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Talk plan

Zig-zag microstructures (alternatively: tilted twin boundaries) as a
consequence of elastic energy minimization in the presence of stress.
Two distinct stories, sharing certain features:

(1) A scalar model — work with Alex Misiats and Stefan Mller

- Stress-free twins must be parallel. What if applied fields or
bdry conds require vol fraction to vary?

- Energy scaling laws are nice, but we would like to
understand the pattern itself.

(2) Alinear elastic model — work with Alex Misiats
- Motivated by experiments of Chopra, Bailly, Wuttig (1996)

- Cleaner than (1) wrt link to experiments; but “just” the
energy scaling law.
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A scalar model

Recall K-M problem from the early 90’s:

.11:“/1_
. 2
min uy +elu
u=0at x=0,L / X | yyl
uy==+1 O<x<L
—H/2<y<H/2 5;-*[‘_

@ min value ~ ¢2/31/3H

@ energyin0 < x < pis e2/3p'/3H

@ Conti (2000): refinement at edges is
(roughly speaking) self-similar

@ Dondl, Heeren, Rumpf (2016):
careful numerics using
U2+ (U2 —1)2 + 22,
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Zig-zag microstructure

By changing the left and right boundary conditions, we can make the
volume fraction of each phase vary with x
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Physical interpretation: stress may favor one phase over the other, eg

. 2
uyri'L / Uy — (X — Xo)uy + €|uyy|

Uz - HIXTURE
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Not limited to martensite

Essential character: energy minimization requires laminated
microstructure, but vol fractions must vary along the layers.

Classic example from optimal design: arrange two conducting
materials in Q ¢ R? (fixed area fractions). Heat uniformly, holding
temp=0 at boundary. What arrangement minimizes the avg temp?

Mathematically: Let —V - (A(x)Vu) = 1in Q, where A(x) = a or 3,
with o < 5. What arrangement solves

min / u(x) dx + ¢ (Area where A(x) = 5) ?
Q

arrangements

0 < r < Rp: material a,
[ 1
Ry < r < 1: material 8, with Ry = 28 3
-
Ry < r < Ry: fine mixture of « and 8

(Figure credit: F. Jouve, Structural shape and topology optimization, in a
2014 CISM volume ed by Rozvany and Lewinski).
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Returning to martensite

The scalar model of twinning is perhaps the simplest problem of this
type. So let’s focus on it.

s e By
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min U2+ eluyy| —%
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Easy results

(1) As e — 0, minimizer u. tends to soln of relaxed problem

min Uz
u=—yatx=0

u=yatx=L
luy[<1

Its solution v, is the linear interpolant u.(x,y) = (3 — 1) y. So
the limiting energy as ¢ — O is

Ey = /(u*ﬁ = H3/3L.

(2) Scaling law for the excess energy due to positive e:

u=—yatx=0
u=yatx=L  0<x<L
uy=%1 —H/2<y<H/2

Eo+ Ci2BLVBH < E. < Ey + Coe?BL'/BH
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We would like to say more

Energy scaling laws are known for many
problems with microstructure.

Often the analysis stops there.
Describing the minimizing pattern
requires a different type of analysis.

Geometric character of the K-M model
makes it a good place to start.

@ |s the zig-zag pattern optimal, for
some top/bottom bdry conds?
(Open)

@ Does the energy scaling law imply
similarity to zig-zag? No.
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We would like to say more

@ Natural goal: show that estimates valid for zig-zag test function
are also satisfied by the optimal u.. Example: for zig-zag test
function,

H/2

p
H/2/0 (U= w.)i +eluy| < CL™?/%*/°Hp

Actual result: for minimizer u. we get a similar estimate — with
RHS larger by factor | log(p/L)|.

@ Natural tool: minimizer does better than anything we can do by
hand
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Hints abt the math (i): the energy scaling law

Eo+ Cie2BL'3H <

E. < Eo+ Coe??L'?H

Upper bound: use the zig-zag test function (u is piecewise linear!)

