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Abstract

It is well known that an elastic sheet loaded in tension will wrinkle and that the
length scale of the wrinkles tends to zero with vanishing thickness of the sheet
[Cerda and Mahadevan, Phys. Rev. Lett. 90, 074302 (2003)]. We give the first
mathematically rigorous analysis of such a problem. Since our methods require
an explicit understanding of the underlying (convex) relaxed problem, we focus
on the wrinkling of an annular sheet loaded in the radial direction [Davidovitch
et al., PNAS108 (2011), 18227]. Our main achievement is identification of the
scaling law of the minimum energy as the thickness of the sheet tends to zero.
This requires proving an upper bound and a lower bound that scale the same
way. We prove both bounds first in a simplified Kirchhoff-Lovesetting and then
in the nonlinear three-dimensional setting. To obtain the optimal upper bound,
we need to adjust a naive construction (one family of wrinkles superimposed on
a planar deformation) by introducing a cascade of wrinkles.The lower bound is
more subtle, since it must be ansatz-free.c© 2000 Wiley Periodicals, Inc.

1 Introduction

In the last few years the wrinkling and folding of thin elastic sheets has at-
tracted a lot of attention in both the mathematics and physics communities (see,
e.g., the recent book by Audoly and Pomeau [2]). Wrinkled configurations can
be viewed as (local) minimizers of a suitable elastic energy, consisting of a non-
convex “membrane energy” plus a higher-order singular perturbation representing
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“bending energy”. Though the physically relevant wrinkledconfigurations are lo-
cal minimizers, we can begin to understand their character by focusing on (i) the
minimum value of the elastic energy, and (ii) the propertiesof low-energy defor-
mations. In this paper we identify thescaling lawof the minimum energy for
an annular sheet stretched in the radial direction. This requires proving an up-
per bound and a lower bound that scale the same way. A naive approach to the
upper bound, based on a single length scale of wrinkling, fails to achieve the op-
timal scaling [12]; the successful approach uses a cascade of wrinkles. The lower
bound is more subtle, since it must be ansatz-free. We prove it first in a reduced
Kirchhoff-Love setting and later in a general ansatz-free three-dimensional setting.

As mentioned above, the behavior of thin elastic sheets has attracted consider-
able attention from the physics community (see, e.g., work on sheets of graphene
[18]). Mahadevan and Cerda considered the stretching of a rectangular elastic
sheet with clamped boundaries [6] (see also [29] for experiments and [15] for nu-
merical computation), by minimizing the elastic energy of the membrane within a
particular ansatz. The problem we consider here is similar,but our viewpoint and
achievement are different: we prove an upper bound and a matching ansatz-free
lower bound on the elastic energy. Our analysis does not assume a specific form
for the solution.

Our treatment requires knowledge of the underlying convex relaxed problem.
In the radial setting (see [12]) the relaxed problem reducesto a simple one dimen-
sional variational problem which can be analyzed quite completely. For this reason
we focus on an annular sheet stretched in the radial direction as a convenient model
problem, rather than addressing the case considered in [6].

One might ask why we are so interested in the scaling law of theminimal en-
ergy. As mentioned above, stable configurations are local minimizers of the elastic
energy. It seems difficult to find such configurations analytically (the associated
fourth-order PDE is highly nonlinear). But we expect the physically-relevant con-
figurations to have relatively low energy. Therefore we can obtain some informa-
tion about them by identifying the energy scaling law, then investigating the proper-
ties of configurations that achieve this law. While the present paper focuses mainly
on the energy scaling law, certain consequences are immediately evident. In par-
ticular, since our scaling law is linear inh and the bending energy ish2∫ |∇2u3|2,
it is immediately evident that the low-energy configurations become increasingly
complex ash→ 0.

1.1 Context

Motivated by experiments, several physics papers have studied the wrinkling
of thin elastic films from a theoretical point of view. As already mentioned, Davi-
dovitch et al. [12] considered an annular film stretched in the radial direction (see
also [17] for related results). Dead loads applied both on the inside and outside
boundary cause the film to wrinkle in some region. Indeed, if the loads inside are
large enough compared to the loads on the outer boundary, thedeformation in the
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radial direction forces the concentric circles of the material near the inner bound-
ary to decrease their length by more than is required by the Poisson ratio of the
material. Therefore, the membrane needs to waste this excess in the circumference
either by compression or by buckling out of plane, contributing to the energy with
some amount which depends onh. In [12] they found an optimal solution (using
energy minimization methods) within a particular ansatz and using a linear stress-
strain law, obtaining conclusions about the extent of wrinkled region and the period
and amplitude of wrinkles. In the present paper we consider the same problem us-
ing a nonlinear 3D model. We will prove an upper bound and a matching lower
bound without assuming any ansatz.

Our problem seems related to the experiment reported in [21]. It consists of
a circular thin elastic film placed on a liquid substrate witha droplet on top of
the film. In this case, the capillary forces at the boundary stretch the film in the
radial direction and the capillary forces from the drop force the film to wrinkle.
This experiment was studied theoretically in [32] (see also[11]), though a lot of
questions still remain open. We believe that our methods mayalso be useful in the
study of this problem.

The idea of proving an upper bound and a matching lower bound for the min-
imum of the energy has a long history; see e.g., the work of Kohn and Müller
on a model for martensitic phase transformation [23] (see also [9] for subsequent
progress). As in our setting, the energy in [23] was composedof a nonconvex
function ofDu singularly perturbed by a higher order term. In the setting of [23]
the minimizer develops a fine branching structure. Similar phenomena are seen
in uniaxial ferromagnets and type I superconductors (see, e.g., [7], [8], and [25]).
In all these settings there is a “relaxed problem”, whose minimizers are the weak
limits of optimal configurations ash→ 0. The minimal energy forh > 0 is that of
the relaxed problem plus a small correction that scales withh. One difference here
is the special character of the singular perturbation – bending energy rather than
surface energy – which leads to creation of smooth wrinkles rather than walls.

The main focus here is the scaling of wrinkles associated with h > 0. This is
different from mere identification of the extent of the wrinkled region, which can
be done by studying the relaxed problem or using the tension field theory. There
is a lot of literature on this application of tension field theory (see, e.g., the 1961
NASA report [30], [14], or a recent work on balloons [3]).

Our problem can be viewed as an example of tension-induced wrinkling. The
radial tension determines the wrinkling direction; the energy scaling law gives the
excess energy due to positive thickness, and is related to the amplitude and length
scale of the wrinkles. Other problems with similar character include the coarsening
of folds in a hanging drape (see, e.g., [31], [4]) and the cascade of wrinkles at the
edge of a confined floating sheet (see, e.g., [20], [10], [24]).
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1.2 The main idea

Before starting with rigorous arguments let us outline our result and the main
ideas of its proof. We will work variationally, consideringthe sum of the elastic
energy of the thin sheet and boundary terms representing thework done by the
loads. We first consider a simplified two-dimensional setting where the elastic
energy is further split into a membrane and a bending term defined in terms of the
midplane deformationu : R

2 →R
3. The membrane term is written as the integral of

a reduced 2D stored energy density obtained in a systematic way from the original
3D stored energy density. As the bending term we choose theL2 norm of the second
derivatives of the out-of-plane displacement as often seenin the linear Föppl-von
Kármán energy used for small slopes and deformations. This 2D model is a curious
hybrid since we use a nonlinear stretching term together with a linear bending term.
One can ask why we don’t also use a linear stretching part? In fact, that scenario
would be very limited since it would lead to a very restrictive linear model for the
relaxed problem.

Since our focus is the limiting behavior as the thicknessh of the sheet tends
to zero, we divide the energy byh to get the energy per unit thicknessEh. The
first step toward identification of the scaling law is to separate the contributions
to Eh from wrinkling and from the bulk deformation. This is done byconsidering
a relaxed problem, where instead of the original stored energy density we use its
quasiconvexification and formally seth= 0 (see [28] for more detail on this topic).

Under mild assumptions the relaxed energy is convex, smaller than the original
energy, and independent of the thickness. Moreover, we showthat it possesses a
unique solutionu0 (up to a translation) which is radially symmetric and planar. We
denote the relaxed energy ofu0 by E0; as we will see the energyEh(u0) is strictly
larger thanE0. This is becauseu0 involves compression in the hoop direction in a
region close to the inner boundary (we will call it the “relaxed” region). Since the
thickness is small the sheet prefers to wrinkle rather than to compress.

The idea of the construction for the upper bound on the minimum energy is
to superimpose wrinkles uponu0. After optimizing the amplitude and wavelength
of the wrinkles in a naive ansatz we obtain a solution with energy E0 +Ch|logh|.
To remove the logarithmic factor (i.e. to get the same scaling as the lower bound)
we need to work harder. We observe that the out-of-plane partof the deformation
decreases suddenly at the boundary of the relaxed region; this is the source of the
| logh| factor. At the same time, since the amplitude of the out-of-plane deforma-
tion is vanishing, the bending is vanishing as well. Therefore we can introduce
branching of the wrinkles (changing their period) near the boundary of the relaxed
region; this increases the bending but at the same time decreases the amplitude
of the out-of-plane deformation, making the decrease of theout-of-plane displace-
ment less steep. By arguing this way we obtain a constructionwhose energy is
bounded byE0 +Ch.
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The lower bound minEh ≥ E0 + ch (c > 0 independent ofh) is proved using
an argument by contradiction. In the simplified two-dimensional setting, we first
use the relaxed problem to prove an estimate on the out-of-plane displacementu3.
Then using interpolation we show smallness ofDu3, allowing us to project the
solution into the plane without changing its energy too much. Finally, we compare
this projection withu0 and obtain a contradiction from an argument about the area
of the deformed annulus. The generalization to the nonlinear three-dimensional
setting uses the main arguments of the 2D setting coupled with rigidity estimates
first derived by Friesecke, James, and Müller [16].

This paper focuses on the energy scaling law. It is natural toask how the energy
is distributed more locally; for example, is the optimal distribution (with respect
to radius) similar to that of the construction giving our upper bound? It is equally
natural to ask what the minimizer looks like; for example, must the amplitude and
wavelength of wrinkling at radiusr resemble these of our construction? These
questions remain open.

It seems worth noting that while we will repeatedly use the Euler-Lagrange
equation for the relaxed problem (to characterize the relaxed solution), we will
never use the Euler-Lagrange equation from the original problem. In related stud-
ies, such as [23], minimizers are known to have special properties. We expect the
same to be true in the present setting, but the analysis of minimizers will require
techniques beyond those of the present paper.

The paper is organized as follows. In Section 2 we describe the three dimen-
sional energy together with a reduced two dimensional model. The definition of
the relaxed problem and a theorem about its unique minimizeris in Section 3. Sec-
tion 4 contains both the upper bound and the lower bound in thereduced 2D setting.
In Section 5 we generalize the upper and lower bounds proved in Section 4 to the
three-dimensional setting.

We will use notationx = (x1,x2,x3) = (x′,x3) for points inR
3, A : B = tr(ATB)

for the Frobenius inner product on matrices, and∂1, ∂2 for partial derivatives with
respect to the first and second variable.

2 The model

We are interested in deformations of isotropic elastic thinfilms of annular
shape. We consider a nonlinear three-dimensional elastic energy (per unit thick-
ness) in a cylindrical domain with small thicknessh

E3D
h (u) =

1
h

∫

Ω×(−h/2,h/2)
W3D(Du)dx.

The stored energy densityW3D(M) is assumed to be isotropic, so it can be written
as a symmetric function of the eigenvalues of

√
MTM:

W3D(M) = f3D(λ1,λ2,λ3).
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Here and below, we assume thatM = Du has strictly positive determinant; this is
natural, sinceM is the gradient of an elastic deformation.

As already mentioned, we are interested in deformations of annular thin films.
We consider a thin cylindrical domainΩ× (−h/2,h/2) with a cross-section

Ω =
{

x∈ R
2 : Rin < |x| < Rout

}

for some radii 0< Rin < Rout. The dead loads are applied on the inner boundary
in the radial direction (with magnitudeTin, pointing inwards) and on the outer
boundary (with magnitudeTout, pointing outwards), so the film will mostly stretch
in the radial direction. These loads contribute to the totalenergy as

B3D
h (u) :=

Tin

h

∫

|x̂|=Rin

u(x) · x̂
Rin

dS− Tout

h

∫

|x̂|=Rout

u(x) · x̂
Rout

dS,

wherex̂= (x1,x2,0) and dSdenotes surface measure. We will show in Theorem 5.1
that under suitable assumptions on the elastic energy density W3D, radii Rin,Rout,
and forcesTin,Tout, we have

(2.1) min
u

E3D
h (u)+B3D

h (u) = E0 +O(h),

whereE0 is a constant (depending onΩ,Tin,Tout andW3D). SinceE0 is the limiting
energy ash→ 0, we view it as representing the “bulk energy” of the deformation.
The order-h correction is the contribution from the wrinkling of the membrane.

