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Talk plan

Zig-zag microstructures (alternatively: tilted twin boundaries) as a
consequence of elastic energy minimization in the presence of stress.
Two distinct stories, sharing certain features:

(1) A scalar model – work with Alex Misiats and Stefan Müller

- Stress-free twins must be parallel. What if applied fields or
bdry conds require vol fraction to vary?

- Energy scaling laws are nice, but we would like to
understand the pattern itself.

(2) A linear elastic model – work with Alex Misiats

- Motivated by experiments of Chopra, Bailly, Wuttig (1996)

- Cleaner than (1) wrt link to experiments; but “just” the
energy scaling law.
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A scalar model

Recall K-M problem from the early 90’s:

min
u=0 at x=0,L

uy =±1

∫

0<x<L
−H/2<y<H/2

u2
x + ε|uyy |

min value ∼ ε2/3L1/3H

energy in 0 < x < ρ is ε2/3ρ1/3H

Conti (2000): refinement at edges is
(roughly speaking) self-similar

Dondl, Heeren, Rumpf (2016):
careful numerics using
u2

x + (u2
y − 1)2 + ε2u2

yy .
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Zig-zag microstructure
By changing the left and right boundary conditions, we can make the
volume fraction of each phase vary with x

min
u=−y at x=0
u=y at x=L

uy =±1

∫

0<x<L
−H/2<y<H/2

u2
x + ε|uyy |

Physical interpretation: stress may favor one phase over the other, eg

min
uy =±1

∫
u2

x − (x − x0)uy + ε|uyy |
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Not limited to martensite
Essential character: energy minimization requires laminated
microstructure, but vol fractions must vary along the layers.

Classic example from optimal design: arrange two conducting
materials in Ω ⊂ R2 (fixed area fractions). Heat uniformly, holding
temp=0 at boundary. What arrangement minimizes the avg temp?

Mathematically: Let −∇ · (A(x)∇u) = 1 in Ω, where A(x) = α or β,
with α < β. What arrangement solves

min
arrangements

∫

Ω

u(x) dx + ` (Area where A(x) = β) ?

132 F. Jouve

the balance between the performance we want to optimize and the cost (i.e.
the total volume of material β used) is done introducing a given positive
parameter �. The two problems above can now be written:

1. Find the cheapest configuration maximizing the mean temperature
over Ω:

max
χ

( ∫

Ω

u(x)dx− �

∫

Ω

χ(x)dx
)
, for a given � > 0

2. Find the cheapest configuration minimizing the mean temperature
over Ω:

min
χ

( ∫

Ω

u(x)dx+ �

∫

Ω

χ(x)dx
)
, for a given � > 0

Problem 1 can be easily solved. A simple computation in polar coordi-
nates leads to an explicit classical solution (see Figure below):

0 < r < R0: material β,

R0 < r < 1: material α, with R0 = 2α

√
l

β − α

For the Problem 2, it is possible to exhibit a minimizing sequence con-
verging to the global minimum of the functional that can be described as:

0 < r < R0: material α,

R1 < r < 1: material β, with R1 = 2β

√
l

β − α
R0 < r < R1: fine mixture of α and β

Figure 1 shows the solutions of both problems with pure materials α
and β respectively coloured in red and blue. Grey zones on the solution of
problem 2 are composite materials, fine mixtures of α and β. The grey level
representing the local density of β material, from white = pure α, to black
= pure β. The solution of problem 1 is a “classical” solution, involving only
pure materials.

Figure 2 shows the numerical solution obtained by the homogenization
method that will be described in Section 2, after penalization of the com-
posites. This penalization is a numerical procedure allowing to eliminate

(Figure credit: F. Jouve, Structural shape and topology optimization, in a
2014 CISM volume ed by Rozvany and Lewinski).
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Returning to martensite

The scalar model of twinning is perhaps the simplest problem of this
type. So let’s focus on it.

min
u=−y at x=0
u=y at x=L

uy =±1

∫

0<x<L
−H/2<y<H/2

u2
x + ε|uyy |
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Easy results

(1) As ε→ 0, minimizer uε tends to soln of relaxed problem

min
u=−y at x=0
u=y at x=L
|uy |≤1

∫
u2

x

Its solution u∗ is the linear interpolant u∗(x , y) =
( 2x

L − 1
)

y . So
the limiting energy as ε→ 0 is

E0 =

∫
(u∗)2

x = H3/3L.

