Energy scaling laws for conically constrained thin elastic
sheets
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Abstract

We investigate low-energy deformations of a thin elastic sheet subject to a displace-
ment boundary condition consistent with a conical deformation. Under the assumption
that the displacement near the sheet’s center is of order h|logh|, where h < 1 is the
thickness of the sheet, we establish matching upper and lower bounds of order h?|log h|
for the minimum elastic energy per unit thickness, with a prefactor determined by the
geometry of the associated conical deformation. These results are established first for
a 2D model problem and then extended to 3D elasticity.
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1 Introduction

1.1 Motivation, contribution, and remaining questions

In this paper, we investigate the following question:

e What is the limiting behavior of a thin elastic sheet subject to a displacement boundary
condition consistent with a conical deformation? In particular:

— What is the elastic energy scaling law for such a sheet?

— Do deformations satisfying this scaling law converge in some sense to the associ-
ated conical deformation?

We provide partial answers to these questions, demonstrating that:
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e Under the additional assumption that the displacement near the sheet’s center is at
most C'h|logh|, where h < 1 is the thickness of the sheet, the minimum elastic energy
per unit thickness satisfies matching upper and lower bounds of order h?|log h|, with
a prefactor determined by the geometry of the associated conical deformation.

With a stronger hypothesis on the displacement of the sheet’s center, Miiller and Olbermann
have improved our result by giving an estimate for the leading order correction to our bounds
[8]. (See Section 1.3 for further discussion of our results and connections with [8].)

It is natural to conjecture that an h?|logh| energy scaling law holds even without a
restriction on the deformation at the sheet’s center. Such a result is, however, beyond the
scope of our methods (except as indicated in Remark 2 following the proof of Theorem 1 in
Section 2).

In the real world, conical deformations can arise without fixing displacement boundary
conditions. For example, a conical deformation known as the d-cone forms when a thin
elastic sheet is placed on top of an open cylinder and a downward force is applied at the
center of the sheet [3]. Our work can be seen as a mathematical idealization of the d-cone
experiment. The physics literature includes numerous studies of nearly conical deformations
subject to geometric boundary conditions. Important contributions include those of Pomeau
and Ben Amar [3] and Cerda and Mahadevan [4]. In [3], it is shown that the d-cone arises
as the surface which minimizes bending energy among those surfaces satisfying a conical
boundary displacement condition and which are developable outside of an inner region. In
[4], the d-cone is modeled as an inextensible surface subject to the constraint that its edge lie
above an open cylinder and the resulting shape is found by solving a free boundary problem
for the edge deformation. For a more complete survey of the literature and many more
references, we refer to the excellent review by Witten [10]. It should perhaps be emphasized
that the results of the present paper (the energy scaling law, and the approximately conical
character of the deformation) are assumed rather than proved in the physics literature.

1.2 Two and three-dimensional elastic energies

In Section 2, we establish our results for a 2D model energy. This choice of energy
simplifies our analysis while capturing the essential features of our argument. We then
extend our results to more general 3D elastic energies in Section 3. In the present section,
we describe our 2D and 3D elastic energies and provide intuition as to why low-energy
deformations satisfying conical boundary conditions are nearly conical away from the sheet’s
center.

Given a thin elastic sheet

h h
Q,=Qx(—=, = 1.1
h x(=3:3) (1.1)
where Q C R? and h < 1, our 2D model energy
/ |Vu''Vu — L|> + h?|VVul? dz, (1.2)
Q
arises as an upper bound for the asymptotic behavior of the model energy
1
[ 960 - b o (13)
h Jox-4.4)
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for maps satisfying the Kirchhoff-Love ansatz

