The Mechanisms and Macroscopic Behavior of the Kagome Metamaterial

Robert V. Kohn Courant Institute, NYU

Theory: Xuenan Li (Courant) Numerics: Bolei Deng and Katia Bertoldi (Harvard)

BIRS workshop on Equilibrium and Non-Equilibrium Pattern Formation in Soft Matter: From Elastic Solids to Complex Fluids July 25-29, 2022

Mechanism-based mechanical metamaterials

These mechanical systems take advantage of geometric nonlinearity and microstructural buckling to achieve novel mechanical response.

An easy-to-visualize example: the checkerboard ("rotating squares") metamaterial, obtained by removing squares from a 2D elastic sheet. Its macroscopic stress-free deformations are isotropic compressions.

slightly compressed

Its response to loading suggests that there's an effective material.

very compressed

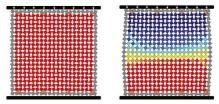
M Czajkowski et al, Nature Comm 2022

The rotating squares metamaterial

Some features of the rotating squares example:

- A continuum of energy-free states, parameterized by the amount of compression. (Reminiscent of a solid-solid phase transformation, but with a continuum of "phases.")
- Created by making periodically-placed holes in a planar sheet. (Thus, basically just a porous elastic composite).
- Geometric nonlinearity is essential. (The energy-free patterns form by a process akin to buckling.)

Two symmetry-related compression patterns; domain walls are expensive.

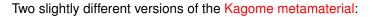


B Deng etal, PNAS 2020

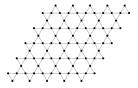
The Kagome metamaterial

This metamaterial is like the rotating squares example, yet different.

The plane can be tiled periodically by equilateral triangles and regular hexagons.



- A cutout-based model: hexagonal holes in a flexible sheet.
- A spring-based model: springs along edges of Kagome lattice (rotation at nodes is free).



Either way: more or less a porous nonlinearly-elastic composite.

The Kagome metamaterial

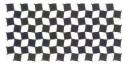
A key similarity to rotating squares example: each can achieve isotropic (macroscopic) compression with zero elastic energy.

reference lattice

one-periodic small compression

one-periodic large compression

Rotating Squares

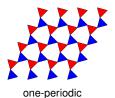


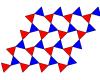
slightly compressed

very compressed

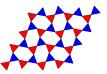
The Kagome metamaterial

A key difference from rotating squares example: Kagome has a huge variety of energy-free compression patterns.



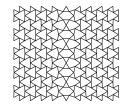


 2×1 periodic

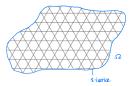


 2×2 periodic (one of many)

Moreover, distinct energy-free compression patterns can meet at an energy-free wall.



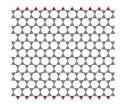
Does it make sense to call this a metamaterial? If so, what are its properties?

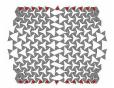


From simulations:

Uniaxial compression:

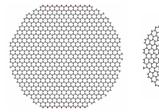
a Kagome-filled square with specified vertical displacement along top and bottom

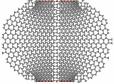




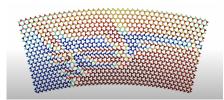
Effective behavior of the Kagome metamaterial

Uniaxial compression: another Kagome-filled region with specified vertical displacement along top and bottom





Bending: A Kagome-filled rectangle with well-chosen Dirichlet bdry condition



Simulation technique

Bolei Deng was already simulating the rotating squares metamaterial. He quickly adapted his code to the Kagome microstructure.

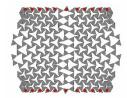
Degrees of freedom: for each triangle, position of center and orientation.

Forces: Triangles are rigid, so corners may not match up; linear springs (with rest length 0) penalize failure to match.

Different from treating edges springs, but energy-free states are the same.

Dynamics: Newton's law with damping.

Sometimes: additional forces introduced to avoid interpenetration.



Simulation technique

Bolei Deng was already simulating the rotating squares metamaterial. He quickly adapted his code to the Kagome microstructure.

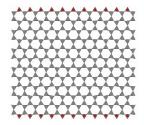
Degrees of freedom: for each triangle, position of center and orientation.

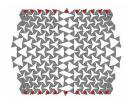
Forces: Triangles are rigid, so corners may not match up; linear springs (with rest length 0) penalize failure to match.

Different from treating edges springs, but energy-free states are the same.

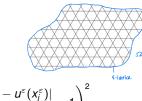
Dynamics: Newton's law with damping.

Sometimes: additional forces introduced to avoid interpenetration.