Optimization indicates period wrt

y is of order £'/32/3,

Lower bound (assuming u — u, is periodic in y): for any xo, consider

_ 2%

y = U(xo, y): avg slope is same as (u.), = 5> — 1, but u, = +1.

VARS ARSI ALY

Few interfaces at some x =
=

Many interfaces at all x,, =
Optimize tradeoff =

Robert V. Kohn

P ol

large (u — u.)(xo, y) (in L2 wrt y)
excess relaxed energy [ u2 (convexity!)
large surface energy

lower bound
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Hints about the math (ii): the local estimate

The result: assume u — u, is periodic in y, and take L = H = 1 for simplicity.
Then the minimizer satisifes

1/2

P
1/2/0 (U—w.); +eluy| < C?3 )| Inp|

Idea: Note that

// ug + eluy | = //(Ugn)i‘F //(U_Ugn)>2(+5|u}’y‘

0<x<p 0<x<p 0<x<p

where ui" is the linear (wrt x) interpolant btwn u(0, y) = —y and u(p, y). So
the minimizer of E. also minimizes

liny2
Jf =i+ elu.

0<x<p

Call the value F(p). We get an estimate on —]
F(p) by using the comparison function
sketched in the figure.

2=0 1=f
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Hints about the math (ii): the local estimate

2o 2

Outcome (after some work): for a minimizer,

F(p) = // (u—up")3 + eluyl

0<x<p
satisfies

1/2
F) < oF ()40 [ (= ufipon)ay
—1/2
The local estimate follows using “only” calculus and the global bound.

Some other results:
- With natural bc at top and bottom boundaries things change a bit. Our
local lower bound is no longer almost linear in p (RHS is Ce2/3p'/2).
- With natural bc at top and bottom, relaxed energy is unchanged but E.
is smaller, so (global) excess energy is smaller than when u — u, is
periodic in y. But not much smaller: difference < Ce® with § > %
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(1) A scalar model — work with Alex Misiats and Stefan Miller

- Stress-free twins must be parallel. What if applied fields or
bdry conds require vol fraction to vary?

- Energy scaling laws are nice, but we would like to
understand the pattern itself.

(2) Alinear elastic model — work with Alex Misiats
- Motivated by experiments of Chopra, Bailly, Wuttig (1996)

- Cleaner than (1) wrt link to experiments; but “just” energy
scaling law.
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The experiment

Chopra, Bailly, Wuttig: Domain structures in bent InTI polydomain
crystals, Acta Mater 1996

](100] (‘yi)

nnnnn

@ start with twinned plate (two variants, stress-free, not periodic)
@ bend, by wrapping around a cylinder
@ observation: zig-zag microstructure (periodic)

@ release bending: parallel twins again, but periodic

Variants prefer strains

-2 (3 3) (PP

13 v

Bending favors e33 > 0 at top, e33 < 0 at bottom
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Elastic + surface energy

More convenient to work in a rotated frame, (x2, x3) = Ry /4(¥2, ¥3).
Then

. 000
preferred strains are e(u) = + (8 0 a)

and (choosing a particular Hooke’s law) elastic + surface energy is
2 2 2 2 2
/ 611 +622+e33+e12+e13+€\V623|
plate

constrained by ex3 = +1 (and of course e = e(u)).

To keep things simple, assume plate thickness variable x; € [—1,1]
and bending is such that top and bottom are single-variant.

\ CAAA

- =
3
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Relaxed energy, and top/bottom bdry conds

As ¢ — 0 we expect zigzag microstructure — for which vol fraction
varies linearly wrt x;. Weak limit of strain is then

et S
= X
€ 0 xq O1 A zg
z.‘l
which suggests the relaxed solution

*

uy = —XoX3
U; = X1X3
U§ = XiXo

and the top/bottom bndry conds that v = u* at x; = +1. Notes:

@ Since uy is the out-of-plane displacement of plate, the bent plate
is saddle-shaped.

