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Mechanism-based mechanical metamaterials

These mechanical systems take advantage of geometric nonlinearity
and microstructural buckling to achieve novel mechanical response.

An easy-to-visualize example: the checkerboard (“rotating squares”)
metamaterial, obtained by removing squares from a 2D elastic sheet.
Its macroscopic stress-free deformations are isotropic compressions.

slightly compressed very compressed

Its response to loading
suggests that there’s an
effective material.

M Czajkowski et al,
Nature Comm 2022
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The rotating squares metamaterial

Some features of the rotating squares example:

A continuum of energy-free states, parameterized by the amount
of compression. (Reminiscent of a solid-solid phase
transformation, but with a continuum of “phases.”)

Created by making periodically-placed holes in a planar sheet.
(Thus, basically just a porous elastic composite).

Geometric nonlinearity is essential. (The energy-free patterns
form by a process akin to buckling.)

Two symmetry-related
compression patterns;
domain walls are
expensive.

B Deng etal, PNAS 2020
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The Kagome metamaterial

This metamaterial is like the rotating squares example, yet different.

The plane can be tiled periodically
by equilateral triangles and regular
hexagons.

Two slightly different versions of the Kagome metamaterial:

A cutout-based model:
hexagonal holes in a flexible
sheet.

A spring-based model:
springs along edges of
Kagome lattice (rotation at
nodes is free).

Either way: more or less a porous nonlinearly-elastic composite.
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The Kagome metamaterial

A key similarity to rotating squares example: each can achieve
isotropic (macroscopic) compression with zero elastic energy.

Kagome

reference lattice one-periodic
small compression

one-periodic
large compression

Rotating
Squares

slightly compressed very compressed

Robert V. Kohn The Kagome metamaterial



The Kagome metamaterial
A key difference from rotating squares example: Kagome has a huge
variety of energy-free compression patterns.

one-periodic 2× 1 periodic 2× 2 periodic
(one of many)

Moreover, distinct energy-free
compression patterns can meet at
an energy-free wall.
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Effective behavior of the Kagome metamaterial

Does it make sense to call
this a metamaterial? If so,
what are its properties?

From simulations:

Uniaxial compression:
a Kagome-filled square
with specified vertical
displacement along top
and bottom
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Effective behavior of the Kagome metamaterial

Uniaxial compression:
another Kagome-filled
region with specified
vertical displacement
along top and bottom

Bending: A Kagome-filled
rectangle with well-chosen
Dirichlet bdry condition
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Simulation technique
Bolei Deng was already simulating the rotating squares
metamaterial. He quickly adapted his code to the Kagome
microstructure.

Degrees of freedom: for each triangle,
position of center and orientation.

Forces: Triangles are rigid, so corners
may not match up; linear springs (with
rest length 0) penalize failure to match.

Different from treating edges springs, but
energy-free states are the same.

Dynamics: Newton’s law with damping.

Sometimes: additional forces introduced
to avoid interpenetration.
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The microscopic elastic energy

Stable states of a
mechanical system are
local minima of its elastic
energy.

Eε[uε] = ε2
∑
i∼j

(
|uε(xεi )− uε(xεj )|
|xεi − xεj |

− 1

)2

xεi are nodes of scaled lattice that lie in Ω

uε(xεi ) are locations of nodes after deformation

sum is over arcs of scaled lattice (|xεi − xεj | = ε)

physically linear (Hookean) springs
but geometrically nonlinear

rotation at nodes is free
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The microscopic elastic energy

Eε[uε] = ε2
∑
i∼j

(
|uε(xεi )− uε(xεj )|
|xεi − xεj |

− 1

)2

Local vs global min: Eε may have many local minima. It is nevertheless
meaningful consider deformations uε that achieve the minimum energy
(exactly, or asymptotically in ε).

There is a mathematical framework, used eg to discuss composite materials.
We say Eε Gamma-converges to an effective energy Eeff if (for any bdry
conds or loading) the minimizing uε converge to minimizers of Eeff.