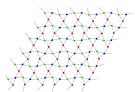


Stable states of a mechanical system are local minima of its elastic energy.



$$E_{\varepsilon}[u^{\varepsilon}] = \varepsilon^{2} \sum_{i \sim j} \left(\frac{|u^{\varepsilon}(x_{i}^{\varepsilon}) - u^{\varepsilon}(x_{j}^{\varepsilon})|}{|x_{i}^{\varepsilon} - x_{j}^{\varepsilon}|} - 1 \right)^{2}$$

- x^ε_i are nodes of scaled lattice that lie in Ω
- $u^{\varepsilon}(x_i^{\varepsilon})$ are locations of nodes after deformation
- sum is over arcs of scaled lattice $(|x_i^{\varepsilon} x_i^{\varepsilon}| = \varepsilon)$
- physically linear (Hookean) springs but geometrically nonlinear
- rotation at nodes is free



$$E_{\varepsilon}[u^{\varepsilon}] = \varepsilon^{2} \sum_{i \sim j} \left(\frac{|u^{\varepsilon}(x_{i}^{\varepsilon}) - u^{\varepsilon}(x_{j}^{\varepsilon})|}{|x_{i}^{\varepsilon} - x_{j}^{\varepsilon}|} - 1 \right)^{2}$$

Local vs global min: E_{ε} may have many local minima. It is nevertheless meaningful consider deformations u^{ε} that achieve the *minimum energy* (exactly, or asymptotically in ε).

There is a mathematical framework, used eg to discuss composite materials. We say E_{ε} Gamma-converges to an effective energy E_{eff} if (for any bdry conds or loading) the minimizing u^{ε} converge to minimizers of E_{eff} .

Each u^{ε} is defined on nodes of a different lattice, but we can view it as a piecewise-linear function by triangulating the reference lattice. Then $u^{\varepsilon}(x)$ is defined everywhere, and one can show

$$\int_{\Omega} |\nabla u^{\varepsilon}|^2 \, dx \leq C(1 + E_{\varepsilon}(u^{\varepsilon})).$$

So the effective energy should be defined for *u* such that $\int_{\Omega} |\nabla u|^2 dx < \infty$.

$$E_{\varepsilon}[u^{\varepsilon}] = \varepsilon^{2} \sum_{i \sim j} \left(\frac{|u^{\varepsilon}(x_{i}^{\varepsilon}) - u^{\varepsilon}(x_{j}^{\varepsilon})|}{|x_{i}^{\varepsilon} - x_{j}^{\varepsilon}|} - 1 \right)^{2}$$

Local vs global min: E_{ε} may have many local minima. It is nevertheless meaningful consider deformations u^{ε} that achieve the *minimum energy* (exactly, or asymptotically in ε).

There is a mathematical framework, used eg to discuss composite materials. We say E_{ε} Gamma-converges to an effective energy E_{eff} if (for any bdry conds or loading) the minimizing u^{ε} converge to minimizers of E_{eff} .

Each u^{ε} is defined on nodes of a different lattice, but we can view it as a piecewise-linear function by triangulating the reference lattice. Then $u^{\varepsilon}(x)$ is defined everywhere, and one can show

$$\int_{\Omega} |\nabla u^{\varepsilon}|^2 \, dx \leq C(1 + E_{\varepsilon}(u^{\varepsilon})).$$

So the effective energy should be defined for *u* such that $\int_{\Omega} |\nabla u|^2 dx < \infty$.

Local vs global min: E_{ε} may have many local minima. It is nevertheless meaningful consider deformations u^{ε} that achieve the *minimum energy* (exactly, or asymptotically in ε).

There is a mathematical framework, used eg to discuss composite materials. We say E_{ε} Gamma-converges to an effective energy E_{eff} if (for any bdry conds or loading) the minimizing u^{ε} converge to minimizers of E_{eff} .

Each u^{ε} is defined on nodes of a different lattice, but we can view it as a piecewise-linear function by triangulating the reference lattice. Then $u^{\varepsilon}(x)$ is defined everywhere, and one can show

$$\int_{\Omega} |\nabla u^{\varepsilon}|^2 \, dx \leq C(1 + E_{\varepsilon}(u^{\varepsilon})).$$

So the effective energy should be defined for *u* such that $\int_{\Omega} |\nabla u|^2 dx < \infty$.