2.1 The reduced model

Since we consider domains which are thin in thex3-direction, we can gain in-
sight by first considering a reduced two dimensional Kirchhoff-Love model. In
this setting we are interested only in the deformation of onecross section (e.g.
the mid-planex3 = 0), knowing that we can extend the deformation to the thin
three-dimensional body by assuming that straight lines normal to the plane remain
straight and normal to the plane after deformation. Assuming this ansatz, the en-
ergy per unit thickness is the sum of the “membrane” and “bending” energies

∫

Ω
W(Du)dx′ +h2

∫

Ω
Q(Dν)dx′,

whereν is the normal to the mid-surface of the deformation,Q is a certain qua-
dratic function (derived fromW3D) and the form ofW(Du) will be discussed in Sec-
tion 2.2. The second term (the bending energy) can be expressed using the first and
second derivative ofu. In the 2D analysis we will replace the bending termQ(Dν)
by a simpler term|D2u3|2. Though the new term doesn’t represent a physically
correct bending energy, it is mathematically more convenient and still captures the
main phenomenon. After including the boundary terms the two-dimensional en-
ergy has the form:

(2.2) Eh(u) :=
∫

Ω
W(Du)+h2|D2u3|2 dx′ +B(u),



WRINKLES IN AN ANNULAR THIN FILM 7

where the boundary terms are

(2.3) B(u) := Tin

∫

|x′|=Rin

u(x′) · x′

Rin
dS−Tout

∫

|x′|=Rout

u(x′) · x′

Rout
dS.

As in the general 3D setting our main result is a scaling law for the minimum
of the energy. We will show that ifEh is defined by (2.2) then

min
u

Eh(u) = E0 +O(h)

for any sufficiently smallh > 0. The constantE0 is the minimum of the relaxed
energy (the same constant as in (2.1)). The order-h correction is the contribution
from the wrinkling of the membrane.

2.2 The energy density

In this section we will describe the assumptions we impose onthe elastic energy
densityW3D.

Since the energy densityW3D(M) is isotropic, it is convenient to represent it
as a function of the principal strains (i.e., the eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 of
(MTM)1/2):

W3D(M) = f3D(λ1,λ2,λ3).

We assume that

(2.4)
f3D ∈C2([0,∞)3), f3D(1,1,1) = 0, f3D ≥ 0, 0 < D2 f3D ≤C,

f3D(λ1,λ2,λ3) ≥C0(λ 2
1 + λ 2

2 + λ 2
3 )p/2−C1,

wherep∈ (1,2].
The main motivation to consider ap-th power lower bound for the energy den-

sity for large strains rather than the quadratic growth is toinclude a broader range
of materials. For example, Agostiniani et al. [1] showed that the growth condition
in (2.4) with p= 3/2 is satisfied by both theneo-Hookeancompressible model and
Mooney-Rivlincompressible model, whereas these models do not satisfy quadratic
growth for large matrices (i.e. (2.4) withp = 2).

To define an elastic energy in the reduced two-dimensional setting (i.e. for
a mapu : R

2 → R
3), we need to define a stored energy density as a function of

Du, i.e. for 3× 2 matrices. One way to do this is to optimize the missing third
component. We set

(2.5) W(M) := min
ξ∈R3

W3D(M|ξ ),

whereM ∈ R
3×2 andM|ξ denotes a 3×3 matrix with first two columns identical

with M andξ as the third column. It turns out that if we write

W3D(F) = g(I1, I2,J),

J := det(F), C := FTF, I1 := J−2/3 tr(C), I2 :=
J−4/3

2

(
(tr(C))2− tr(C2)

)
,
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and if
∂g
∂ I1

(I1, I2,J) ≥ 0,
∂g
∂ I2

(I1, I2,J) ≥ 0,
∂g
∂ I1

(I1, I2,J)+
∂g
∂ I2

(I1, I2,J) > 0,(2.6)

then theξ that achieves the minimum in (2.5) has to satisfyξ ⊥ M. For complete-
ness, we give a proof of this fact in the Appendix (see Lemma A.1).

Isotropy of the energy density implies thatW(M) is a symmetric function of
eigenvalues of

√
MTM:

W(M) = f (λ1,λ2).(2.7)

It is easy to see that the functionf is related tof3D. Let

w3D(λ1,λ2) := argmin
t>0

f3D(λ1,λ2, t).

Then we immediately obtain

W(M) = f (λ1,λ2) = f3D(λ1,λ2,w3D(λ1,λ2)).

Moreover, the functionf inherits properties off3D. Indeed, (2.4) implies that

(2.8)
f ∈C2([0,∞)2), f (1,1) = 0, f ≥ 0, 0 < D2 f ≤C,

f (λ1,λ2) ≥C0(λ 2
1 + λ 2

2)p/2−C1.

In contrast with three dimensions, the casep = 2 in (2.8) is not very restrictive
in two dimensions. For example, two-dimensional energy densities obtained from
incompressible three-dimensional models have often quadratic growth at infinity,
and so they satisfy quadratic lower bound for large strains.We will prove our main
results assumingp = 2 in two dimensions and 1< p≤ 2 in three dimensions.

For a givenλ1 > 1 we definew(λ1) as the point of minimum for the function
f (λ1, ·), i.e.

(2.9) f (λ1,w(λ1)) = min
t>0

f (λ1, t);

we callw(λ1) thenatural widthof the strip with first principal strainλ1. We assume
that forλ1 > 1

(2.10) w(λ1) is a differentiable and non-increasing function.

We also assume that forλ1 > 1 andλ2 > w(λ1) the following conditions hold:

(∂1 f (λ1,λ2)−∂2 f (λ1,λ2)) (λ1−λ2) ≥ 0,(2.11)

∂11 f (λ1,w(λ1))+ ∂12 f (λ1,w(λ1))w
′(λ1) > 0,(2.12)

∂12 f (λ1,λ2) ≥ 0.(2.13)

The meaning of these relations will become apparent in a moment. Briefly stated
we use them to show convexity of the relaxed energy (see Section 3). The strict
inequality in (2.12) is not a typo — it is associated with strict convexity of the
(relaxed) energy density in 2D in the tensile direction.
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Finally, we assume forλ1 > 1 that

(2.14) detD2 f (λ1,w(λ1)) · (λ1−w(λ1)) > ∂12 f (λ1,w(λ1)) ·∂1 f (λ1,w(λ1)).

Unlike (2.11-2.13), this inequality does not seem to have a simple interpretation;
however it is satisfied by typical choices off (e.g. the one associated with an
incompressible neoHookean 3D model). Condition (2.14) will be used in our anal-
ysis of the relaxed problem (Lemma 3.8 and equation (3.18)).

3 The relaxed problem

In this section we study relaxed problem and the properties of its minimizer.
First we defineWr , the quasiconvexification of the energy densityW, and we use
Wr to define the relaxed energy functionalE0. It follows from [28] that in our case
Wr is convex, which we will use to show uniqueness (up to a translation) of the
minimizeru0 of E0. In the rest of this section we will study properties ofu0. The
minimizer u0 is rotationally symmetric, i.e. it can be described by a realvalued
function v. We will formulate a one-dimensional variational problem for v and
explore the properties ofv (see Theorem 3.4). In particular, we will show that our
domainΩ can be split into two parts – the outer part whereu0 is under biaxial
tension and the inner part whereu0 is compressed in the hoop direction. Moreover,
the amount of arclength which needs to be wasted to relieve this compression grows
linearly in the distance from the boundary between these twoparts.

The wrinkling that occurs in our problem serves to avoid compression. In the
limit h→ 0 it can be understood by considering the relaxed energy density Wr(M),
defined as the quasiconvexification ofW(M):

(3.1) Wr(M) := inf
ϕ∈W1,∞

{
1
|U |

∫

U
W(Dϕ) : ϕ = Mx on ∂U

}
.

Intuitively: Wr(M) is the energy density associated with the average deformation
gradientM, after the release of compression by infinitesimal wrinkling. It is well
known that definition (3.1) does not depend on the choice ofU (see article by
Pipkin [28] for more details aboutWr in our setting).

Now we define the relaxed functional as

(3.2) E0(u) :=
∫

Ω
Wr (Du)dx′ +B(u),

whereB(u) was defined in (2.3).
It will be crucial to our analysis thatWr(M) is a convex function of the 3× 2

matrix M. Pipkin proved in [27] that this is true whenever the unrelaxed density
W(M) is a convex function ofMTM. This is true for a broad range of material
models. We shall assume throughout this paper that

Wr(M) is a convex function ofM.
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As with W3D andW, it is convenient to represent the relaxed densityWr as a func-
tion of the principal strains:

Wr (M) = fr(λ1,λ2).

We would like to write downfr explicitly. To do that we follow the idea of
Pipkin [28]. Using the natural widthw(λ ) defined by (2.9), we define

fm(λ1,λ2) =





f (λ1,λ2) λ1 ≥ w(λ2) andλ2 ≥ w(λ1),

f (λ1,w(λ1)) λ2 < w(λ1) andλ1 > 1,

f (λ2,w(λ2)) λ1 < w(λ2) andλ2 > 1,

0 λ1 ≤ 1 andλ2 ≤ 1,

(3.3)

andWm(M) := fm(λ1,λ2). Pipkin showed in [28] that

Wr(M) ≤Wm(M).

We will show in a moment that under our hypothesesWm(M) is convex, in partic-
ularWm(M) ≤Wr (M), from which it follows immediately thatWm(M) = Wr(M).

We want to show thatWm is convex. Pipkin [28] showed that this is equivalent
to showing that the functionfm is convex and monotone in both variables:

(3.4) D2 fm ≥ 0, ∂α fm ≥ 0, α = 1,2

and satisfies the ordered force condition

(3.5) (∂1 fm(λ1,λ2)−∂2 fm(λ1,λ2)) (λ1−λ2) ≥ 0.

(WhenW3D is the energy density of the incompressible neo-Hookean material, fm
takes a particularly simple form, studied in [28]).

It is natural to express (3.4) and (3.5) using some conditions on f . First, in the
region whereλ1 ≥ w(λ2),λ2 ≥ w(λ1) condition (3.4) follows from (2.8), whereas
the latter condition (3.5) is equivalent to (2.11).

In the second case of (3.3), we see from (2.8) that

∂1 fm(λ1,λ2) = ∂1 f (λ1,w(λ1))+∂2 f (λ1,w(λ1))︸ ︷︷ ︸
0

w′(λ1)) = ∂1 f (λ1,w(λ1)) ≥ 0,

and obviously∂2 fm(λ1,λ2) = 0; therefore (3.5) is satisfied in this case. By (2.12)
we see that

(3.6) ∂11 fm(λ1,λ2) = ∂11 f (λ1,w(λ1))+∂12 f (λ1,w(λ1))w
′(λ ) > 0,

and by definition offm also∂12 fr(λ1,λ2) = ∂22 fr(λ1,λ2) = 0. Sincefm is symmet-
ric, the third case follows immediately.

Finally, in the last caseλ1 ≤ 1,λ2 ≤ 1, both (3.4) and (3.5) are trivially satisfied.
We have shown that iff satisfies (2.8), (2.11), and (2.12), thenfm satisfies (3.3), in
particularWm is convex. Thereforefr = fm and fr has the form (3.3).
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3.1 The one-dimensional variational problem

We want to find a minimizer of the relaxed energy (3.2). Assuming it is radially
symmetric, we formulate a one-dimensional variational problem, which admits a
unique minimizerv. Afterward we show some properties ofv.

To look for a radially symmetric minimizer, we consider

(3.7) u0(r,θ) = (v(r),θ)

in polar coordinates. Then (3.2) becomes the one-dimensional variational problem

(3.8) min
v∈W1,p(Rin,Rout)

∫ Rout

Rin

r · fr(v
′(r),v(r)/r)dr +RinTinv(Rin)−RoutToutv(Rout).

The function fr(λ1,λ2) is defined forλ1 > 0 andλ2 > 0. Since we do not
assume a priori thatv′ ≥ 0 or v > 0 a.e., we need to extend the domain offr . It is
convenient to do it in the following way:

(3.9) fr(λ1,λ2) :=

{
fr(λ1,w(λ1)) if λ1 > 0,λ2 ≤ 0,

fr(|λ1|,λ2) if λ1 < 0.

Under our assumptions bothWr and fr are convex functions, and so we expect
this variational problem to be solvable using direct methods of Calculus of Varia-
tions providedTinRin < ToutRout.