@ In this setting the relaxed energy vanishes! Indeed: relaxed
elastic energy is [ €2, + €3, + €5, + €2, + €2, and it vanishes for
e=¢e*=e(u*).
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The energy scaling law
« (R

*

For simplicity take the cross-section to be (X2, X3) € [-1,1]%

u=u*atxy==1

E.= min / . €2, + €5, + €55 + €55 + 625 + | Vens|
-1
e3(U)==1 (=111

Upper Bound: The zigzag structure shows E. < Cy£%/3
Lower Bound: Restricting to deformations “invariant wrt x,”

Up = Ui(Xq, X2, X3), Up = Up(Xy,X3), U3 = X2o(X1,X3)
we have E. > C,e2/3,
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The energy scaling law
« (R

*

For simplicity take the cross-section to be (X2, x3) € [-1,1]2

u=u”* at x;==+1

E.= min / . €2, + €5, + €55 + €55 + 625 + | Vens|
-1
e3(U)==1 (=111

Upper Bound: The zigzag structure shows E. < Cy£%/3
Lower Bound: Restricting to deformations “invariant wrt x,”
Up = Ui(Xq, X2, X3), Up = Up(Xy,X3), U3 = X2o(X1,X3)
we have E. > C,e2/3,
Upper bound sketch: use zig-zag, with uy = uj, us = u3, and u,

chosen st dsu» = 2 — xq in one phase and —2 — x; in the other (so
e-3 = +1). Geometry assures that avg ex3 is xi.

Microstructural scale is '/ (walls are almost vertical). In fact, if
period wrt x3 is £, then elastic energy ~ ¢2 and surface energy ~ ¢/¢.
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Sketch of lower bound

Strategy: similar to scalar case. If surface energy is small then typical
slice has few interfaces. Show this implies large elastic energy, by
using convexity of the relaxed elastic energy.

Problem: in scalar case we could use elementary arguments, since
“relaxed elastic energy” was [ u2. Here, instead, it is linear elasticity
with a degenerate Hooke’s law.

Solution: use convex duality (separately, for relaxed energy above
and below the slice, using restriction of u to the slice as a boundary
condition). With good choice of dual trial fields, get lower bound
roughly analogous to that of scalar case.

Similar use of convex duality: recent papers with B. Wirth on
composites optimizing elastic energy + small surface energy.
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Stepping back

@ When elastic energy minimization requires microstructure,
surface energy is the natural regularization, determining the
pattern as well as the length scale.
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Stepping back

@ When elastic energy minimization requires microstructure,
surface energy is the natural regularization, determining the
pattern as well as the length scale.

@ There are as yet few examples where we know more than the
min energy scaling law.
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Stepping back

@ When elastic energy minimization requires microstructure,
surface energy is the natural regularization, determining the
pattern as well as the length scale.

@ There are as yet few examples where we know more than the
min energy scaling law.

@ Our scalar zig-zag problem addresses a simple case where the
microstructure is approximately layered, but the volume fractions
are not uniform. New results and methods, but much is still open.
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Stepping back

@ When elastic energy minimization requires microstructure,
surface energy is the natural regularization, determining the
pattern as well as the length scale.

@ There are as yet few examples where we know more than the
min energy scaling law.

@ Our scalar zig-zag problem addresses a simple case where the
microstructure is approximately layered, but the volume fractions
are not uniform. New results and methods, but much is still open.

@ Our elastic zig-zag problem is close to the Chopra-Bailly-Wuttig
experiments — obtaining the energy scaling law in a new
(physically relevant) example. However we have not explained
the observed periodicity.
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Stepping back

@ When elastic energy minimization requires microstructure,
surface energy is the natural regularization, determining the
pattern as well as the length scale.

@ There are as yet few examples where we know more than the
min energy scaling law.

@ Our scalar zig-zag problem addresses a simple case where the
microstructure is approximately layered, but the volume fractions
are not uniform. New results and methods, but much is still open.

@ Our elastic zig-zag problem is close to the Chopra-Bailly-Wuttig
experiments — obtaining the energy scaling law in a new
(physically relevant) example. However we have not explained
the observed periodicity.

@ Might zig-zag geometries be optimal for some versions of these
problems?
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