Theorem: The Gamma-limit exists. We view it as the macroscopic elastic energy. If u^{ε} asymptotically minimizes E_{ε} as $\varepsilon \to 0$ (subject to Dir bc on part or all of $\partial \Omega$), any limit u^* minimizes

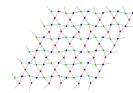
$$E_{\mathrm{eff}}[u] = \int_{\partial\Omega} W_{\mathrm{eff}}(Du) \, dx$$

(subject to the given Dirichlet bc). The effective energy density $W_{\rm eff}$ is nonnegative and frame indifferent:

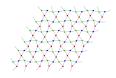
$$W_{\rm eff} \ge 0$$
, and $W_{\rm eff}(F) = W_{\rm eff}(QF)$ for any rotation Q ;

moreover it is independent of Ω , and is characterized by

$$W_{\rm eff}(F) = \min_{\substack{k=1,2,\dots\\ \text{where } \phi \text{ is } k \text{ -periodic}}} \min_{\substack{u(x_i) = F \cdot x_i + \varphi(x_i)\\ \text{where } \phi \text{ is } k \text{ -periodic}}} \left\{ \begin{array}{c} \text{spatially-averaged}\\ \text{microscopic energy} \end{array} \right\}$$



$$W_{\text{eff}}(F) = \min_{\substack{k=1,2,\dots\\ where \varphi \text{ is } k \text{-periodic}}} \begin{cases} \text{ spatially-averaged} \\ \text{microscopic energy} \end{cases}$$



- Proof follows those of analogous results for
 - periodic nonlin-elastic composites (Braides 1985; Müller 1987)
 - less degenerate lattices of springs (Alicandro & Cicalese 2004)
- Effective energy describes only (asymptotic) energy minimizers.
 - If system gets stuck at local minimizers, the theory won't describe what is seen.
- This theory considers *only* the spatially-averaged energy.
 - It ignores the richness of the microscopic picture (for example domains separated by low-energy walls).

Estimating W_{eff}

$W_{\rm eff}$ vanishes only at isotropic compressions

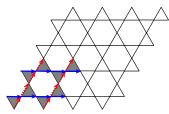
Recall: $W_{\text{eff}}(F)$ is min avg energy, among periodic patterns with macroscopic deformation $F \cdot x$ (with any periodicity k = 1, 2, ...).

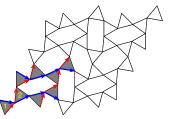
Examples of energy-free compression patterns show that $W_{\text{eff}}(F) = 0$ when *F* is an isotropic compression. But how to show it doesn't vanish elsewhere?

Capture idea using k = 2. Suppose $W_{\text{eff}}(F) = 0$. Let $e_1 = (1,0)$ and $e_2 = R_{\pi/3}e_1$. Since $u = F \cdot x + \varphi(x)$ where φ is 2-periodic,

Fe1 = avg of blue vectors in right figure

Fe2 = avg of red vectors in right figure

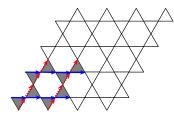




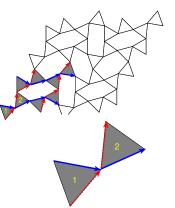
Estimating W_{eff}

Recall: for $e_1 = (1, 0)$ and $e_2 = R_{\pi/3}e_1$,

 $Fe_1 =$ avg of blue vectors in right figure $Fe_2 =$ avg of red vectors in right figure



But $R_{\pi/3}$ (red vector) = orange vector along same triangle. So $R_{\pi/3}Fe_1 = Fe_2$.



This implies, by simple algebra, that *F* is isotropic (F = cQ where *Q* is some rotation).

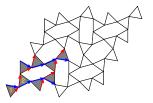
Estimating W_{eff}

Thus far: $W_{\text{eff}}(F) = 0 \Rightarrow F = cQ$ for some rotation Q, using that triangles are rigid under energy-free deformations. Still need $c \leq 1$.

If energy is small, then triangles are almost rigid. Arguing much as before, we get

 $W_{\rm eff}(F) \geq C(\lambda_1 - \lambda_2)^2$

for any *F*, where λ_1, λ_2 are the principal stretches (eigenvalues of $(F^T F)^{1/2}$).



The reference lattice has springs in straight lines. It costs energy to stretch those lines. This leads to the estimate

$$W_{\rm eff} \geq C[(\lambda_1 - 1)^2_+ + (\lambda_2 - 1)^2_+].$$

These results combine to give the desired result: $W_{\rm eff}$ vanishes only at isotropic compressions.

Energy-free maps are conformal

 $W_{\rm eff}(Du) \equiv 0$ when Du = c(x)Q(x) with $c(x) \leq 1$ and $Q^TQ = I$.

Such maps are conformal. There are many examples: $f = u_1 + iu_2$ should be a complex analytic function of $z = x_1 + ix_2$, with $|f'(z)| \le 1$.

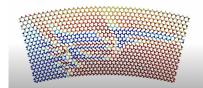
Simulations with Dirichlet bdry data from compressive conformal maps:

Biaxial compression

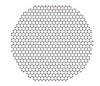
produces a uniform one-periodic pattern.

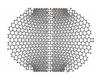
Bending is more interesting. Here

the conformal map is $f = u_1 + iu_2 = e^{iz} = e^{ix_1}e^{-x_2}$. The compression factor is c = 1 at the top edge.