Remark3.1. If TinRin < ToutRout, we claim that any minimizerv of (3.8) has tensile
hoop stress somewhere in(Rin,Rout). Indeed, if we denote byσr andσθ radial and
hoop stress, respectively, the optimality condition reads(rσr)

′ = σθ , σr(Rin) =
Tin,σr(Rout) = Tout. Integrating the equation gives

∫ Rout

Rin

σθ (r)dr = ToutRout−TinRin > 0,

and soσθ (r) > 0 for somer ∈ (Rin,Rout).

Remark3.2. In the caseTinRin = ToutRout, the Euler-Lagrange equation implies that
the hoop stress is identically zero, and a minimizer of (3.8)is unique only up to an
additive constant (i.e. onlyv′ is uniquely determined).

If TinRin > ToutRout, it is easy to see that the energy in (3.8) is not bounded from
below and so the minimization problem has no solution.

Remark3.3. It is important to understand what are the consequences of exten-
sion (3.9). We observe thatfr being even inλ1 means that∂1 fr(λ1,λ2) ≤ 0 for
λ1 ≤ 0. Therefore,

∂1 fr(λ1,λ2) > 0

implies
λ1 > 0.

Also, for anyλ2 < 0, the hoop stress

σθ = ∂2 fr(λ1,λ2) = 0
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no matter how large|λ2| is.

From now on we will always assume that

(3.10) TinRin < ToutRout.

We claim that under this condition there exists a unique solution v to the variational
problem (3.8).

Theorem 3.4.Let f satisfy(2.8–2.14)and let0< Rin < Rout and Tout be fixed. Then
there exists a range of inner-boundary loads Tin, a subset of(Tout,ToutRout/Rin),
such that minimizer v of(3.8)exists, it is unique, and the following holds:

• There exists L∈ (Rin,Rout) such that

v(r)
r

< w(v′(r)) r ∈ (Rin,L),
v(r)

r
≥ w(v′(r)) r ∈ (L,Rout),

i.e. there is tensile hoop stress in(L,Rout) whereas in(Rin,L) there is
compression in the hoop direction. We will call the region with tensile
hoop stress thenon-relaxedregion and its complement therelaxedregion.

• The deformation v avoids interpenetration, i.e.

v(r) > 0,v′(r) > 0 for r ∈ (Rin,Rout).

• Consider the function h(r) = w(v′(r))− v(r)
r , representing the amount of

arclength we need to waste in the relaxed region(Rin,L). Then

(3.11) h′(L) < 0

(and obviously h(L) = 0.)

Remark.Condition (3.11) means that the excess arclength associated with wrin-
kling at radiusr grows linearly as a function of the distance fromL; we will see
later that this introduces some difficulties in the upper bound.

Remark.It is easy to show that the relaxed energy associated with an incompress-
ible neo-Hookean materialW(Du) = f (λ1,λ2) = C(λ 2

1 + λ 2
2 + λ−2

1 λ−2
2 −3) satis-

fies all assumptions of Theorem 3.4. In the case of a material with a linear stress-
strain law, results analogous to Theorem 3.4 (but more explicit) are readily avail-
able in the geometrically linear setting by explicitly writing down the solutionv
(see [12]).

The proof of Theorem 3.4 consists of several steps. First, weprove the existence
of a solutionv for (3.8) (Lemma 3.5). Next, we show some elementary properties
of v (Lemma 3.6), which will allow us to show the uniqueness ofv (Lemma 3.7).
Afterward we prove the remaining properties ofv. This consists of the following
steps:

• we show that any relaxed interval has to start atRin (Lemma 3.8);
• we showv(Rin;T) > 0 andv(Rin;T) < w(v′(Rin;T))Rin for some loadsT

(Lemma 3.9);



WRINKLES IN AN ANNULAR THIN FILM 13

• we prove that(Rin,Rout) splits into a relaxed and a non-relaxed interval,
both of them non-empty;

• we show (3.11).

Lemma 3.5. Under the assumptions of Theorem 3.4, there exists a minimizer v
of (3.8).

Proof. We start by rewriting (3.8) in the form

min
v∈W1,p(Rin,Rout)

∫ Rout

Rin

r · fr(v
′(r),v(r)/r)− (ϕ(r)v(r))′ dr,

whereϕ(r) = Rout−r
Rout−Rin

RinTin + r−Rin
Rout−Rin

RoutTout is the linear interpolation between

RinTin andRoutTout. We observe that(ϕv)′ = r
(
ϕ ′ v

r + ϕ
r v′
)
. Since f = fr for large

strains by (3.3) andf has p-th power growth by (2.8),fr has also p-th power growth
for large strains. Then the previous integral is bounded from below by

C+
∫ Rout

Rin

(
|v′(r)|p− ϕ(r)

r
v′(r)+

(
v(r)

r

)p

+

−ϕ ′(r)
v(r)

r

)
r dr.

The assumption (3.10) is equivalent toϕ ′(r) > 0. Hence it is clear that the energy
is bounded from below and that

any minimizing sequence is bounded inW1,p∩L∞(Rin,Rout).

Therefore we can use direct methods of Calculus of Variations to obtain a mini-
mizerv for this convex problem. �

In the following, we keepTout fixed and treatTin as a parameter, and write
v(r;T) for the minimizer of (3.8) withTin = T. We also define an interval

I := (Tout,ToutRout/Rin).

Now we prove a bound onv′, which will be useful afterward in showing the
uniqueness and some properties of a minimizerv:

Lemma 3.6. Under the assumptions of Theorem 3.4 there exist constants1 <
Vmin < Vmax, such that for any T∈ I the minimizer v(·;T) satisfies

Vmin ≤ v′(r;T) ≤Vmax for r ∈ (Rin,Rout).

Proof. Let T ∈ I be fixed and letv(r) := v(r;T). We write σr and σθ for the
corresponding radial and hoop stress, respectively:

(3.12) σr = ∂1 fr(v
′,v/r), σθ = ∂2 fr(v

′,v/r).

(1) Sincev is minimizer of (3.8), it satisfies Euler-Lagrange equation:

(3.13) (rσr(r))
′ = σθ ≥ 0, i.e. σ ′

r =
1
r

(σθ −σr) ,
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where the inequalityσθ ≥ 0 follows from the definition offr . Therefore
rσr(r) is non-decreasing, and thus we obtain

(3.14) ∂1 fr(v
′(r),v(r)/r)

= σr(r) ≥
Rin

r
σr(Rin) =

Rin

r
Tin ≥ Rin

Rout
Tin ≥ Rin

Rout
Tout > 0.

We see from Remark 3.3 that

v′(r) > 0 for r ∈ (Rin,Rout).

We define

H(λ ) := ∂1 f (λ ,w(λ )) for λ > 1.

This quantity represents force required to uniaxially stretch an elastic body
to λ times of its original length. It is natural to expect monotonicity of H.
Under our assumptions this is true. Indeed, (2.12) implies

H ′(λ ) = (∂1 f (λ ,w(λ )))′ = ∂11 f (λ ,w(λ ))+ ∂12 f (λ ,w(λ ))w′(λ ) > 0

and so
H is a strictly increasing function.

Using (2.13) and the monotonicity ofrσr(r), H(v′(r)) satisfies

H(v′(r)) ≤ ∂1 fr(v
′(r),v(r)/r) = σr(r) ≤ ToutRout/Rin.

So by monotonicity ofH

v′(r) ≤ H−1(ToutRout/Rin) =: Vmax.

(2) We want to show thatσr > σθ in (Rin,Rout). First, let us prove thatσθ 6= σr

everywhere. Otherwise letr0 be such thatσr(r0) = σθ (r0). By differenti-
ating (3.12) we obtain

σ ′
r = ∂11 fr ·v′′ + ∂12 fr ·

1
r

(
v′− v

r

)
.

Then using Euler-Lagrange equation (3.13) we see thatv is a solution to
the second order ODE

1
r

(
∂2 fr(v

′,v/r)−∂1 fr(v
′,v/r)

)

= ∂11 fr(v
′,v/r) ·v′′ + ∂12 fr(v

′,v/r) · 1
r

(
v′− v

r

)

with valuesv′(r0) = v(r0)/r0 =: κ for someκ . At the same time we see
thatV(r) := κr is a solution to the same ODE withV ′(r0) = v′(r0) and
V(r0) = v(r0). Since∂11 fr > 0 the ODE satisfies the uniqueness principle
and sov = V in (Rin,Rout), a contradiction with the values ofσr atRin and
Rout.
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Sinceσr 6= σθ , we have eitherσθ > σr or σθ < σr in the whole interval.
In the first case (3.13) would imply thatσr is a non-decreasing function of
r, a contradiction with the boundary conditions forσr . Therefore

(3.15) σr > σθ in (Rin,Rout).

(3) By virtue of (2.11) and (3.15) we see

v′(r) > v(r)/r for r ∈ (Rin,Rout).

Then it follows from (2.13) and (3.14) that

∂1 fr(v
′(r),v′(r)) ≥ ∂1 fr(v

′(r),v(r)/r) ≥ Rin

Rout
Tout > 0

and immediately
v′(r) ≥Vmin > 1,

whereVmin depends only onfr andRinTout/Rout.

�

We have seen in (3.3) that the relaxed densityfr can be expressed in terms of
f . As a consequence,fr partially inherits the strict convexity off . We use the
convexity to show uniqueness ofv:

Lemma 3.7. Under the hypotheses of Theorem 3.4, a minimizer v of(3.8) is
unique.

Proof. Let v be a minimizer of (3.8). By Lemma 3.6 we know that

1 < Vmin ≤ v′(r) ≤Vmax for r ∈ (Rin,Rout).

From (2.8) and (3.6) we have that∂11 fr(λ1,λ2) > 0 for λ1 > 1, which together with
convexity of fr in both variables implies the uniqueness ofv′. Moreover, we know
by Remark 3.1 that there existsr0 ∈ (Rin,Rout) with nontrivial hoop stress:

σθ (r0) > 0, i.e. v(r0)/r0 > w(v′(r0)).

Since fr(λ1,λ2) = f (λ1,λ2) for λ1 > 1,λ2 > w(λ1), strict convexity of f (in par-
ticular the fact∂22 f > 0) implies thatv(r0) is uniquely determined. This together
with the uniqueness ofv′ completes the argument. �

Lemma 3.8. Let us assume that there exists a non-empty relaxed region, i.e. there
is a maximal interval(A,B) ⊂ (Rin,Rout) such that

v(r)/r ≤ w(v′(r)) for r ∈ (A,B).

Then under the assumptions of Theorem 3.4 we have A= Rin.

Proof. To prove thatA = Rin, let us assume thatA > Rin. Thenσθ (A) = 0 andσθ
is strictly positive in a left neighborhoodU of A. This in particular means that
f (v′,v/r) = fr(v′,v/r) in U . Hence we can do all our computations withf instead
of fr .
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We differentiate (3.12) inU to obtain

σ ′
θ = ∂12 f ·v′′ + 1

r
∂22 f

(
v′− v

r

)
=

1
r∂11 f

(
detD2 f

(
v′− v

r

)
+ ∂12 f ·σ ′

r r
)

,

where we have usedσ ′
r = ∂11 f (v′,v/r)v′′ + ∂12 f (v′,v/r)(v/r)′ to expressv′′. Now

consider the limitr ր A. Sinceσθ (r) → 0, from the Euler-Lagrange equation
rσ ′

r = σθ −σr we know thatσ ′
r(r)r →−σr(A) = −∂1 f (v′(A),v(A)/A). Therefore

we get

σ ′
θ (A) =

1
A∂11 f

(
detD2 f

(
v′(A)− v(A)

A

)
−∂12 f ·∂1 f

)
> 0,

where the last inequality follows from (2.14) withλ1 = v′(A) (note that by the
definition ofA, w(v′(A)) = v(A)/A). Therefore there exists no such pointA and the
relaxed region has to start atRin. �

The next lemma shows that there exists a range of loadsT such thatv(r;T) > 0
for r ∈ (Rin,Rout) andv(·;T) has a non-empty relaxed region.

Lemma 3.9. Under the assumptions of Theorem 3.4 there exists a range of loads
T in I such that

(3.16)
v(Rin;T)

Rin
< w(v′(Rin;T)) and v(Rin;T) > 0.

Proof. By Lemma 3.6 and (2.10) we know thatw(v′(Rin;T)) ≥ w(Vmax), and so it
is enough to show that

0 < v(Rin;T) < w(Vmax)Rin

for some range of loadsT.
Let T ∈ I be arbitrary. As a preliminary step, we observe thatT 7→ v(Rin;T)

is continuous function forT ∈ I ∪Tout. This follows in the standard way from the
uniqueness of minimizers. We also see thatT 7→ v′(Rin;T) is a continuous func-
tion of T ∈ I ∪Tout. This is an immediate consequence of the optimality condi-
tion ∂1 fr(v′(Rin;T),v(Rin;T)/Rin) = σr(Rin) = T and monotonicity of∂1 fr(λ1,λ2)
in the first variable. Then using (2.10) we see thatT 7→ w(v′(Rin;T)) is also a
continuous function. By the same argument the same is true for v′(Rout;T) and
w(v′(Rout;T)) as well.