(2,1, 2) = u(z,y) + 2N (z,y) where N(z,y) = —2 v (1.4)
lu, ¥ uy\

Here, I5 is the 2 x 2 identity matrix, I3 is the 3 x 3 identity matrix, Vu is the 3 x 2 Jacobian
<%>, 1 <i<3,1<j<2 and V¢ is the 3 x 3 Jacobian (%)’ 1 <4,5 <3. Tosee

how (1.2) arises as an upper bound for (1.3), first integrate in the z variable and drop higher
order terms. This leads to a functional of the form

/ IVu"'Vu — LI* + ch® (|uge - N|* 4 |ugy - N)* + |uy, - N|?) dao
Q

where c¢ is a numerical constant. Simplifying the above expression by replacing the bending
energy |uzy - N> + |ugy - N2 + |uy, - N|* with [VVu|? and replacing ch? by h? leads to the
model (1.2). We are not the first to use the two-dimensional model (1.2) as a laboratory for
understanding the behavior of thin sheets; see for example [2, 5].

In Section 3, we justify the simplifications made in deriving the energy (1.2) by extending
our results to 3D elastic energies

W(Vuy,) dx.
Qp

Since we make use of results from [6], we assume that the 3D elastic energy W : M3*3 — R
satisfies the conditions imposed there:

1. W e Co%M>*3),W € C? in a neighborhood of SO(3),
2. W is frame indifferent: W(F) = W(RF) for all F € M**3 and all R € SO(3).
3. W(F) > Cdist*(F,80(3)), W(F) =0if F € SO(3).

Study of the energy (1.2) yields insight as to why low-energy deformations subject to
a conical boundary condition are in fact approximately conical. The energy (1.2) consists
of two terms, the non-convex membrane energy |Vu!Vu — I*> and the bending energy
h?*|VVul?. The membrane energy term indicates the preference of the midplane to deform
isometrically, while the bending energy term penalizes variation in the normal vector field
to the surface u(Q2) and accounts for the stretching of cross sections of the sheet which are
parallel to the midplane.

Since only rigid motions achieve zero energy, the minimization of (1.2), subject to bound-
ary conditions, typically involves a trade-off between the bending and stretching contribu-
tions. In order to understand this trade-off, observe that for h < 1 the bending term
functions as a singular perturbation, indicating the sheet’s preference to bend rather than
stretch. This suggests that low energy deformations satisfy

IVul'Vu — L|* ~ 0 (1.5)

in all of €2, except possibly in a small region in which Vu undergoes rapid change. A conical
deformation smoothed near its tip is an example of a deformation satisfying (1.5).



1.3 Statement of results

For the remainder of the paper, we assume that the reference configuration of our sheet
is given by

h h
By = By X (—57 5) (1.6)
where
B, ={z €R*:|z| <r}. (1.7)
Setting
Ep(u) = IVu"Vu — L|* + h*|VVul? dr, (1.8)
By

in Section 2 we prove the scaling law

Theorem 1. Let g € C?(0B;), g : 0B; — S? be a unit-speed curve, and suppose P € R?

satisfies
|P| < Chllog, hj° (1.9)
for some 0 < o < 1/2 and C > 0. Then
im ————— i E = F.
hlir(l) hQ‘ log2 h‘ uEWQ’Q(Brlr)l;llrLl=g on 0By h(U)
u(0)=P

The constant E is given by

E = / V2V |? da,
B1\By 2

where V(x) = |z|g(z/|z|).

Remark 1. The requirement that g : 0B, — S? be a unit-speed curve is motivated by our
expectation that low energy deformations satisfy (1.5). Theorem 1 will be proved in Section 2.
In Section 2, will also establish that u, — |z|g(x/|x]) in H'(B;) as h goes to 0, whenever
wy, satisfies Ey(up) < Ch*log(h) for some C' (see Proposition 1).