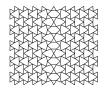
Uniaxial compression: flattened circle with vert displ specified along top and bottom





Why is the deformation nonuniform? Specifying only u_2 along flattened segments doesn't determine a unique conformal map. Our dynamics (Newton's law with damping) made a choice.

Energy-free domain wall: The simulations show low-energy walls separating domains with mirror-image patterns. As noted earlier, such walls can even be energy-free!



Elastic energy sees the principal strains

$$\lambda_1, \lambda_2 = \begin{cases} \text{ eigenvalues of } E \text{ where } Du(x) = R(x)E(x), \\ E = (Du^T Du)^{1/2} \end{cases}$$

When $\lambda_1, \lambda_2 < 1$ we have $W_{\rm eff}(Du) \sim (\lambda_1 - \lambda_2)^2$. So for compressive maps, the relaxed energy is like

$$\int_{\Omega} (\lambda_1 - \lambda_2)^2 \, dx = \int_{\Omega} |Du|^2 - 2 \det Du \, dx.$$

A very simple variational problem; nonnegative, vanishing only at conformal maps!

A paradox

Kagome lattice is far from rigid – it has huge variety of mechanisms.

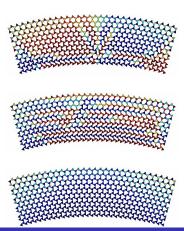
But its macroscopic energy still makes sense (if we accept that the observed u^{ε} have energy comparable to the global min of E_{ε}).

Not surprisingly: a small bias can change the microstructure change a lot.

Local min obtained by gradually "bending a rectangle" (using Dir bc).

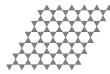
Local min obtained by gradual bending with a bias favoring 2×1 -periodic patterns.

Local min starting from ansatz based on one-periodic mechanism.



Now a word about those compression patterns

By a mechanism, we mean a one-parameter family of deformations whose energy is exactly zero.



reference lattice

one-periodic small compression

one-periodic large compression

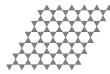
Q: A mechanism looks like progressive buckling. Is there a linear elastic calculation that predicts its onset and explains its geometry?

A: For Kagome, the linearization of a periodic mechanism is a linear displacement with linear-elastic energy zero. These are called **Guest-Hutchinson modes**. They form a linear space.

Definition: a periodic *u* is a GH mode if $\langle u(x_i) - u(x_j), x_i - x_j \rangle = 0$ whenever x_i and x_j are connected by a spring. Such a displacement deforms each line of springs to an (infinitesimally) zig-zag line.

Now a word about those compression patterns

By a mechanism, we mean a one-parameter family of deformations whose energy is exactly zero.



reference lattice

one-periodic small compression

one-periodic large compression

Q: A mechanism looks like progressive buckling. Is there a linear elastic calculation that predicts its onset and explains its geometry?

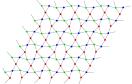
A: For Kagome, the linearization of a periodic mechanism is a linear displacement with linear-elastic energy zero. These are called Guest-Hutchinson modes. They form a linear space.

Definition: a periodic *u* is a GH mode if $\langle u(x_i) - u(x_j), x_i - x_j \rangle = 0$ whenever x_i and x_j are connected by a spring. Such a displacement deforms each line of springs to an (infinitesimally) zig-zag line. However, finding periodic mechanisms is not a bifurcation problem.

Not every *k*-periodic Guest-Hutchinson mode comes from a mechanism when k > 1.

For a *k*-periodic mechanism, there are *k* distinct horizontal lines that go to zigzag lines.

Each must experience the same overall compression.

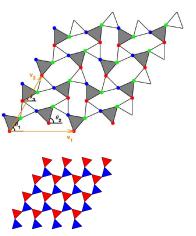


This places a quadratic condition on a GH mode, if it is to come from a mechanism.

We have explicit formulas for all periodic mechanisms with period at most twice that of the Kagome lattice.

There is a three-parameter family of 2-periodic mechanisms, parameterized by the angles $\theta_1, \theta_2, \theta_3$ as shown. (The compression ratio is an explicit function of the angles.)

The one-periodic mechanism can also be viewed as a two-periodic one.



The space of 2-periodic GH modes is 4-dimensional. But the only ones that come from mechanisms are

- a 3-dimensional subspace, tangent to the 3-parameter family of mechanisms
- a line, tangent to the one-periodic mechanism

Other GH modes don't come from mechanisms (they violate the necessary condition).

- The Kagome metamaterial has a lot of microstructural freedom. Many energy-free patterns. Walls btwn them can be energy-free.
- The macroscopic energy of the Kagome metamaterial is nevertheless well-defined.
- We understand where *W*_{eff} vanishes. The macroscopically energy-free deformations are compressive conformal maps.
- Just one example, but an interesting one. Paul Plucinsky will discuss other mechanism-based mechanical metamaterials tomorrow.