Now we turn to the main point: the value ofv(Rin; ·) at the endpoints ofI .
If T = Tout, the solution has the formv(r;Tout) = κr for someκ > 1 such that
∂1 fr(κ ,κ) = Tin = Tout, and so clearlyv(Rin;Tout) = κRin > 0 in this case. In fact,
there is no relaxed region (and therefore no compression in the hoop direction)
whenT = Tout.

At the other endpointT = ToutRout/Rin we no longer have uniqueness of a min-
imizer for (3.8) (see Remark 3.2). Nevertheless, such minimizer is unique up to
a translation, i.e.v′(·;T) is uniquely determined, and it satisfiesv(Rout;T)/Rout ≤
w(v′(Rout;T)). Indeed, since(rσr)

′ = σθ ≥ 0 andRinσr(Rin) = Routσr(Rout), we
have thatσθ ≡ 0. This immediately impliesv(Rout;T)/Rout ≤ w(v′(Rout;T)).
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Now we consider a sequence of loadsTk ∈ I , Tk ր T = ToutRout/Rin. As be-
fore we have a sequence of unique minimizersvk = v(·;Tk), where each of them has
a non-empty non-relaxed region (see Remark 3.1). We have shown in Lemma 3.8
that any relaxed region has to start atRin, and therefore having a non-relaxed region
impliesvk(Rout)/Rout > w(v′k(Rout)). We also know thatv(·;T) is determined only
up to an additive constant, and so theoretically it is possible that different subse-
quences of{vk} are converging to different minimizersv(·;T). We show that this is
not the case, i.e. thatvk converges to one particular minimizerv(·;T). Let us take
a subsequence of{vk} (labeled the same) which converges to some ˜v := v(·;T).
Sincevk(Rout)/Rout > w(v′k(Rout)), continuity of v(Rout; ·) and w(v′(Rout; ·)) im-
plies

ṽ(Rout)/Rout ≥ w(ṽ′(Rout)).

At the same time, we know that ˜v doesn’t have a non-relaxed region, and so
ṽ(Rout)/Rout ≤ w(ṽ′(Rout)). This shows that ˜v(Rout) = w(ṽ′(Rout))Rout, i.e. the lim-
iting v(·;T) is uniquely determined. Therefore the whole sequence{vk} converges
to this particular minimizer. This in particular shows thatv(Rin; ·) is continuous
from the left atT = ToutRout/Rin.

To summarize, we have shown that

v(Rin;T) > 0 for T = the left endpoint ofI ;
v(Rin;T) < w(Vmax)Rin for T = the right endpoint ofI .

Continuity of v(Rin; ·) and the fact that 0< w(Vmax) implies that there are some
T ∈ I such that

0 < v(Rin;T) < w(Vmax)Rin.

This completes the proof of the lemma. �

Corollary. Let T ∈ I be such that (3.16) is true. Then under the assumptions of
Theorem 3.4 there existsL ∈ (Rin,Rout) such that the interval(Rin,Rout) splits into
a relaxed region(Rin,L) and a non-relaxed region(L,Rout).

Proof. Since T satisfies (3.16), the relaxed region is non-empty. By virtueof
Lemma 3.8 it has to be of the form(Rin,L) for L ∈ (Rin,Rout]. Using Remark 3.1
we see that the non-relaxed region is also non-empty, and so necessarilyL < Rout.
This completes the proof. �

It remains to show (3.11). Let us compute the derivative ofh for r < L:

(3.17) h′(r) = (w)′(v′(r)) ·v′′(r)− 1
r

(
v′(r)− v(r)

r

)
.

Sincer < L, the hoop stressσθ = 0 and together with Euler-Lagrange equation
(0 = (rσr)

′ in this case) we obtain

0 = σθ (r) = ∂2 f (v′(r),w(v′(r))),
α
r

= σr(r) = ∂1 f (v′(r),w(v′(r))),
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(α is a positive constant) and by differentiating

0 = ∂12 f (v′(r),w(v′(r)))v′′(r)+ ∂22 f (v′(r),w(v′(r))) · (w)′(v′(r)) ·v′′(r),

−α
r2 = ∂11 f (v′(r),w(v′(r)))v′′(r)+ ∂12 f (v′(r),w(v′(r))) · (w)′(v′(r)) ·v′′(r).

We solve this linear system forv′′(r) and(w)′(v′(r))v′′(r) and substitute the result
into (3.17). Atr = L we havev′−v/r = v′−w(v′), thush′(L) < 0 is equivalent to

(3.18) detD2 f (v′(r),w(v′(r))) ·
(
v′(r)−w(v′(r))

)
>

∂12 f (v′(r),w(v′(r))) ·∂1 f (v′(r),w(v′(r))),

exactly matching condition (2.14).
This completes the proof of Theorem 3.4.

3.2 Uniqueness of the minimizer

In this section we show the uniqueness of the minimizer for the relaxed prob-
lem (3.2).

First, it is easy to check thatu0 defined in (3.7) is a minimizer for the relaxed
energyE0 (since the functional is convex, any solution of the Euler-Lagrange equa-
tions is a minimizer). SinceE0 is not strictly convex, the uniqueness of the min-
imizer is not clear. It is however true: we now show thatu0 is (up to an additive
constant) the only minimizer of the relaxed problem. Indeed, suppose that there
exists another minimizeru1 of the relaxed problem. By convex duality forE0 we
have:

min
u∈W1,p(Ω,R3)

E0(u) = max
σ∈Lp′ (Ω,R3×3)

divσ=0, σ .n=T at∂Ω

∫

Ω
−D(σ)dx′,

whereD(σ) := supF∈R3×3 〈σ ,F〉 −Wr(F) is the convex conjugate ofWr . Since
u0 is a minimizer ofE0, we know that the maximum on the RHS is attained
for σ0 = ∂Wr

∂F (Du0). From the definition of the convex conjugateD we see that
〈σ0,Du1〉−Wr(Du1)≤ D(σ0), and after integrationE0(u1)≥

∫
Ω−D(σ)dx′. Since

the deformationu1 is a minimizer ofE0 as well, we obtain an equality in the
last relation. Hence〈σ0,Du1〉 −Wr(Du1) = D(σ0) a.e. inΩ and consequently
σ0 = ∂Wr

∂F (Du1) a.e. inΩ. It follows that

(3.19) Du0 = Du1

at points whereWr is strictly convex atDu0 (i.e. at points where the eigenvalues
λ1 ≥ λ2 of (DuT

0 Du0)
1/2 satisfyλ1 > 1 andλ2 > w(λ1)).

We have proved in Theorem 3.4 that the hoop stress is tensile exactly in the
non-relaxed region

(3.20) ΩN := {x : L < |x| ≤ Rout}
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with Rin < L < Rout. By ΩR = Ω \ΩN we denote its complement, i.e. the relaxed
region. Since the both stresses are tensile inΩN, as a consequence of (3.3) we have
Wr(Du0) = W(Du0).

Using the strict convexity ofWr in the non-relaxed regionΩN we see that

(3.21) u0(x) = u1(x)+C

for x∈ ΩN. We may assume without loss of generality thatC = 0. In the relaxed
regionΩR we need to replace (3.19) by

Du0(x) ·n(x) = Du1(x) ·n(x), x∈ ΩR

wheren(x) = x
|x| is a unit vector in the radial direction. This concludes the proof

of uniqueness, because integrating the last relation in theradial direction extends
validity of (3.21) to the whole setΩ.

4 The 2D result

In this section we show the matching upper and lower bounds inthe simplified
Kirchhoff-Love setting. After stating the main result of this section we prove the
upper bound by superimposing wrinkles on the solutionu0 of the relaxed problem.
We use Lemma 4.2 to create simple wrinkles whereas Lemma 4.3 provides a tool
to create a family of wrinkles with changing wavelength nearthe free boundary. In
the rest of the section we prove a matching lower bound. UsingLemmas 4.5, 4.7,
and 4.8 we show that ifEh(uh) is close toE0, then alsoDuh has to be close toDu0.
As a consequence we obtain a bound on the out-of-plane displacementuh,3. By
interpolation we show the smallness ofDuh,3, which allows us to projectuh to the
plane without changing its energy too much. The final ingredient is a comparison
of u0 with the projection ofuh (Lemma 4.9).

For Theorem 4.1 we will assume that the lower bound in (2.8) holds with p= 2
rather than just 1< p≤ 2. The stronger assumptionp = 2 is only required for the
second half of the proof of the lower bound (e.g. for the interpolation), whereas the
first half of the proof of the lower bound (especially Lemmas 4.5, 4.7, 4.8, and the
Poincaré inequality) requires only 1< p ≤ 2. Since the real purpose of the two-
dimensional result is to lay the ground for the proof of the three-dimensional case,
many of the preparatory lemmas are proved in the more generalsetting 1< p≤ 2.

Let us now state the main result of this section:

Theorem 4.1. Let us assume(2.8)with p= 2 and all hypotheses of Theorem 3.4.
Then there exist constants0 < C1 < C2 independent of h such that

(4.1) E0 +C1h≤ min
u

Eh(u) ≤ E0 +C2h,

whereE0 is the minimal value of the relaxed problem(3.2).

Remark.Theorem 4.1 doesn’t necessarily require all hypotheses of Theorem 3.4.
In fact, some of them can be replaced by assumptions on the solution u0 of the
relaxed problem (which are consequences of Theorem 3.4).
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4.1 The upper bound in the two-dimensional setting

To obtain the upper bound, we must construct a test functionuh for any (small)
h > 0 with energy

Eh(uh) ≤ E0 +Ch,

where the constantC is independent ofh. A naive approach would be to super-
impose a “single family of wrinkles” (with a well-chosen period independent ofr,
and a well-chosen amplitude that depends onr), c.f. [12] (see also [13] for a simi-
lar calculation). The energy associated with thisuh has the expected scaling away
from r = L (the edge of the wrinkled region). However the membrane and bending
energies are both singular atr = L; as a result, the total energy (after integration)
is too large, of orderE0 + O(h| logh|). The singularity in the bending term can
be avoided by introducing a boundary layer, however we have not found a similar
way of avoiding the singularity in the membrane term (which is associated with
stretching in the radial direction).

To get a linear correction a more complicated construction seems necessary,
using a “cascade of wrinkles” rather than a “single family ofwrinkles.” In other
words, the period of the wrinkling changes repeatedly as oneapproaches the edge
of the wrinkled region. Constructions of this type have beenused in other settings,
for example in studies of compressed thin film blisters [5, 22].

Recall that the solution of the relaxed problem has compressive hoop strain
when r < L. The essential purpose of the wrinkling is to avoid this compressive
hoop strain by out-of-plane buckling. In the following lemmas, we writeε∗(r) for
the compressive hoop strain to be avoided. Up to a factor of 2πr, this amounts to
“the amount of arclength to be wasted by wrinkling” along theimage of the circle
of radiusr.

Lemma 4.2 (see Lemma 2 in [5]). For everyε∗ > 0 there exists a smoothC ∞

planar curveγ(ε∗) = (γ1(ε∗)(t),γ2(ε∗)(t)) : R → R
2 with properties

|∂tγ | = 1+ ε∗, ∂tγ1 ≥ 0, γ(−t) = −γ(t)

γ(t +2π) = γ(t)+

(
2π
0

)
,

and satisfying the bound

|γ1− t|+ |∂tγ1−1|+ |∂ttγ1| ≤Cε∗, |γ2|+ |∂tγ2|+ |∂ttγ2| ≤Cε1/2
∗ ,

|∂ε∗γ1| ≤C, |∂ε∗γ2| ≤Cε−1/2
∗ , |∂ 2

ε∗γ2| ≤Cε−3/2
∗ ,

where C does not depend onε∗. Moreover, the bound is sharp (in terms of the
scaling inε∗) for small values ofε∗.

Idea of the proof (see Lemma 2 in[5] for more detail): We constructγ by repara-
metrizing the curves

γ̃(t) =

(
t

Asint

)
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so that|∂tγ | = 1+ ε∗, whereA is chosen such that
∫ 2π

0 |∂t γ̃(t)|dt = 2π(1+ ε∗). By

considering the small-ε∗ limit we obtainA= ρ(ε∗)ε
1/2
∗ (ρ being a smooth function

on [0,1]). This leads easily to the desired estimates. �

We would like to use Lemma 4.2 to superimpose wrinkles on top of the planar
deformationu0 obtained from the solutionv to the relaxed problem (3.8). Though
this naive construction does not achieve optimal energy scaling, it can be modified
(using Lemma 4.3) to obtain a construction with optimal energy scaling. Therefore
it makes sense to analyze the naive construction, to understand why it fails and also
to motivate the successful construction.