(2) Scaling law for the excess energy due to positive ε:

Eε = min
u=−y at x=0
u=y at x=L

uy =±1

∫

0<x<L
−H/2<y<H/2

u2
x + ε|uyy |

E0 + C1ε
2/3L1/3H ≤ Eε ≤ E0 + C2ε

2/3L1/3H

Robert V. Kohn Non-uniform (zig-zag) microstructures



We would like to say more

Energy scaling laws are known for many
problems with microstructure.

Often the analysis stops there.
Describing the minimizing pattern
requires a different type of analysis.

Geometric character of the K-M model
makes it a good place to start.

Is the zig-zag pattern optimal, for
some top/bottom bdry conds?
(Open)

Does the energy scaling law imply
similarity to zig-zag? No.
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We would like to say more

Natural goal: show that estimates valid for zig-zag test function
are also satisfied by the optimal uε. Example: for zig-zag test
function,

∫ H/2

−H/2

∫ ρ

0
(u − u∗)2

x + ε|uyy | ≤ CL−2/3ε2/3Hρ

Actual result: for minimizer uε we get a similar estimate – with
RHS larger by factor | log(ρ/L)|.

Natural tool: minimizer does better than anything we can do by
hand
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Hints abt the math (i): the energy scaling law

E0 + C1ε
2/3L1/3H ≤ Eε ≤ E0 + C2ε

2/3L1/3H

Upper bound: use the zig-zag test function (u is piecewise linear!)
Optimization indicates period wrt y is of order ε1/3L2/3.

Lower bound (assuming u − u∗ is periodic in y ): for any x0, consider
y 7→ u(x0, y): avg slope is same as (u∗)y = 2x0

L − 1, but uy = ±1.

Few interfaces at some x0 ⇒ large (u − u∗)(x0, y) (in L2 wrt y )
⇒ excess relaxed energy

∫
u2

x (convexity!)
Many interfaces at all x0 ⇒ large surface energy

Optimize tradeoff ⇒ lower bound
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Hints about the math (ii): the local estimate
The result: assume u − u∗ is periodic in y , and take L = H = 1 for simplicity.
Then the minimizer satisifes∫ 1/2

−1/2

∫ ρ

0
(u − u∗)2

x + ε|uyy | ≤ Cε2/3ρ| ln ρ|

Idea: Note that∫∫
0<x<ρ

u2
x + ε|uyy | =

∫∫
0<x<ρ

(ulin
ρ )2

x +

∫∫
0<x<ρ

(u − ulin
ρ )2

x + ε|uyy |

where ulin
ρ is the linear (wrt x) interpolant btwn u(0, y) = −y and u(ρ, y). So

the minimizer of Eε also minimizes∫∫
0<x<ρ

(u − ulin
ρ )2

x + ε|uyy |.

Call the value F (ρ). We get an estimate on
F (ρ) by using the comparison function
sketched in the figure.
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Hints about the math (ii): the local estimate

Outcome (after some work): for a minimizer,

F (ρ) =

∫∫
0<x<ρ

(u − ulin
ρ )2

x + ε|uyy |

satisfies

F (ρ) ≤ ρF ′(ρ) + C
∫ 1/2

−1/2
(u − u∗)2(ρ, y) dy .

The local estimate follows using “only” calculus and the global bound.

Some other results:
- With natural bc at top and bottom boundaries things change a bit. Our

local lower bound is no longer almost linear in ρ (RHS is Cε2/3ρ1/2).
- With natural bc at top and bottom, relaxed energy is unchanged but Eε

is smaller, so (global) excess energy is smaller than when u − u∗ is
periodic in y . But not much smaller: difference ≤ Cεδ with δ > 2

3 .
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Outline

(1) A scalar model – work with Alex Misiats and Stefan Müller

- Stress-free twins must be parallel. What if applied fields or
bdry conds require vol fraction to vary?

- Energy scaling laws are nice, but we would like to
understand the pattern itself.

