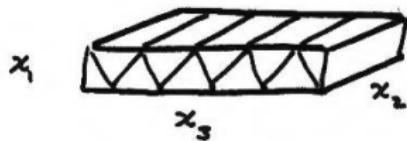
To keep things simple, assume plate thickness variable $x_1 \in [-1, 1]$ and bending is such that top and bottom are single-variant.



Relaxed energy, and top/bottom bdry condns

As $\varepsilon \rightarrow 0$ we expect zigzag microstructure – for which vol fraction varies linearly wrt x_1 . Weak limit of strain is then

$$\mathbf{e}^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & x_1 \\ 0 & x_1 & 0 \end{pmatrix}$$



which suggests the relaxed solution

$$u_1^* = -x_2 x_3$$

$$u_2^* = x_1 x_3$$

$$u_3^* = x_1 x_2$$

and the top/bottom bndry condns that $u = u^*$ at $x_1 = \pm 1$. Notes:

- Since u_1 is the out-of-plane displacement of plate, the bent plate is saddle-shaped.
- In this setting the relaxed energy vanishes! Indeed: relaxed elastic energy is $\int e_{11}^2 + e_{22}^2 + e_{33}^2 + e_{12}^2 + e_{13}^2$ and it vanishes for $\mathbf{e} = \mathbf{e}^* = \mathbf{e}(u^*)$.

The energy scaling law

For simplicity take the cross-section to be $(x_2, x_3) \in [-1, 1]^2$:

$$E_\varepsilon = \min_{\substack{u=u^* \text{ at } x_1=\pm 1 \\ e_{23}(u)=\pm 1}} \int_{[-1,1]^3} e_{11}^2 + e_{22}^2 + e_{33}^2 + e_{12}^2 + e_{13}^2 + \varepsilon |\nabla e_{23}|$$

Upper Bound: The zigzag structure shows $E_\varepsilon \leq C_1 \varepsilon^{2/3}$

Lower Bound: Restricting to deformations “invariant wrt x_2 ”

$$u_1 = u_1(x_1, x_2, x_3), \quad u_2 = u_2(x_1, x_3), \quad u_3 = x_2 \varphi(x_1, x_3)$$

we have $E_\varepsilon \geq C_2 \varepsilon^{2/3}$.

Upper bound sketch: use zig-zag, with $u_1 = u_1^*$, $u_3 = u_3^*$, and u_2 chosen st $\partial_3 u_2 = 2 - x_1$ in one phase and $-2 - x_1$ in the other (so $e_{23} = \pm 1$). Geometry assures that avg e_{23} is x_1 .

Microstructural scale is $\varepsilon^{1/3}$ (walls are almost vertical). In fact, if period wrt x_3 is ℓ , then elastic energy $\sim \ell^2$ and surface energy $\sim \varepsilon/\ell$.

The energy scaling law

For simplicity take the cross-section to be $(x_2, x_3) \in [-1, 1]^2$:

$$E_\varepsilon = \min_{\substack{u=u^* \text{ at } x_1=\pm 1 \\ e_{23}(u)=\pm 1}} \int_{[-1,1]^3} e_{11}^2 + e_{22}^2 + e_{33}^2 + e_{12}^2 + e_{13}^2 + \varepsilon |\nabla e_{23}|$$

Upper Bound: The zigzag structure shows $E_\varepsilon \leq C_1 \varepsilon^{2/3}$

Lower Bound: Restricting to deformations “invariant wrt x_2 ”

$$u_1 = u_1(x_1, x_2, x_3), \quad u_2 = u_2(x_1, x_3), \quad u_3 = x_2 \varphi(x_1, x_3)$$

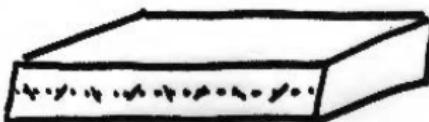
we have $E_\varepsilon \geq C_2 \varepsilon^{2/3}$.