The naive construction is based on Lemma 4.2 and proceeds as follows. After
we obtain the parameterε∗(r) (amount of wastage of arclength) fromv, we deter-
mine the right period of wrinkles to obtain the optimal scaling. A bit of calculation
reveals that the stretching terms scale likek−2 (k is the number of wrinkles) and
the bending terms scale likeh2k2. Using this we see that the optimal number of
wrinkles is of order

k := ⌊h−1/2⌋.
Fromv we obtain the amount of wastage of arclength as

ε∗(r) :=
w(v′(r))
v(r)/r

−1

for r ∈ (Rin,L). Following the proposed idea we define a solution ¯uh in ΩR (using
radial coordinatesr,θ ) by

(4.2) ūh(r,θ) = v(r)r̂ +
γ1(ε∗(r))(kθ)

k
θ̂ +v(r)

γ2(ε∗(r))(kθ)

k
e3

and asu0 elsewhere. From (3.11) we know thatε∗ ≈ L− r (i.e. ε∗ is of orderL− r)
for 0 < L− r ≪ 1. Since∂ 2

ε∗γ2 ≈ ε−3/2
∗ by Lemma 4.2, the contribution of∂rr ūh,3

to the bending energy is divergent:

h2
∫ L

Rin

|∂rr ūh,3|2 r dr ≈ h2k−2
∫ L

Rin

(
(L− r)−3/2

)2
r dr = h3

∫ L

Rin

(L− r)−3r dr.

It is clear that the bending energy is of orderh in the regionRin < r < L− h.
Therefore a boundary layer in the regionL− h < r < L would solve this issue
provided the integral over this layer of the new|∂rr ūh,3|2 is at most of orderh−1.

Now let us try to compute the contribution from the stretching energy near the
transition from the relaxed to the non-relaxed state. In theregionRin < r < L− δ
(for a fixedδ > 0) the term∂r ūh,3 from the membrane energy satisfies

∫ L−δ

Rin

|∂r ūh,3|2r dr ≈
∫ L−δ

Rin

k−2
(∣∣v′(r)γ2

∣∣2 + |v(r)∂ε∗γ2|2
)

r dr.

By Lemma 4.2 the first term in the parentheses is of orderε∗ whereas the second
term is of orderε−1

∗ . Therefore, near the free boundary (whereε∗ ≪ 1) the second
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term is dominant and we obtain
∫ L−δ

Rin

|∂r ūh,3|2r dr ≈
∫ L−δ

Rin

k−2ε−1
∗ r dr ≈ h(log(δ )− log(L−Rin)).

We see that by settingδ = h (or any power ofh) we would obtain energy scaling
h| logh|.

We now begin discussion of the successful construction, which uses a “cascade
of wrinkles” nearr = L. The main tool is Lemma 4.3. Whereas Lemma 4.2 in-
volved wrinkled curves, Lemma 4.3 involves wrinkled strips, in which the length
scale of wrinkling doubles from one side to the other. It provides the basic building
block for our cascade of wrinkles.

Lemma 4.3. Let B= (0, l)× (0,w) with 0 < l ,w ≤ 1, F : (0, l) → R, and e be a
positive function on(0, l) satisfying|e′| ≤ c, |e′′| ≤ c, and l/c ≤ e≤ cl for some
c > 0. Then there exists a smooth deformationΨ(s, t) defined on B and w-periodic
in the t variable such that for any t∈ (0,w) the following holds:

Ψ1(s, t) = F(s), s∈ (0, l)

(Ψ2,Ψ3)(s, t) = wγ(e(s))(
t
w

), s∈ (0, l/4)

(Ψ2,Ψ3) (s, t) =
w
2

γ (e(s))

(
t

w/2

)
, s∈ (3/4l , l)

Ψ(s,0) = (F(s),0,0), Ψ(s,w) = (F(s),w,0), s∈ (0, l),

and

|∂sΨ2|2 + |∂sΨ3|2 ≤Cw2l−1, |∂tΨ| = 1+e(s),
∣∣D2Ψ

∣∣2 ≤C
(
l−3w2+w−2l

)
,

where C depends just on c andγ is the curve defined in Lemma 4.2.

Proof. To prove this lemma we just need to defineΨ2,Ψ3 such that the required
estimates are true. The idea of the construction is very similar to the proof of
Lemma 4.2. To simplify the notation we first assumew = 1.

First, let us fix 0< ε < 1 andα ∈ [0,1]. We consider a planar curve:

γ̃ : t 7→ (t,A[(1−α)sin(2πt)+ α sin(4πt)]) ,

whereA = A(ε ,α) is such that the length of̃γ([0,w]) is exactly(1+ ε). More
specifically, we define

Λ(t) =
1

1+ ε

∫ t

0
|γ̃ ′(τ)|dτ

=
1

1+ ε

∫ t

0

√
1+(2πA)2 [(1−α)cos(2πτ)+2α cos(4πτ)]2dτ

with A such thatΛ(1) = 1 (sinceΛ is strictly increasing function ofA, there exists
a unique suchA).
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Considering the small-ε limit, we obtain

A = ρ(ε ,α)ε1/2,

whereρ ∈ C ∞([0,1]× [0,1]). Consequently we have that
∣∣∣∣

∂A
∂ kε∂ l α

∣∣∣∣≤Cε1/2−k.

Using γ̃ we define a new reparametrized curve

Γ(ε ,α , t) = γ̃ ◦Λ−1(t).

This curve obviously satisfies|Γ′(t)| = 1+ ε and

Γ1(ε ,α , t) = t − ερ1(ε ,α , t), Γ2(ε ,α , t) = ε1/2ρ2(ε ,α , t),

whereρ1,ρ2 ∈ C ∞([0,1]× [0,1]×R). From there we get estimates

|∂ε Γ1|+ |∂tΓ1| ≤C, |∂α Γ1| ≤Cε ,

|∂εεΓ1|+ |∂εαΓ1|+ |∂εtΓ1| ≤C, |∂ααΓ1|+ |∂αtΓ1|+ |∂ttΓ1| ≤Cε ,

|∂ k
ε ∂ l

α∂ n
t Γ2| ≤Cε1/2−k k, l ,n≥ 0.

Now we are ready to define the mapΨ. We set

Ψ1(s, t) := F(s), Ψ2(s, t) := Γ1(e(s),φ(s), t), Ψ3(s, t) := Γ2(e(s),φ(s), t),

whereφ is a smooth increasing function on(0, l) satisfying

φ(s) = 0 s∈ (0, l/4),

0≤ φ(s) ≤ 1 s∈ (l/4,3/4 l),

φ(s) = 1 s∈ (3/4 l , l),

andφ ′ ≤ 3/l . Then

∂sΨ(s, t) =
(
F ′(s),∂ε Γ1e′ + ∂αΓ1φ ′,∂ε Γ2e′ + ∂αΓ2φ ′) ,

∂tΨ(s, t) = (0,∂tΓ1,∂tΓ2) ,

and using previous estimates together withe≈ l we obtain desired bounds

|∂tΨ| = 1+e(s), |∂sΨ2|2 + |∂sΨ3|2 ≤Cl−1.

To finish the proof in the casew= 1, we get the estimates onD2Ψ in the same way
as for the first derivatives ofΨ:

|D2Ψ1| ≤C

|∂ttΨ2| ≤Cl, |∂stΨ2| ≤C, |∂ssΨ2| ≤Cl−1

|∂ttΨ3| ≤Cl1/2, |∂stΨ3| ≤Cl−1/2, |∂ssΨ3| ≤Cl−3/2.
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It remains to show the lemma for generalw, i.e. we need to defineΨ on B =

(0, l)× (0,w). Let Ψ̃ come from the proof of this lemma for the casew = 1 (Ψ̃ is
defined on(0, l)× (0,1)). Then we simply set

Ψ(s, t) =
(

F(s),wΨ̃2(s, t/w),wΨ̃3(s, t/w)
)

.

Now it is an easy calculation to show thatΨ satisfies all the estimates. �

Remark.Later we will use Lemma 4.3 to create a test function for the upper bound
for Eh. The definition of the functionF from Lemma 4.3 will be based onv (the
solution of the relaxed problem (3.8)), and 1+e will be the corresponding natural
width. LetM(s) = F ′(s)e1⊗e1+(1+e(s))e2⊗e2 be a 3×2 matrix. Since 1+e(s)
is the natural width, we have thatDW(M(s)) = a(s)e1⊗e1 for some scalar function
a(s). By definition we knowM(s)11 = ∂sΨ1(s). Then the boundedness ofD2W
(see (2.8)) implies
∫

B
W(DΨ)−

∫

B
W(M(s)) ≤ C

∫

B

∣∣(∂sΨ,∂tΨ)−
(
F ′(s)e1⊗e1 + ∂tΨ⊗e2

)∣∣2

=
∫

B
|∂sΨ2|2 + |∂sΨ3|2,

where we used that|∂tΨ| = 1+e (see Lemma 4.3) and the rotational invariance of
W. Using Lemma 4.3 we obtain

∫

B
W(DΨ)+h2

∣∣D2Ψ
∣∣2−

∫

B
W(M(s)) ≤C

(
w3+h2[w3l−2 +w−1l2]) .

As already mentioned, we will later setF := v, the solution of the relaxed prob-
lem, ande := ε∗, the excess arclength, so that

∫
W(M) is the energy of the relaxed

solution. This remark will be then used to compare the elastic energy of the con-
structed deformation with the energy of the relaxed solution (which isE0).

Remark.SinceΨ is periodic int, we can assume it is defined in an infinite strip
(0, l)×R.

Remark4.4. In Lemma 4.3 we have estimated the size ofD2Ψ, not onlyD2Ψ3 (in
fact, the third component ofΨ was the most oscillatory, and so it is larger than
other two). We will use this fact later in the proof of the upper bound in the general
three-dimensional setting.

By (3.11) and smoothness ofv we can choose a smallδ > 0 and constants
0 ≤ c2 < c1 such that−c1 ≤ ∂rε∗ ≤ −c2 in the interval(L− δ ,L). We define a
deformationuh by changing ¯uh (defined in (4.2)) in the regionL−δ < r < L. The
idea is to create a cascade of wrinkles by superimposing wrinkles coming from
Lemma 4.3 in smaller and smaller rectangles as we approachr = L. We define (for
a non-negative integern):

In := (L−δ4−n,L−δ4−(n+1)),

an := L−δ4−n, ln := |In|, wn :=
2π
k

2−n,
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and forr ∈ In we set:

uh(r,θ) = v(r)r̂ + Ψ2θ̂ +v(r)Ψ3x̂3

whereΨ comes from Lemma 4.3 applied to the rectangleIn× (0,wn) with

F(s) := v(s−an), e(s) := ε∗(s−an), w := wn, l := ln.

We do the construction in the regionUN :=
⋃N

n=0 In×(0,2π) with N =−1/2log2(h)
(N is chosen such that 22N = h−1). Since the doubling of a period defined in
Lemma 4.3 happens strictly inside the given interval, the first and second deriva-
tives ofuh are continuous at eachan (i.e. there are no jumps in the first derivative
of uh betweenIn andIn+1).

To finish we just need to defineuh in a region close tor = L. Consider the
strip (L− δ4−N,L) (observe that it includesIN). By Lemma 4.2 the amplitude
of uh,3 at aN is of orderwNε∗1/2(aN) ≈ δ 1/2h3/2. The length of the intervalIN is
δ
(
4−N −4−(N+1)

)
= 3/4 · δh. We multiply uh by a smooth cut-off function inIN

to bring the out-of-plane displacement ofuh to zero ataN+1. Since the length of
the intervalIN is of orderh and the value ofDuh is bounded in that interval, the
membrane energy is bounded byCh in this interval. The second derivative of the
new deformation in this region is at most of orderh−1/2, and so the bending energy
in this region is less thanCh2∗ (h−1/2)2∗h = Ch2. Overall we obtain:

Eh(uh)−E0(u0) ≤Ch+C
N

∑
n=0

2nk
[
w3

n +h2(l−2
n w3

n +w−1
n l2

n

)]

≤Ch
(
1+h222N)≤Ch.

4.2 The lower bound in the two-dimensional setting

In this section we want to prove the lower bound

(4.3) min
u∈W2,2(Ω)

Eh(u) ≥ E0 +ch

for somec > 0 independent ofh. Our argument uses the convexity of the relaxed
problem; we shall have to work a lot because the relaxed problem is not strictly
convex. We will proceed by contradiction, assuming there isa deformationu with
energy very close to the energyE0 of the relaxed solution. After obtaining a bound
on the out-of-plane displacementu3 we use interpolation to show smallness ofDu3.
This allows us to project the deformationu into thex-y plane without altering its
energy too much (i.e. we obtain a planar deformation with energy close toE0).
Finally, we conclude the proof by showing that it is not possible to have a planar
deformations with energy close toE0.