Theorem 1 is established by proving the lower bound

1

E <liminf ——— min EL(u

~ h—0 h2’ 10g2 h‘ u€W?22(B1);u=g on 8B h( )
u(0)=P
and the upper bound
limsup —— min Ey(u) < E.
h—0 P h?|logy h|  uew22(B1);u=g on 9B, w(w) <
u(0)=P

The upper bound is achieved by a smooth deformation which agrees with the conical map
|z|g (;—|) except within the ball of radius h|log(h)|* centered at the origin. In order to prove
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the lower bound, we use the membrane energy to control the stretching of line segments.
Our starting point is the observation that a low energy deformation u;, must satisfy
8uh
or

~ 1, (1.10)

except possibly on a small set. Due to the boundary conditions and (1.9), it follows that a
deformation satisfying (1.10) closely approximates the conical map |x|g fa7 ). We complete

the proof by showing that any map with this property must have bending energy at least
of the same order, h%|log(h)|, as that of the trial function used in the proof of the upper
bound.

In formulating Theorem 1, we have chosen to focus on a somewhat special problem: u
is defined on the unit disk, with a constraint on its value at 0. This choice is convenient,
but probably not necessary. Arguments similar to ours probably could be applied in a less
symmetric setting, e.g. when u is constrained at some point xy # 0, provided the constraint
and boundary conditions are consistent with a conical configuration whose apex is at u(zg).

An earlier draft of this paper contained upper and lower bounds whose prefactors did not
match. We would like to thank Heiner Olbermann for suggesting the modification to our
original argument which led to the improved results reported here. In recent work, Miiller
and Olbermann have improved Theorem 1 by estimating the leading order correction to our
bounds [§].

In Section 3, we extend our results to three dimensional elasticity. Our basic strategy is
the same as in Section 2, but we rely on the compactness and lower semi-continuity results
from [6]. Setting

we prove the following result.

Theorem 2. Let g : dB; — S? be a unit speed curve, set §(6,z) = g(#), and define the
surface s : B; — R? in polar coordinates by s(r, ) = rg(6). We have that

im TR y—T min Eh(u) =F
h—0 h | log, hl w€WL2(By ,)NC(B1,1); maXap, x (—h/2,h/2)) [u—F|<Ch|logy hl
maxp, , |u[<Ch|log, h|

where By, ), = B, X (—%, %), and the constant E' is given by

FE :/ Qo () d'.
Bi\By /2

Here, @ is a quadratic form on M?*% given in [6], and I is the second fundamental form
of the surface s.

2 Two dimensional result

In this section, we state and establish results related to the 2D model energy (1.2). We
begin with the energy scaling law, which we repeat for the reader’s convenience:



Theorem 1. Let g € C*(0By), g : 9By — S? be a unit-speed curve, and suppose P € R?
satisfies
|P| < Ch|log, h|® (2.1)
for some 0 < a < 1/2 and C > 0. Then
im-——— i E =FE.
hET%) h2| 10g2 h| uew2,2(BIII)l;lqul:g on 0B h(U)
u(0)=P

The constant E 1is given by

E = / V2V |? du,
Bi\By 2

where V(x) = |x|g(z/|z]).

Hereafter, C' denotes a positive constant independent of A and g.
Proof. In what follows, we suppose that h is small and set h, = h|log, h|*.
Step 1: Proof of the upper bound.

Since g € C?(0B) and |P| < Ch,, we can find u € C?(B) satisfying

u(z) = |z|g(z/|x|) for z € By \ By,
u(0) =P

Vu| < C on By,
|V2u| < C/h, on By, .

(2.2)

Due to the assumptions on g, we have

Ep(u) = / Vul'Vu — L)* + h2/ |V2ul? + h2/ |V2ul?
By, Bon, B\Bgp,

<CRZ+CH +1* > / V2ul?. (2.3)
B

n>0; 2—"—1>h, 2—n\By-—n-1

On the other hand, define V,,(z) = 2"u(27"z) for x € By \ Byjs. Then V,, =V if 27" > h,
and by a change of variables, we have

/ |V2u|? = / V2V, |* = E. (2.4)
By—n\By-n-1 Bi\B1 /2

Combining (2.3) and (2.4) yields

1 1
limsup ———— min Ey(u) <limsup ———— EF=F.
B Faoga Bl wewaa i mop, P S TSP LT D
u(0)=P =t =l

Step 2: Proof of the lower bound.