Upper bound sketch: use zig-zag, with $u_1 = u_1^*$, $u_3 = u_3^*$, and u_2 chosen st $\partial_3 u_2 = 2 - x_1$ in one phase and $-2 - x_1$ in the other (so $e_{23} = \pm 1$). Geometry assures that avg e_{23} is x_1 .

Microstructural scale is $\varepsilon^{1/3}$ (walls are almost vertical). In fact, if period wrt x_3 is ℓ , then elastic energy $\sim \ell^2$ and surface energy $\sim \varepsilon/\ell$.

Sketch of lower bound

Strategy: similar to scalar case. If surface energy is small then typical slice has few interfaces. Show this implies large elastic energy, by using convexity of the relaxed elastic energy.



Problem: in scalar case we could use elementary arguments, since “relaxed elastic energy” was $\int u_x^2$. Here, instead, it is linear elasticity with a degenerate Hooke’s law.

Solution: use convex duality (separately, for relaxed energy above and below the slice, using restriction of u to the slice as a boundary condition). With good choice of dual trial fields, get lower bound roughly analogous to that of scalar case.

Similar use of convex duality: recent papers with B. Wirth on composites optimizing elastic energy + small surface energy.

Stepping back

- When elastic energy minimization requires microstructure, surface energy is the natural regularization, determining the pattern as well as the length scale.
- There are as yet few examples where we know more than the min energy scaling law.
- Our scalar zig-zag problem addresses a simple case where the microstructure is approximately layered, but the volume fractions are not uniform. New results and methods, but much is still open.
- Our elastic zig-zag problem is close to the Chopra-Bailly-Wuttig experiments – obtaining the energy scaling law in a new (physically relevant) example. However we have not explained the observed periodicity.
- Might zig-zag geometries be optimal for some versions of these problems?

Stepping back

- When elastic energy minimization requires microstructure, surface energy is the natural regularization, determining the pattern as well as the length scale.
- There are as yet few examples where we know more than the min energy scaling law.
- Our scalar zig-zag problem addresses a simple case where the microstructure is approximately layered, but the volume fractions are not uniform. New results and methods, but much is still open.
- Our elastic zig-zag problem is close to the Chopra-Bailly-Wuttig experiments – obtaining the energy scaling law in a new (physically relevant) example. However we have not explained the observed periodicity.
- Might zig-zag geometries be optimal for some versions of these problems?

Stepping back

- When elastic energy minimization requires microstructure, surface energy is the natural regularization, determining the pattern as well as the length scale.
- There are as yet few examples where we know more than the min energy scaling law.
- Our scalar zig-zag problem addresses a simple case where the microstructure is approximately layered, but the volume fractions are not uniform. New results and methods, but much is still open.
- Our elastic zig-zag problem is close to the Chopra-Bailly-Wuttig experiments – obtaining the energy scaling law in a new (physically relevant) example. However we have not explained the observed periodicity.
- Might zig-zag geometries be optimal for some versions of these problems?

- When elastic energy minimization requires microstructure, surface energy is the natural regularization, determining the pattern as well as the length scale.
- There are as yet few examples where we know more than the min energy scaling law.
- Our scalar zig-zag problem addresses a simple case where the microstructure is approximately layered, but the volume fractions are not uniform. New results and methods, but much is still open.
- Our elastic zig-zag problem is close to the Chopra-Bailly-Wuttig experiments – obtaining the energy scaling law in a new (physically relevant) example. However we have not explained the observed periodicity.
- Might zig-zag geometries be optimal for some versions of these problems?

- When elastic energy minimization requires microstructure, surface energy is the natural regularization, determining the pattern as well as the length scale.
- There are as yet few examples where we know more than the min energy scaling law.
- Our scalar zig-zag problem addresses a simple case where the microstructure is approximately layered, but the volume fractions are not uniform. New results and methods, but much is still open.
- Our elastic zig-zag problem is close to the Chopra-Bailly-Wuttig experiments – obtaining the energy scaling law in a new (physically relevant) example. However we have not explained the observed periodicity.
- Might zig-zag geometries be optimal for some versions of these problems?