The results in the first part of this section will be useful also later for the proof
of the three-dimensional case; therefore we prove them assuming only 1< p≤ 2
in (2.8). On the other hand, it is convenient to assumep = 2 in the interpolation
argument used later in this section, and so from that point onwe assumep = 2.
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We define

(4.4) gp(t) :=

{
t2

2 , if 0 ≤ t ≤ 1,
t p

p + 1
2 − 1

p, if t > 1,

for some 1< p≤ 2. We observe that the functiongp is monotone, convex, andC1.
Since it also satisfiesgp(2t) ≤ 4gp(t), convexity ofgp implies

(4.5) gp(a+b) ≤ 2(gp(a)+gp(b)).

The proof of the lower bound is divided into six steps:
Step 1:To proceed by contradiction, we assume that for any small 0< δ ≤ 1 there
exists a sequence of functionsuh s.t.

Eh(uh) ≤ E0 + δh.

This is equivalent to

(4.6) Eh(uh)−E0(u0) ≤ δh,

hence usingWr ≤W and definition ofE0 we immediately obtain
∫

Ω
Wr(Duh)−Wr(Du0)dx′ +B(uh−u0) = E0(uh)−E0(u0) ≤ δh.

Sinceu0 is the minimizer of the relaxed energyE0, it has to satisfy Euler-Lagrange
equation ∫

Ω
DWr(Du0) : Dϕ dx′ +B(ϕ) = 0

for any test functionϕ ∈W1,p(Ω,R3). SinceDWr(Du0) is bounded, we can easily
take test functions inW1,1(Ω,R3). Using the relation forϕ := u0−uh yields

(4.7)
∫

Ω
Wr(Duh)−Wr(Du0)−DWr(Du0) : (Duh−Du0)dx′ ≤ δh.

Step 2: We would like to obtain a pointwise lower bound on the integrand of the
last relation.

Lemma 4.5. Assume(2.8) holds. Let F∈ R
3×2 be an orthogonal matrix with

singular valuesλ1 > 1, λ2 < λ1, and n be the right singular vector corresponding
to λ1 (i.e. FTFn = λ 2

1 n). If there existκ > 0 and an open neighborhoodU of
(λ1,λ2) such that

(4.8) D2 fr(σ1,σ2) ≥ κe1⊗e1 for (σ1,σ2) ∈ U ,

then there exists c0 > 0 (depending only onλ1,λ2,κ ,U , and growth of W) such
that for any G∈ R

3×2

(4.9) Wr(G)−Wr(F)−DWr(F) : (G−F) ≥ c0gp (|(G−F) ·n|) .
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Proof. We first prove the statement for large strains (i.e. ifG is large). Letσ1 ≥ σ2

are the singular values ofG. We observe that the coercivity ofW(G) (see (2.8))
implies thatWr(G) has alsop-th power growth for large matrices. Indeed, ifG has
only tensile stress, we haveW(G) = Wr(G), i.e.Wr(G) has the same growth asW.
Otherwise, we know from the ordered force inequality (3.5) that

fr(σ1,σ2) ≥ fr(σ1−1,1) ≥ c(|G|p−1),

where the last inequality follows from the coercivity ofW and from the fact that
strains(λ1−1,1) produce only tensile stresses (and soW = Wr in this case). Thus
the LHS of (4.9) grows at least like|G|p. Since the RHS has at most such growth,
the conclusion follows.

It remains to prove the statement in the case

|G| ≤ M

for someM. First, we observe that in this case|(G−F) ·n|2 and|(G−F) ·n|p are
comparable, and so we can replacegp in (4.9) with a quadratic function, i.e. we
need to show

(4.10) Wr(G)−Wr(F)−DWr(F) : (G−F) ≥ c0|(G−F) ·n|2

for any |G| ≤ M (possibly with a differentc0 than in (4.9)). We start by com-
putingDWr(F). SinceWr is rotationally invariant, we can assume without loss of
generality that

F =




λ1 0
0 λ2

0 0


 ,n =

(
1
0

)
.

Then a simple calculation reveals that

DWr(F) =




α1 0
0 α2

0 0


 ,

whereα1 = ∂1 fr(λ1,λ2) andα2 = ∂2 fr(λ1,λ2). We observe thatα1 > 0, α2 ≥ 0,
and thatα2 = 0 iff λ2 ≤ w(λ1). We rewrite (4.10):

(4.11) Wr(G)−Wr(F)+DWr(F) : F ≥ DWr(F) : G+c0|(G−F) ·n|2

= α1G11+ α2G22+c0

(
(G11−λ1)

2 +G2
21+G2

31

)

= (α1−2c0λ1)G11+ α2G22+c0
(
G2

11+G2
21+G2

31

)
+c0λ 2

1

We choosec0 > 0 small enough so thatα1−2c0λ1 > 0. The LHS of the inequal-
ity depends only on singular values ofG. Hence, we can prove (4.11) by maximiz-
ing the RHS among all matricesG with given singular valuesσ1 ≥ σ2. We give the
argument assuming thatα1−2c0λ1 ≥ α2 (the proof in the caseα1−2c0λ1 ≤ α2 is
analogous).
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To prove (4.11) we will use the following lemma due to von Neumann (see, e.g,
[26]):

Lemma 4.6. If A,B are n×n matrices with singular values

σ1 ≥ ·· · ≥ σn, ρ1 ≥ ·· · ≥ ρn

respectively, then

|tr(AB)| ≤
n

∑
r=1

σrρr .

We shall apply the lemma to find the maximal possible value of the RHS (4.11)
among all matricesG with singular valuesσ1 ≥ σ2. First we setA := (G|0) (the
3×3 matrix with first two columns identical withG and the third column equal 0)
andB = diag(α1−2c0λ1,α2,0). Then the lemma gives

(α1−2c0λ1)G11+ α2G22 ≤ (α1−2c0λ1)σ1 + α2σ2.

ForA := GTG andB = diag(1,0) the lemma implies

G2
11+G2

21+G2
31≤ σ2

1 .

Together we see that the RHS of (4.11) is at most(α1−2c0λ1)σ1+α2σ2+c0σ2
1 +

c0λ 2
1 . To see that this bound is optimal, we useG0 :=




σ1 0
0 σ2

0 0


 asG. We got that

the RHS of (4.11) is maximal for the choiceG= G0, and so we need to prove (4.10)
only for G = G0 for anyσ1 ≥ σ2 ≥ 0, i.e. to show

(4.12) fr (σ1,σ2)− fr(λ1,λ2)−D fr(λ1,λ2)(σ1−λ1,σ2−λ2) ≥ c0(σ1−λ1)
2.

Using Taylor’s expansion offr at the point(λ1,λ2), and assumptions (2.8) and (4.8)
we see that

fr (σ1,σ2)− fr(λ1,λ2)−D fr(λ1,λ2)(σ1−λ1,σ2−λ2)

≥
∫ (σ1,σ2)

(λ1,λ2)

〈
D2 fr(ξ )(σ −ξ ) ,σ −ξ

〉
dξ

≥ c1κ(σ1−λ1)
2,

where the last inequality follows from the fact thatD2 fr ≥ κe1⊗e1 in a non-trivial
part of the segment between(λ1,λ2) and(σ1,σ2) (remember thatG is bounded),
andD2 fr ≥ 0 otherwise. This completes the proof of the lemma since we showed
that (4.12) holds withc0 = c1κ . �

Lemma 4.7. Assume(2.8) holds. Let F∈ R
3×2 be an orthogonal matrix with

singular values1 < λ2 ≤ λ1 ≤ K. If there existκ > 0 and an open neighborhood
U of (λ1,λ2) such that

D2 fr(σ1,σ2) ≥ κ I for (σ1,σ2) ∈ U ,
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then there exists c0 > 0 (depending only onλ1,λ2,κ ,U ,K, and growth of W) such
that for any G∈ R

3×2

(4.13) Wr(G)−Wr(F)−DWr(F) : (G−F) ≥ c0gp (|G−F|) .

Proof. The idea of the proof is simple and resembles proof of the previous lemma.
If G is large, we get the statement the same way as in the previous lemma.

Otherwise we can assume|G| ≤M for some (possibly large)M. For any suchG
the part of the segment connectingF andG (i.e. F + t(G−F) for t ∈ (0,1)) which
belongs toU will be at leastε part of the whole segment. The LHS of (4.13) can
be written as

∫ 1

0

〈
D2Wr(F + t(G−F))(G−F),G−F

〉
(1− t)dt,

and the integral is at leastκ(1− t)|G−F|2 along the non-trivial part of the segment
and non-negative everywhere else. Therefore (4.13) follows. �

Before proceeding to step 3, we need one more lemma, that is similar in char-
acter to the preceding ones but involvesW instead ofWr .

Lemma 4.8. Assume(2.8)holds. Let F∈ R
3×2 be an orthogonal matrix with sin-

gular valuesλ1 > 1, λ2 ≤ w(λ1), and n be the right singular vector corresponding
to λ1. If there existsκ > 0 and an open neighborhoodU of (λ1,λ2) such that

D2 fr(σ1,σ2) ≥ κe1⊗e1 for (σ1,σ2) ∈ U ,

then there exists c0 > 0 such that for any G∈ R
3×2

(4.14) W(G)−W(F0)−DW(F0) : (G−F) ≥ c0gp (dist(G,SO(3)F0)) ,

where F0n = Fn and Wr(F) = W(F0).

Proof. Let H ∈ R
3×2 be such thatHn = Gn andW(H) is minimal among all such

H. We observe

W(H) ≥Wr(H), W(F0) = Wr (F0).

Arguing as we did in the proof of Lemma 4.5 (i.e. using rotational invariance ofW
andWr to computeDW andDWr ) we also have

DW(F0) : (G−F) = DWr(F0) : (H −F0).

We claim that

W(G)−W(H) ≥ cgp(dist(G,SO(3)H))

follows from (2.8). We give a proof of this fact in the Appendix (see Lemma A.3
and Remark A.4).
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Now Lemma 4.5 and the previous inequality imply that the LHS of (4.14) is at
least

(4.15) [W(G)−W(H)]+ [Wr(H)−Wr(F0)−DWr(F0) : (H −F0)] ≥
c0 (gp (dist(G,SO(3)H)+gp(|(H −F0) ·n|))

(c0 is a generic constant, i.e. it can change from line to line).
We claim that in the second term on the RHS of (4.15) we have

|(H −F0) ·n| ≥ cdist(H,SO(3)F0).

To prove it, we first observe that without loss of generality we can assumen =
(1,0). Then using (A.7) we see that

H = (v1|v2) andF0 = (w1|w2),

wherev1 ⊥ v2, |v2| = g(|v1|) andw1 ⊥ w2, |w2| = g(|w1|). There clearly exists a
rotationR∈ SO(3) such thatv1||Rw1 andv2||Rw2, and the vectors have the same
orientation; thus

dist(H,SO(3)F0)
2 ≤ |v1−Rw1|2 + |v2−Rw2|2 = (|v1|− |w1|)2 +(|v2|− |w2|)2

= (|v1|− |w1|)2 +(g(|v1|)−g(|w1|))2 ≤ c(|v1|− |w1|)2 ≤ c|(H −F0) ·n|2.
Hence the RHS of (4.15) satisfies

c0(gp (dist(G,SO(3)H)+gp(|(H −F0) ·n|))
≥ c0 [gp(dist(G,SO(3)H)+gp(dist(H,SO(3)F0))] ≥ c′0gp(dist(G,SO(3)F0)),

where we used inequality (4.5). This completes the proof of Lemma 4.8. �

We continue the proof of the lower bound (4.3).
Step 3: It is clear that there existsρ > 1 such that the region where the smaller
singular value ofDu0 is at leastρ is non-empty. We will denote this regionNρ and
its complement inΩ asRρ . Lemmas 4.5 and 4.7 applied to (4.7) imply
∫

Nρ
gp
(
|Duh(x

′)−Du0(x
′)|
)

dx′ +
∫

Rρ
gp
(
|(Duh(x

′)−Du0(x
′) ·n(x′)|

)
dx′ ≤Cδh,

whereC > 0 depends only onu0, Wr , and choice ofρ . We now use the Poincaré
inequality adjusted to our setting (Lemma A.6). We obtain

∫

Nρ
gp(|uh(x

′)−ch−u0(x
′)|)dx′ ≤

∫

Nρ
gp(|Du(x′)−Du0(x

′)|)dx′ ≤Cδh

for somech.
We would like to extend the previous estimate into the wholeΩ. We fix a

directionθ and define (using radial coordinates)

f (t) := uh(t,θ)−u0(t,θ), t ∈ (Rin,Rout).
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Let us callM the radius of the boundary betweenNρ andRρ , and let

K :=
∫ Rout

Rin

gp(| f ′(t)|)dt +
∫ Rout

M
gp(| f (t)−ch|)dt.