(2) A linear elastic model – work with Alex Misiats

- Motivated by experiments of Chopra, Bailly, Wuttig (1996)

- Cleaner than (1) wrt link to experiments; but “just” energy
scaling law.
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The experiment

Chopra, Bailly, Wuttig: Domain structures in bent InTl polydomain
crystals, Acta Mater 1996

start with twinned plate (two variants, stress-free, not periodic)

bend, by wrapping around a cylinder

observation: zig-zag microstructure (periodic)

release bending: parallel twins again, but periodic

Variants prefer strains

e(u) = ±
( 0 0 0

0 1 0
0 0 −1

)

Bending favors e33 > 0 at top, e33 < 0 at bottom
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Elastic + surface energy

More convenient to work in a rotated frame, (x2, x3) = Rπ/4(y2, y3).
Then

preferred strains are e(u) = ±
(

0 0 0
0 0 1
0 1 0

)

and (choosing a particular Hooke’s law) elastic + surface energy is
∫

plate
e2

11 + e2
22 + e2

33 + e2
12 + e2

13 + ε|∇e23|

constrained by e23 = ±1 (and of course e = e(u)).

To keep things simple, assume plate thickness variable x1 ∈ [−1,1]
and bending is such that top and bottom are single-variant.
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Relaxed energy, and top/bottom bdry conds
As ε→ 0 we expect zigzag microstructure – for which vol fraction
varies linearly wrt x1. Weak limit of strain is then

e∗ =

(
0 0 0
0 0 x1
0 x1 0

)

which suggests the relaxed solution

u∗1 = −x2x3

u∗2 = x1x3

u∗3 = x1x2

and the top/bottom bndry conds that u = u∗ at x1 = ±1. Notes:

Since u1 is the out-of-plane displacement of plate, the bent plate
is saddle-shaped.

In this setting the relaxed energy vanishes! Indeed: relaxed
elastic energy is

∫
e2

11 + e2
22 + e2

33 + e2
12 + e2

13 and it vanishes for
e = e∗ = e(u∗).
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The energy scaling law

For simplicity take the cross-section to be (x2, x3) ∈ [−1,1]2:

Eε = min
u=u∗ at x1=±1

e23(u)=±1

∫

[−1,1]3
e2

11 + e2
22 + e2

33 + e2
12 + e2

13 + ε|∇e23|

Upper Bound: The zigzag structure shows Eε ≤ C1ε
2/3

Lower Bound: Restricting to deformations “invariant wrt x2”

u1 = u1(x1, x2, x3), u2 = u2(x1, x3), u3 = x2ϕ(x1, x3)

we have Eε ≥ C2ε
2/3.

Upper bound sketch: use zig-zag, with u1 = u∗1 ,u3 = u∗3 , and u2
chosen st ∂3u2 = 2− x1 in one phase and −2− x1 in the other (so
e23 = ±1). Geometry assures that avg e23 is x1.

Microstructural scale is ε1/3 (walls are almost vertical). In fact, if
period wrt x3 is `, then elastic energy ∼ `2 and surface energy ∼ ε/`.
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Sketch of lower bound

Strategy: similar to scalar case. If surface energy is small then typical
slice has few interfaces. Show this implies large elastic energy, by
using convexity of the relaxed elastic energy.

Problem: in scalar case we could use elementary arguments, since
“relaxed elastic energy” was

∫
u2

x . Here, instead, it is linear elasticity
with a degenerate Hooke’s law.

Solution: use convex duality (separately, for relaxed energy above
and below the slice, using restriction of u to the slice as a boundary
condition). With good choice of dual trial fields, get lower bound
roughly analogous to that of scalar case.

Similar use of convex duality: recent papers with B. Wirth on
composites optimizing elastic energy + small surface energy.
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Stepping back

When elastic energy minimization requires microstructure,
surface energy is the natural regularization, determining the
pattern as well as the length scale.

There are as yet few examples where we know more than the
min energy scaling law.

Our scalar zig-zag problem addresses a simple case where the
microstructure is approximately layered, but the volume fractions
are not uniform. New results and methods, but much is still open.

Our elastic zig-zag problem is close to the Chopra-Bailly-Wuttig
experiments – obtaining the energy scaling law in a new
(physically relevant) example. However we have not explained
the observed periodicity.

Might zig-zag geometries be optimal for some versions of these
problems?
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