Each uε is defined on nodes of a different lattice, but we can view it as a
piecewise-linear function by triangulating the reference lattice. Then uε(x) is
defined everywhere, and one can show∫

Ω

|∇uε|2 dx ≤ C(1 + Eε(uε)).

So the effective energy should be defined for u such that
∫

Ω
|∇u|2 dx <∞.
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The effective elastic energy

Theorem: The Gamma-limit exists. We view it as the macroscopic
elastic energy. If uε asymptotically minimizes Eε as ε→ 0 (subject to
Dir bc on part or all of ∂Ω), any limit u∗ minimizes

Eeff[u] =

∫
∂Ω

Weff(Du) dx

(subject to the given Dirichlet bc). The effective energy density Weff is
nonnegative and frame indifferent:

Weff ≥ 0, and Weff(F ) = Weff(QF ) for any rotation Q;

moreover it is independent of Ω, and is characterized by

Weff(F ) = min
k=1,2,...

min
u(xi )=F ·xi +ϕ(xi )

where ϕ is k -periodic

{
spatially-averaged
microscopic energy

}

Robert V. Kohn The Kagome metamaterial



The effective elastic energy

Weff(F ) = min
k=1,2,...

min
u(xi )=F ·xi +ϕ(xi )

where ϕ is k -periodic

{
spatially-averaged
microscopic energy

}

Proof follows those of analogous results for

- periodic nonlin-elastic composites (Braides 1985; Müller 1987)
- less degenerate lattices of springs (Alicandro & Cicalese 2004)

Effective energy describes only (asymptotic) energy minimizers.

- If system gets stuck at local minimizers, the theory won’t
describe what is seen.

This theory considers only the spatially-averaged energy.

- It ignores the richness of the microscopic picture (for
example domains separated by low-energy walls).
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Estimating Weff

Weff vanishes only at isotropic compressions

Recall: Weff(F ) is min avg energy, among periodic patterns with macroscopic
deformation F ·x (with any periodicity k = 1, 2, . . .).

Examples of energy-free compression patterns show that Weff(F ) = 0 when
F is an isotropic compression. But how to show it doesn’t vanish elsewhere?

Capture idea using k = 2. Suppose Weff(F ) = 0. Let e1 = (1, 0) and
e2 = Rπ/3e1. Since u = F ·x + ϕ(x) where ϕ is 2-periodic,

Fe1 =avg of blue vectors in right figure

Fe2 =avg of red vectors in right figure

1

2
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Estimating Weff

Recall: for e1 = (1, 0) and e2 = Rπ/3e1,

Fe1 =avg of blue vectors in right figure

Fe2 =avg of red vectors in right figure

1

2

But Rπ/3 (red vector) = orange
vector along same triangle. So
Rπ/3Fe1 = Fe2. 1

2

This implies, by simple algebra, that F is isotropic (F = cQ where Q
is some rotation).
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Estimating Weff

Thus far: Weff(F ) = 0⇒ F = cQ for some rotation Q, using that
triangles are rigid under energy-free deformations. Still need c ≤ 1.

If energy is small, then triangles are
almost rigid. Arguing much as before, we
get

Weff(F ) ≥ C(λ1 − λ2)2

for any F , where λ1, λ2 are the principal
stretches (eigenvalues of (F T F )1/2).

1

2

The reference lattice has springs in straight lines. It costs energy to
stretch those lines. This leads to the estimate

Weff ≥ C[(λ1 − 1)2
+ + (λ2 − 1)2

+].

These results combine to give the desired result: Weff vanishes only
at isotropic compressions.
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Energy-free maps are conformal

Weff(Du) ≡ 0 when Du = c(x)Q(x) with c(x) ≤ 1 and QT Q = I.

Such maps are conformal. There are many examples: f = u1 + iu2
should be a complex analytic function of z = x1 + ix2, with |f ′(z)| ≤ 1.

Simulations with Dirichlet bdry data from compressive conformal
maps:

Biaxial compression
produces a uniform
one-periodic pattern.