Let {u} be a sequence of deformations satisfying
En(uy) < CH?|log(h)]. 2.5)

We begin by using (2.5) to control the behavior of the {uy} near the origin. It follows from
(2.5) that

/ \Vui Vuy, — I|* < Ch?|log, hl,
By

|VUh|2 S C)

B
and
[V?u,|* < C|logy hl.

By

An application of the Sobolev embedding theorem [1] yields
lunllco < C()|logy h['/? (2.6)
for 0 < v < 1. This implies

FWWWMSwmwm—m@wmmwscmw&mWM+aww%ww (2.7)
z|=h z|=h

Using (2.7) and the sublinear growth of the logarithm, we see that for each v € (0,1) there
exists C’(7y) such that
sup [un(z)] < C'(7)R7. (2.8)
|z|=h
Next, we demonstrate that the {u,} approximate the conical map |x|g (;—O Our idea

is to use the membrane energy, the boundary conditions, and (2.8) to control the stretching
of radial line segments from the origin. To begin, we re-write the membrane energy in polar
coordinates and recall (2.5) to arrive at

1
/ / \Vui Vuy, — L*r dr df = IVul Vuy, — I)? do < Ch*|log, hl.
8B1 0 Bl

It follows that

1
/ / amh re\ 1) rdrd6’</ / VUl Vuy — L[2rdrdo < Ch2|log, Bl (2.9)
0B 0B, JO

Next, we separate the radial line segments from the origin into two classes, those with
“small” radial stretching energy and those with “large” radial stretching energy. To do this,
we set

A= {9 € OB:; / (‘a“h r0) ] . 1) rdr < h2|10g2h|2} (2.10)
h



On those radial lines with small stretching energy, {rf : h <r < 1,6 € A}, we prove, due to
the boundary conditions and (2.8), that the {u;,} will be in close agreement with |z|g (;—O
We will establish that

lup(r0) — rg(0)| < C"(7) max(r/?h/2 h7)  forf e A, h<r<1, and 0 <~y <1, (2.11)

where C”(7) is a constant depending on 7. Since by Chebyshev’s inequality and (2.9) we

also have
|H'(A) — H'(0By)| < C/|log, hl, (2.12)

we see from (2.11) and (2.12) that the {u} approximate the conical map |z|g <%>

In order to establish (2.11), we first prove the following lemma.

Lemma 1. Let v € R? be such that |v| =1 and h <r < 1. Suppose f : [h,1] — R? satisfies
f(1) =v and |f(h)| < C1h" for some 0 < k < 1. Then

|ﬂm—wwﬁs2r<A1

for some constants Cy, Cs depending on C1.

2

df

ds

ds + CQh/H> + C’ghmi

Proof. Due to our assumptions on f, application of the fundamental theorem of calculus
and the Cauchy-Schwartz inequality lead to

2

" d 2 1 d
50 - <2 ([ |E o] as) +om <o [|F o] dsr e
h ds h dS
Expanding the square,
af |* |df| df _|df ? df
— —v| =|—=— 1—2—=". —| =14+2(v——=—)" v
ds ds + ds ds A ds !

The boundary conditions of f then imply that

1 df
/h (v—g)-vdr

and the lemma follows. a
We now establish (2.11) using Lemma 1. According to Lemma 1 and (2.8),

hm@@—rﬂ@?gzr(A

An application of Cauchy-Schwartz shows that

1
/ 8uhs«9’—1‘ds< /s
h h

< Cyh”

8uh

(6 ( - 1' ds+02m) L ORY forh<r<1. (2.13)

8uh

ds) " ( /h "1 /s ds) P e

59’ —1




Using (2.14) and (2.10), we can bound the term in parentheses on the right-hand side of
(2.13). Comparing this bound to the C3h?’ term on the right-hand side of (2.13) yields
(2.11).