Then by the Poincaré inequality applied tof on (Rin,Rout) we get
∫ Rout

Rin

gp(| f (t)−cθ |)dt ≤C
∫ Rout

Rin

gp(| f ′(t)|)dt ≤CK

for somecθ . We also have

(Rout−M)gp(|ch−cθ |) =
∫ Rout

M
gp(|ch−cθ |)dt

≤C

(∫ Rout

M
gp(| f (t)−ch|)dt +

∫ Rout

M
gp(| f (t)−cθ |)dt

)
≤CK

and so
(4.16)∫ Rout

Rin

gp(| f (t)−ch|)dt ≤C

(∫ Rout

Rin

gp(| f (t)−cθ |)dt +

∫ Rout

Rin

gp(|cθ −ch|)dt

)
≤CK.

Finally, by integrating (4.16) inθ we obtain

(4.17)
∫

Ω
gp(|uh(x

′)−ch−u0(x
′)|)dx′ ≤Cδh.

Step 4: The next step in the proof is the interpolation between||uh,3||L2(Ω) and
||D2uh,3||L2(Ω). For that reason we assumep = 2 (instead of a more general 1<
p≤ 2) for the rest of this section. (Since the previous lemmas will be used later
(see Section 5), we proved them assuming only 1< p≤ 2.)

Whenp = 2, (4.17) reads

||uh(x
′)−ch−u0(x

′)||2L2(Ω) dx′ ≤Cδh.

Without loss of generality we can assumech = 0, since our problem is translation
invariant; in particular we have

(4.18) ||uh,3||2L2(Ω) ≤Cδh.

Since
Eh(uh)−h2||D2uh,3||2L2(Ω) ≥ min

u
E0(u) = E0,

we have that

(4.19) ||D2uh,3||2L2(Ω) ≤ δ/h.

Interpolating between (4.18) and (4.19) we obtain

(4.20) ||Duh,3||2L2(Ω) ≤Cδ .

Step 5: We want to estimate
∫

Ω

∣∣W(Duh)−W(Du12
h )
∣∣ dx′,
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whereu12
h = (uh,1,uh,2,0) is the projection ofuh into thex-y plane andA(x′) :=

Duh(x′)−Du12
h (x′). By (2.7) the previous integral is equal to

∫

Ω

∣∣ f (σ1(x
′),σ2(x

′))− f (λ1(x
′),λ2(x

′))
∣∣ dx′,

whereσ1(x′),σ2(x′) andλ1(x′),λ2(x′) are the singular values of matricesDuh(x′)
and Du12

h (x′), respectively. Since the singular values of a matrix are Lipschitz
functions of the corresponding matrix (see, e.g., Corollary 8.6.2 in [19]), we have

| f (σ1(x
′),σ2(x

′))− f (λ1(x
′),λ2(x

′))|= |D f (ξ (x′))(σ1(x
′)−λ1(x

′),σ2(x
′)−λ2(x

′))|

(4.21)

≤C|D f (ξ (x′))||A(x′)|,
whereξ (x′) is a point on a segment connecting(σ1(x′),σ2(x′)) and(λ1(x′),λ2(x′)).
By (2.8)D f (1,1) = 0 andD2 f ≤C, and soD f (ζ ) ≤C(|ζ |+1). Using quadratic
growth of f ((2.8) with p = 2) we obtain

|D f (ξ (x′))|2 ≤C(|ξ (x′)|2 +1) ≤C′( f (ξ (x′))+1)(4.22)

≤C′( f (σ1(x
′),σ2(x

′))+ f (λ1(x
′),λ2(x

′))+1),

where the last inequality trivially follows from the convexity of f . Integrating
(4.21) and using (4.22) together with Hölder inequality weget
∫

Ω

∣∣ f (σ1(x
′),σ2(x

′))− f (λ1(x
′),λ2(x

′))
∣∣ dx′

≤C

(∫

Ω
|D f (ξ (x′))|2 dx′

)1/2(∫

Ω
|A(x′)|2 dx′

)1/2

≤C

(∫

Ω
W(Duh)+W(Du12

h )dx′ +1

)1/2

||Duh,3||L2(Ω).

Therefore by (4.20) and usingδ ≤ 1,h≤ 1 we have that

(∫

Ω

∣∣W(Duh)−W(Du12
h )
∣∣ dx′

)2

≤C

(
2
∫

Ω
W(Duh)dx′ +

∫

Ω

∣∣W(Duh)−W(Du12
h )
∣∣ dx′ +1

)
δ

≤Cδ
(

E0 + δh+1+
∫

Ω

∣∣W(Duh)−W(Du12
h )
∣∣ dx′

)

≤C′δ
(

1+

∫

Ω

∣∣W(Duh)−W(Du12
h )
∣∣ dx′

)
.

It follows easily that
∫

Ω

∣∣W(Duh)−W(Du12
h )
∣∣ dx′ ≤Cδ 1/2,
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and so
(4.23)∣∣Eh(uh)−Eh(u

12
h )
∣∣≤Cδ 1/2 +h2||D2uh,3||2L2(Ω) ≤C(δ 1/2 + δh) ≤Cδ 1/2.

Equations (4.6) and (4.23) together imply

E(u12
h )−E0(u0) ≤Cδ 1/2,

whereE(v) =
∫

ΩW(Dv)+ B(v) (v is just an in-plane deformation, so there is no
bending term present).
Step 6: Observe that the last relation does not depend on thicknessh anymore.
In fact, to finish the proof we just need to show that the minimum of the energy
Eh over in-plane deformations has to be strictly larger than the minimum of the
relaxed energyE0:

Lemma 4.9. Under the assumptions of Theorem 4.1 we have

min
u∈W2,2(Ω,R2×{0})

Eh(u) > min
u∈W2,2(Ω,R3)

E0(u) = E0.

Proof. Let us assume the contrary, i.e. for any smallδ > 0 there exists a function
u : Ω → R

2 such that
∫

Ω
W(Du)dx′ +B(u) ≤ E0 + δ =

∫

Ω
Wr(Du0)dx′ +B(u0)+ δ .

The plan is to obtain a contradiction by showing that the areas of u(ΩR) and
u0(ΩR) should be very similar using one argument and at the same timevery differ-
ent for another reason (hereΩR is the relaxed region introduced near (3.20)). First,
using Euler-Lagrange equation foru0 we can replace the boundary termB(u−u0)
by the gradient term:

∫

Ω
W(Du)−Wr(Du0)−DWr(Du0) · (Du−Du0)dx′ ≤ δ .

SinceW ≥Wr andWr is convex, the integrand in the last relation is non-negative
a.e. Therefore the last relation remains true if we integrate over the relaxed region
ΩR instead of the whole domainΩ. To proceed, we would like to find a matrixF0

such thatWr(Du0) = W(F0) (i.e. we want to relax compressive stresses inDu0 if
they are present). We know thatDu0 has compressive stresses in the hoop direction
(and tensile in the radial direction), which means thatF0 andDu0 coincide in the
radial direction and are different in the hoop direction, i.e.

F0(x
′)n(x′) = (Du0(x

′))n(x′) and F0(x
′)n⊥(x′) = cn⊥(x′)

with somec > (Du0n⊥)n⊥. Moreover, it can be easily seen that in this case
DWr(Du0) = DW(F0). We rewrite the previous inequality to obtain

∫

ΩR

W(Du(x′))−W(F0(x
′))−DW(F0(x

′)) · (Du(x′)−Du0(x
′))dx′ ≤Cδ .
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Using Lemma 4.8 withp = 2 we see that
∫

ΩR

dist2(Du,SO(3)F0)dx′ ≤Cδ ,

whence
(4.24)∣∣∣∣|u(ΩR)|−

∫

ΩR

detF0dx′
∣∣∣∣≤

∫

ΩR

|detDu−detF0| dx′ ≤ C
(

δ + δ 1/2
)
≤Cδ 1/2.

Further we see that

(4.25) detF0 > detDu0.

Indeed,F0 andDu0 are “same” in the radial direction (i.e.F0n = (Du0)n), whereas
due to compression in the hoop direction in the relaxed solution u0 we have that
(F0n⊥)n⊥ > ((Du0)n⊥)n⊥. Hence we get (4.25) by taking product of the two pre-
vious relations. Finally integrating (4.25) we obtain

(4.26)
∫

ΩR

detF0dx′ >
∫

ΩR

detDu0 dx′ = |u0(ΩR)|.

To finish the proof we want to show

(4.27) |u(ΩR)| ≤ |u0(ΩR)|+Cδ 1/3.

Then by combining (4.24) and (4.27) we get
∫

ΩR

detF0dx′ < |u0(ΩR)|+Cδ 1/3,

contradicting (4.26) sinceδ > 0 can be arbitrary small.
To show (4.27) we setε := δ 1/3 and define

M := u(ΩR)∩
{

x∈ R
2 : dist(x,u0(ΩR)) > ε

}
.

Then
(4.28)

|u(ΩR)| ≤
∣∣{x∈ R

2 : dist(x,u0(ΩR)) ≤ ε
}∣∣+ |M | ≤ |u0(ΩR)|+Cε + |M | .

It is enough to estimate the size ofM . Arguing as before (c.f. (4.17)), we know
that

||u−u0||2L2(ΩR,R2) ≤Cδ ,

whence

(4.29) ε2
∣∣u−1(M )

∣∣ ≤
∫

u−1(M )
|u−u0|2dx′ ≤ ||u−u0||2L2(ΩR,R2) ≤Cδ .

By virtue of (4.29)

|M | =
∫

u−1(M )
detDudx′ =

∫

u−1(M )
detF0dx′ +

∫

u−1(M )
detDu−detF0dx′

≤C
∣∣u−1(M )

∣∣+
∫

ΩR

|detDu−detF0| dx′ ≤Cδε−2+Cδ 1/2 ≤Cδ 1/3.
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Using this estimate in (4.28) we obtain (4.26). �

This completes the proof of the matching lower and upper bound in the two-
dimensional setting (4.1).

5 The 3D result

In this section we will prove the scaling law for the minimum of the elastic
energy in the nonlinear three-dimensional setting. As in the previous section, we
need to show an upper and a lower bound. As usual in problems ofthis type, the
upper bound is an easy consequence of the upper bound for the 2D setting. The
main goal is therefore to show the lower bound in this more general setting.

As explained in Section 2 we consider a nonlinear 3D energy

E3D
h (u) :=

1
h

∫

Ω×(0,h)
W3D(Du)dx

instead of the reduced 2D energy (2.2). The boundary term in the 3D setting is
defined as

B3D
h (u) :=

Tin

h

∫

|x̂|=Rin

u(x) · x̂
Rin

dS− Tout

h

∫

|x̂|=Rout

u(x) · x̂
Rout

dS.

The main result of this section is

Theorem 5.1. Under the hypothesis of Theorem 3.4 there exist constants0<C1 <
C2 independent of h such that

E0 +C1h≤ min
u∈W1,p(Ω×(−h/2,h/2))

E3D
h (u)+B3D

h (u) ≤ E0 +C2h.

5.1 The upper bound in the three-dimensional setting

The construction of a test functionu3D
h in the three-dimensional setting is based

on the test functionuh defined in the previous section to show the upper bound
in the two-dimensional setting. Following proposed Kirchhoff-Love ansatz, the
normal to the mid-surface remains straight and normal to themid-surface after de-
formation. Therefore, we just need to find how much should each of these normals
stretch. It follows from the definition ofW (see (2.5)) that for anyx′ ∈ Ω there
exists a factorα(x′) such that the vectorα(x′)ν(x′) satisfies

W(Duh(x
′)) = W3D(Duh(x

′)|α(x′)ν(x′)),

whereν(x′) is the unit normal touh(Ω) atuh(x′). We observe thatα(x′) is bounded
and|Dα | ≤C|D2uh|. We define the solutionu3D

h as

u3D
h (x) := uh(x

′)+x3 ·α(x′)ν(x′)

and compute
Du3D

h (x) = (Duh|αν)+x3 · (D(αν)|0).
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Then

E3D
h (u3D

h )−Eh(uh)

≤ 1
h

∫

Ω×(−h/2,h/2)
W3D( (Duh|αν)+x3 · (D(αν)|0) )−W3D(Duh|αν)dx(5.1)

≤ 1
h

∫

Ω×(−h/2,h/2)
x3 ·DW3D(Duh|αν) : (D(αν)|0)+x2

3 ·C|D(αν)|2 dx

≤Ch2
∫

Ω
|D(αν)|2 dx′ ≤Ch2

∫

Ω
α(x′)2|Dν |2 + |Dα |2dx′

whereC depends on||D2W3D||L∞ . We know thath2∫
Ω |D2uh|2 is bounded byCh

(see Remark 4.4), and thus using boundedness ofDuh and
∫

Ω
|Dν |2dx′ ≤C

∫

Ω
|D2uh|2dx′

we obtainh2∫
Ω α2|Dν |2 dx′ ≤Ch. A similar estimate is true for the second term:

h2
∫

Ω
|Dα |2dx′ ≤Ch2

∫

Ω
|D2uh|2dx′ ≤Ch.