Bending is more interesting. Here
the conformal map is
f = u1 + iu2 = eiz = eix1e−x2 . The
compression factor is c = 1 at the
top edge.
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Energy-free maps are conformal

Uniaxial compression:
flattened circle with vert
displ specified along top
and bottom

Why is the deformation nonuniform? Specifying only u2 along
flattened segments doesn’t determine a unique conformal map. Our
dynamics (Newton’s law with damping) made a choice.

Energy-free domain wall: The
simulations show low-energy walls
separating domains with
mirror-image patterns. As noted
earlier, such walls can even be
energy-free!
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Mathematical essence of the relaxed problem

Elastic energy sees the principal strains

λ1, λ2 =

{
eigenvalues of E where Du(x) = R(x)E(x),
E = (DuT Du)1/2

When λ1, λ2 < 1 we have Weff(Du) ∼ (λ1 − λ2)2. So for compressive
maps, the relaxed energy is like∫

Ω

(λ1 − λ2)2 dx =

∫
Ω

|Du|2 − 2 det Du dx .

A very simple variational problem; nonnegative, vanishing only at
conformal maps!

λ2
1 + λ2

2 = |E |2 = |Du|2 and λ1λ2 = det E = det Du∣∣∇u1 − (∇u2)⊥
∣∣2 = |Du|2 − 2 det Du
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A paradox
Kagome lattice is far from rigid – it has huge variety of mechanisms.

But its macroscopic energy still makes sense (if we accept that the observed
uε have energy comparable to the global min of Eε).

Not surprisingly: a small bias can change the microstructure change a lot.

Local min obtained by
gradually “bending a
rectangle” (using Dir bc).

Local min obtained by gradual
bending with a bias favoring
2× 1-periodic patterns.

Local min starting from ansatz
based on one-periodic
mechanism.
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Now a word about those compression patterns
By a mechanism, we mean a one-parameter family of deformations
whose energy is exactly zero.

reference lattice
one-periodic

small compression
one-periodic

large compression

Q: A mechanism looks like progressive buckling. Is there a linear
elastic calculation that predicts its onset and explains its geometry?

A: For Kagome, the linearization of a periodic mechanism is a linear
displacement with linear-elastic energy zero. These are called
Guest-Hutchinson modes. They form a linear space.

Definition: a periodic u is a GH mode if 〈u(xi )− u(xj ), xi − xj〉 = 0
whenever xi and xj are connected by a spring. Such a displacement
deforms each line of springs to an (infinitesimally) zig-zag line.
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Guest-Hutchinson modes vs mechanisms

However, finding periodic mechanisms is not a bifurcation problem.

Not every k -periodic Guest-Hutchinson mode comes from a
mechanism when k > 1.

For a k -periodic mechanism, there are k
distinct horizontal lines that go to zigzag lines.

Each must experience the same overall
compression.

This places a quadratic condition on a GH mode, if it is to come from
a mechanism.
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The 2 periodic case

We have explicit formulas for all periodic mechanisms with period at
most twice that of the Kagome lattice.

There is a three-parameter family of
2-periodic mechanisms,
parameterized by the angles θ1, θ2, θ3

as shown. (The compression ratio is
an explicit function of the angles.)

The one-periodic mechanism can also
be viewed as a two-periodic one.
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The 2 periodic case

The space of 2-periodic GH modes is 4-dimensional. But the only
ones that come from mechanisms are

a 3-dimensional subspace, tangent to the
3-parameter family of mechanisms

a line, tangent to the one-periodic
mechanism

Other GH modes don’t come from mechanisms (they violate the
necessary condition).
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Stepping back

The Kagome metamaterial has a lot of microstructural freedom.
Many energy-free patterns. Walls btwn them can be energy-free.

The macroscopic energy of the Kagome metamaterial is
nevertheless well-defined.

We understand where Weff vanishes. The macroscopically
energy-free deformations are compressive conformal maps.

Just one example, but an interesting one. Paul Plucinsky will
discuss other mechanism-based mechanical metamaterials
tomorrow.
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