Using (2.11) and (2.12), we will now establish that

o 1 2. 12
lliﬂjglfm||v unllz2(h<iei<t) = B (2.15)

which will conclude the proof of Theorem 1. In order to establish (2.15), fix ¢ > 0 and
0 <o <~y <1. We claim that

IV2unl72@-n-1<ppjcany = E—eif 2777 > h7 and h < 1. (2.16)

Indeed, define V,,(z) = 2"u (27 "x). It follows from (2.11) and (2.12) that

[{ € B\ Buas |Va(a) = lelg(a/|2])] = C"(3)h0/2}] < C/|log, h.
By Lemma 2 (stated and proved just below), this implies
Hv2uhH%%wﬂgmgzw) = HVZVnH%%Bl\Bm) > E—e

Using (2.16) to bound from below the contributions to the bending energy from the annuli
{x: 27"t <|z| < 27"}, we find that

1
lim inf 2% > lim — E—¢)=(F—¢)o. 2.1
l%njgl |10g2 h| HV uhHLQ(hgh“Sl) = hli% |log2 h‘ >0.2_Zn_l>ha( €) ( E)O- ( 7)
Since 0 < 1 and € > 0 are arbitrary, the conclusion follows. O

The following lemma was used in the proof of Theorem 1. Geometrically, it says that if
a surface is sufficiently close to a smooth fixed surface, then the amount by which it bends
must be at least comparable with that of the fixed surface.

Lemma 2. Let Q be a smooth bounded domain, h > 0, o, : (0,1) — R, and v,v, €
W22(Q) be such that
lima(t) =limB(t) =0

t—0 t—0

and

S = {x € i |on(x) - v(z)| > a(h)}‘ < B(h). (2.18)
Then for any € > 0 there exists 6 > 0, depending only on o, (3, ), and v such that
||V2vh||L2(Q) Z ||V2?J||L2(Q) —e¢ Yh<d.

Proof. We prove the lemma by contradiction. Suppose that there exists ¢g > 0 and a
sequence (vy,,) C W?%2(Q) satisfying (2.18) but

Hv2vhnHL2(Q) g HVQ"UHLz(Q) — £&p- (219)



The key step is establishing that
sup lvn,. || m2(0) < o0. (2.20)
Once (2.20) is established, it follows that vy, — v in W22(Q), which results in
lim inf |20, || r2@) 2 [ V?0l|L2().

a contradiction.
In order to establish (2.20), consider

up, = v, — (ap, + by,)

where

1 1
= — [ Vo, dz and b, = — - da.
ap,, |Q| /Q Up,, AT a1l hn |Q| /thn ap, T ax

/ Vup, =0 and / Up,p, = 0.
Q Q

An application of Poincaré’s inequality, along with (2.19), then yields

It is clear that

HuhnHHz(Q) S CHV2uhnHL2(Q) S CHVQUHLQ(Q) — 080. (221)

It follows that
Up, = vn, — (af T +by,) = uin H*().

For = ¢ S}, we then have
lv(x) — (afnx +by,) — u(x)| < a(hy,)

from which it follows that the {as;,} and {b,} are bounded. Boundedness of {a;,} and
{bn, }, along with (2.21), leads to (2.20). O

Remark 2. The essence of our argument for Theorem 1 is that if u(0) is near 0 and u = g
on OBy then the image of each ray from the origin must be almost straight, because anything
else costs too much membrane energy. Can one dispense with the hypothesis that u(0) is
near 07 Well, if the boundary curve g(0By) met both {x -e > 0} and {z -e < 0} for every
unit vector e € R3, then the smallness of the membrane energy could be used to prove that
u(0) had to be near 0. Alas, there is no such g: a curve on S* with arclength 2m must lie in
a halfspace' (see e.g. Lemma 19 in Chapter 6 of [9]). However, the argument just sketched
can be applied in the context of the “e-cones” considered in [7].

The next result demonstrates that low-energy deformations, subject to the boundary
conditions of Theorem 1, converge in a non-oscillatory manner (strongly in H'(By)) to the

z
|z )

conical map |z|g (

"'We thank Heiner Olbermann for pointing this out.
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Proposition 1. Let g : 9B, — S? be a unit speed curve and suppose that a sequence of
deformations {up} satisfies

uplop, = g, un(0) < Chllogy(h)|* for some 0 < a < 1/2, and Ej,(up) < Ch?|logy(h)|.
Then {uy} converges strongly in H'(By) to the conical deformation |x|g <|§—|>
Proof. Let dy(z) be the test function defined by (2.2). We will prove that
|un — dp|| gy < Ch* for 0 < o < 1/4.
We first establish the following lemma.
Lemma 3. Let {uy} be as in Proposition 1. Then
lun — dnllr2s) < ChP for 0 < 3 < 1/2. (2.22)

Proof. The bound
Jun — dnlr2(p,,) < Ch* for 0 < A < 1

follows from (2.6). The bound
lun — dnllr2B\5,.) < CR for 0 < 8 < 1/2

follows from integrating (2.13) in r and 6, applying Cauchy-Schwartz as in (2.14), and using
the hypothesis on Ej,(up,). O
Next, we establish

IV (un — i)l 72, < Ch[log,y(R)[Y/? for 0 < 3 < 1/2. (2.23)
Our proof of (2.23) relies on the interpolation inequality
IV f 2 < CllAle2mllVY Ffllzzs, (2.24)

valid for f € W%2(B) satisfying f|op, = 0, applied to f = u — dj,. The estimate (2.23)
follows from (2.24), (2.22) and

IV (un = di)ll12() < Cllogy(h)]"2. (2.25)
In order to establish (2.25), we note that
IVVun| r2,) < Cllogy(h)['?,
due to our hypothesis on Ej(uy), and
IVVdnll 125,y < Cllogy(h)|*

by construction.
The conclusion of Proposition 1 now follows from (2.23), (2.22), and the fact that d, —
|z|g(x/|x|) in HY(B;) as h goes to 0. O
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3 Three dimensional result

In this section, we extend our two dimensional results to three dimensional deformations
up, : By — R? and elastic energies

Ep(up) = W (Vuy,) dx

Bin

where W satisfies the conditions described in Section 1.2.
Throughout this section we use the following rescalings of wup|fo-i-1<yco-i |zj<n/o}: We

define uy; = 2wy (x/27), hy = 27h, and v,; = up (21, o, hjzs). Performing a change of
variables, we have that

1 1
— W(Duy) dx =

3 . 73 ;
h 2-i-1<r<2-3, |2|<h/2 hj 1/2<r<1, |z|<hj/2

W (Duy, ;) dz.

Using the notation V'y = y; ® 1 + y 2 ® e2 to denote the in-plane gradient, we can perform
an additional change of variables in x3 to arrive at

1 1 1
73 W(Duh) dr = ,,—2/ w V’U}w', = Uh,;,3 dzx. (31)
h? Joi-tcrcoi, |21<ns2 hi Jij2<r<t, |z<1/2 h;

The goal of this section is to prove Theorem 2, which we repeat for the reader’s conve-
nience:

Theorem 2. Let g : OBy — S? be a unit speed curve, set §(0,z) = g(0), and define the
surface s : By — R3 in polar coordinates by s(r,0) = rg(0). We have that

e i min Ep(u)=FE
h—0 h | log, h‘ w€W1.2(By ,)NC(By,1); maxgp, x (—h/2,h/2)) [u—g|<Ch|log, hl
maxp, |u|<Ch|log, h|

where By, ;, = B, X (—%, %), and the constant E is given by

E = / Qu(I1) da’.
Bi\By 2

Here, Qs is a quadratic form on M**%, given in [6], and II is the second fundamental form
of the surface s.

Proof of Theorem 2.

Step 1: Proof of the upper bound.
Let N = s, X s, be the unit normal to s(x,y), which is well-defined for r > 0. According
to the proof of Theorem 6.2 in [6], there exists yj, : {B1\ Bij2 x (—1/2,1/2)} — R? satisfying

1 1
Yn|r=1/21 =g+ hzN and lim —2/ W (V/yha —yh,3) dv = E. (3.2)
h—0 1/2<r<1,|z|<1/2 h

12



In order to define a low energy sequence uy, : By, — R3, it suffices to define the corresponding
vpj. For j satisfying 277 > h|logy(h)|V4, set vy ; = Yy, Given e > 0, it follows from (3.2)
and (3.1) that for all such j and sufficiently small A,

1
— W (Duy,) dz < E +e.

3 . .
h 27i7l<r<279 |z|<h/2

Deﬁning uh|{0<r<h|logz(h)|1/4,|z|<h/2} = Tg(@) + WZN, we have

1
— W (Duy,) dx < C|Inh|'2.

h? r<h|logy(h)|}/4,|z|<h/2
Putting all of this together, we have that
: 1 , 1 5
lim ———— [ W(Du,) < lim ——— > (E +¢e)h® = (E +¢).

h—0 h?|logy(h)| /g h=0 h?|log, h| §>0;2-7>h| log, h|1/4

Since € > 0 was arbitrary, we are finished.

Step 2: Proof of the lower bound.
Let u, be a minimizer. This implies, as in the proof of Theorem 1,

_ - V2p/2 _
(B,Z)GIII{},aiL(SrSI lup(rf, z) —rg(0)| < C(y)max(r/*h7=, h7) for 0 < v < 1, (3.3)

and
|H?(A) — H*(0B; x (—h/2,h/2))| < Ch/|log, h|, (3.4)

where

Oun

1 2 2
A= {(9,2) € OB x (—h/2,h/2); / (‘ (1, z)‘ - 1) rdr < h2|log2h|2}. (3.5)
h T
In addition, it follows, as in the proof of Theorem 1, that

< O/‘ 10g2 h’la
(3.6)

’{(Q?”Z) € (By \ Bij2) x (—=1/2,1/2); Jon; (2, 2) — |2[g(2'/|2'])| > ChO=)/2)

for 0 <o <y <1and 277 > h?. Next, we claim that, for any ¢ > 0,

1 h/2 1 , .
ﬁ / . _ W<Duj) dr = = W | V', =uvnjs | do > FE —¢,

—hj2 Joi-t<|p| <2 hi Jij2<r<t, |z1<1/2 h;
(3.7)

if 279 > h? and h is sufficiently small. If (3.7) were false for some € > 0, then there would
exists h; — 0, n; satisfying 27" > h%, h;,,. = h;2", such that

1 1
T/ w V'vhﬁnj, ~_Uhj,nj,3 de < E —¢.
hj,nj 1/2<r<1, |2|<1/2 Pjn;
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Applying Theorem 4.1 of [6], we conclude that the rescaled gradients (V’ (. #ﬂjvh%nﬁg

are compact in L?(By \ Byjs x (—1/2,1/2)). Convergence of {v, .} to rg(6) in L*(By \
By /9 x(—=1/2,1/2)) then follows from compactness of the rescaled gradients and the pointwise
estimate (3.6). This leads to a contradiction, since it follows, by lower-semicontinuity of the
bending energy as given by Theorem 6.1 of [6], that the estimate (3.7) must hold.

The lower bound follows from (3.7) as in the proof of Theorem 1 sincee > 0and 0 < o < 1
are arbitrary. O
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