Together we have obtained

E3D
h (u3D

h ) ≤ Eh(uh)+Ch≤ E0 +Ch.

5.2 The lower bound in the three-dimensional setting

Our goal is to show a lower bound similar to (4.3):

(5.2) min
u∈W1,p(Ω×(−h/2,h/2))

E3D
h (u)+B3D

h (u) ≥ E0 +ch.

To first approximation, the proof of (5.2) consists of slicing our domain, applying
the two-dimensional lower bound on each slice, then patching them together. But
two new features require changes in the argument. First, theenergy densityW in
2D was derived from the 3D energy densityW3D assuming the missing third com-
ponent is optimal. Therefore we need to estimate how much thethird component
of Du differs from the optimal one, and how the optimal vector depends on the
first two components. As a second feature, where 2D used interpolation we need
to proceed differently by using a rigidity theorem.

Let h > 0 be fixed and consider a function ˜u ∈W1,p(Ω× (−h/2,h/2)). Then
for any fixedx3 ∈ (−h/2,h/2) we define

u(x′) := ũ(x′,x3)

for x′ ∈ Ω. Sinceu0 is the minimizer of the relaxed energyE0 we have that

E0 = E0(u0) ≤ E0(u) ≤
∫

Ω
W(Du)dx′ +B(u)

and we set

R :=
∫

Ω
W(Du)dx′ +B(u)−E0 ≥ 0.
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Our initial goal is to show that ifR is small thenDu is close to some function
(which is derived fromDu0). We use Euler-Lagrange equation to replace boundary
termB by DWr and obtain

∫

Ω
W(Du)−Wr(Du0)−DWr(Du0)(Du−Du0)dx′ = R.

Using notation of Lemma 4.8 this can be rewritten as
∫

Ω
W(Du)−W(F0)−DW(F0)(Du−Du0)dx′ = R,

whereF0(x) ·n(x) = Du0(x) ·n(x) andW(F0(x)) = Wr(Du0(x)). We apply Lemma
4.8 to get

(5.3)
∫

Ω
gp
(

dist(Du(x′),SO(3)F0(x
′))
)

dx′ ≤CR.

Now we go back to the 3D body. We see that

E3D
h (ũ)+B3D

h (ũ)−E0 =
1
h

∫ h/2

−h/2

∫

Ω
W3D(Dũ(x))−W(Dũ(x)P)dx+

1
h

∫ h/2

−h/2



∫

Ω
W(Dũ(x)P︸ ︷︷ ︸

Du(x′)

)dx′ +B(ũ(·,x3))−E0


 dx3 =: I1 + I2,

whereP =




1 0
0 1
0 0


. Let ζ (x) ∈ R

2 be such that

W3D(Dũ(x)P|ζ (x)) = W(Dũ(x)P).

Then Lemma A.2 implies

(5.4) I1 ≥
C
h

∫ h/2

−h/2

∫

Ω
gp(|Dũ(x)− (Dũ(x)P|ζ (x))|)dx,

and by virtue of (5.3)

I2 ≥
C
h

∫ h/2

−h/2

∫

Ω
gp(dist(Dũ(x)P,SO(3)F0(x

′)))dx.

We want to extendF0(x′) ∈ R
3×2 into a 3×3 matrix. To do that, we find a vector

V ∈ R
3 such that det(F0(x′)|V) > 0 and

W3D(F0(x
′)|V) = min

ξ∈R3
W3D(F0(x

′)|ξ ).

Observe that the choice ofV is unique. We define

(5.5) M(x′) := (F0(x
′)|V).

Lemma A.5 then implies

dist((Dũ(x)P|ζ (x)),SO(3)M(x′)) ≤Cdist(Dũ(x)P,SO(3)F0(x
′)),
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and so

(5.6) I2 ≥
C
h

∫ h/2

−h/2

∫

Ω
gp(dist((Dũ(x)P|ζ (x)),SO(3)M(x′)),)dx.

By adding (5.4) and (5.6), and by using (4.5) (the triangle inequality forgp with
factor 2) we obtain

E3D
h (ũ)+B3D

h (ũ)−E0 ≥
C
h

∫

Ω×(−h/2,h/2)
gp
(

dist(Dũ(x),SO(3)M(x′))
)

dx.

Moreover, from the previous analysis (see (4.17)) we know that there exists a func-
tion τ of x3 alone such that

1
h

∫ h/2

−h/2

∫

Ω
gp
(
|ũ(x)− τ(x3)−u0(x

′)|
)

dx′ dx3 ≤C(E3D
h (ũ)+B3D

h (ũ)−E0).

By adding those two inequalities we obtain

J(Ω, ũ) ≤C(E3D
h (ũ)+B3D

h (ũ)−E0),

where forU ⊂ Ω we define

J(U, ũ) :=
1
h

∫

U×(−h/2,h/2)
gp
(

dist(Dũ(x),SO(3)M(x′))
)

dx

+
1
h

∫

U×(−h/2,h/2)
gp
(
|ũ(x)− τ(x3)−u0(x

′)|
)

dx.

We will obtain the lower bound from the following important lemma:

Lemma 5.2. Let h> 0 be sufficiently small and let r0 be such that(r0, r0 +2h) ⊂
(Rin,L). Then

J(A (r0, r0 +h), ũ) ≥ η(r0)h
2,

whereA (α ,β ) is an annulus with radiiα < β andη = η(r0) > 0 is a decreasing
function of r0.

The proof of the lemma will be given in Section 5.3. The desired lower bound
is an easy consequence. Indeed, for anyRin < r0 < L−2h we know by Lemma 5.2
that

J(A (r0, r0 +h), ũ) ≥ η(r0)h
2.

Adding such inequalities forr0 = Rin + kh such thatRin ≤ r0 ≤ (Rin + L)/2− 2h
we obtain that

J(A (Rin,L), ũ) ≥
K

∑
k=0

η(r0(k))h
2 ≥ η ((Rin +L)/2)

K

∑
k=0

h2 ≥Ch

for someC > 0, whereK = (Rin −L)/2h−2 and we used monotonicity ofη .
Besides proving Lemma 5.2 (see the next section), the proof of the lower bound

(5.2) is finished.
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5.3 Proof of Lemma 5.2

Proof. Let us first sketch the idea of the proof. We assume ˜u has small energy
(i.e. J(ũ) is small), and want to compare it withu0. We take a collection ofh−1/2

neighboring cubes in the hoop direction, each cube with sideh. Using a rigidity
theorem we show that ˜u is almost constant on each cube and doesn’t change much
between the cubes.

Sinceũ has small energy, we prove that oftenDũ is larger thanDu0 in the hoop
direction. After integration in the hoop direction we obtain thatũ−u0 can not be
small in most of the cubes. On the other hand, ˜u having small energy implies that
ũ−u0 has to be small in theL2 sense, contradicting the previous fact.

For better understanding we split our proof into several steps.
Step 1:Let us consider a part ofA (r0, r0+h) with the length approximately 2h1/2.
We set

k := [h−1/2]

and for a givenθ ∈ (0,2π) we define 2k cubes in the radial coordinates

Qi = (r0, r0 +h)× (θ + iσ ,θ +(i +1)σ)× (−h/2,h/2),

wherei = 1, . . . ,2k andσ = h/r0. We denote byQ the union of those cubes and
set

J := hJ(Q, ũ)+ |Q|h2 =

∫

Q
gp
(

dist(Dũ(x),SO(3)M(x′))
)

dx

+
∫

Q
gp
(
|ũ(x)− τ(x3)−u0(x

′)|
)

dx+ |Q|h2.

Step 2: We claim thatJ ≥ Ch3.5 for some positiveC. To prove the claim, we
shall suppose that

(5.7) J = εh3.5,

and give a lower bound forε . SinceM is defined in terms ofu0 (see (5.5)), we have
|DM(x′)| ≤C and consequently
∫

Qi

gp (dist(Dũ(x),SO(3)Mi)) dx

≤C
∫

Qi

gp
(

dist(Dũ(x),SO(3)M(x′))
)

dx+C|Qi|h2,

whereMi := M(xi) with xi being a point inQi (e.g. center ofQi). Using the rigidity
estimates of [1] (see also [16]) we obtain a rotationRi on each cubeQi such that

(5.8)
∫

Q
gp(|Dũ(x)−RiMi|) dx≤CJ

and
2k−1

∑
i=1

gp (|Ri −Ri+1|) ≤CJ h−3.
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Using convexity ofgp and Jensen’s inequality we get

(5.9) gp

( |Rα −Rα+β+1|
β

)
≤ ∑α+β

i=α gp (|Ri −Ri+1|)
β

≤CJ h−3β−1 ≤Ch0.5.

Since the RHS in the previous relation is small, so is the argument ofgp on the
LHS (in particular, it is smaller than 1), and so we can take square root of both
sides to obtain ∣∣Rα −Rα+β+1

∣∣≤
√

CJ h−3k =: δ .

We also know

Ri ∈ SO(3), |Mi| ≤C, |n| = 1, |Mi −M j | ≤Ckh, |n(x)−n(y)| ≤Ckh.

Therefore we can choose one rotationR∗ (e.g. amongRi), a matrixM∗ (amongMi)
and a unit vectorn⊥∗ such that for anyx′

(5.10)
∣∣∣RiMin(x′)⊥−R∗M∗n

⊥
∗

∣∣∣≤C(δ +kh) .

Step 3: For j ∈ {1, . . . ,k} we have

(5.11)

(∫

Q j+k

ũ(x)− τ(x3)−u0(x
′)dx

)
−
(∫

Q j

ũ(x)− τ(x3)−u0(x
′)dx

)

=
∫

D j

(
Dũ(x)−Du0(x

′)
)

n(x′)⊥ϕ j(x
′)dx

=

∫

D j

[
(Dũ(x)−RiMi)n(x′)⊥+

(
RiMin(x′)⊥−R∗M∗n

⊥
∗
)

+

(
R∗M∗n

⊥
∗ −Du0(x

′)n(x′)⊥
)]

ϕ j(x
′)dx,

whereD j :=
⋃ j+k

i= j Qi and 0≤ ϕ j(x′) ≤ h is a weight coming from the integra-
tion (more precisely, inQ j function ϕ j is linear going from 0 toh, ϕ j(x′) = h on
Q j+1, . . . ,Q j+k−1, and then decays linearly fromh to 0 inQ j+N). We point out that
n⊥ used in (5.11) means a unit vector in the orthoradial (hoop) direction. The first
two parts of the last integral can be directly estimated from(5.8) and (5.10) using
convexity ofgp and Jensen’s inequality as in (5.9):

(5.12)

∣∣∣∣
∫

D j

(Dũ(x)−RiMi)n(x′)⊥ϕ j(x
′)dx

∣∣∣∣ ≤ChJ 1/2|D j |1/2

and

(5.13)

∣∣∣∣
∫

D j

(
RiMin(x′)⊥−R∗M∗n

⊥
∗
)

ϕ j(x
′)dx

∣∣∣∣ ≤C
∣∣D j
∣∣(δh+kh2) .

Step 4: In this step we show a lower bound for the remaining integral
∫

D j

(
R∗M∗n

⊥
∗ −Du0(x)n(x′)⊥

)
ϕ j(x

′)dx
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using the fact thatDu0 is “smaller” in the hoop (n⊥) direction thanR∗M∗. Arguing
as in the proof of (4.25) we see that for any unit planar vectorχ we have

|M∗χ |− |Du0(x
′)n(x′)⊥| ≥ κ > 0,

whereκ depends monotonically only on the radial positionr = |x′| (and approaches
0 asr0 → L). Therefore (usingκ0 := κ(r0 +h))

∣∣∣∣∣

∫

D j

(
R∗M∗n

⊥
∗ −Du0(x)n(x′)⊥

)
ϕ j(x

′)dx

∣∣∣∣∣

≥
∣∣∣∣R∗M∗n

⊥
∗

∫

D j

ϕ j(x
′)dx

∣∣∣∣−
∣∣∣∣
∫

D j

Du0(x
′)n(x′)⊥ϕ j(x

′)dx

∣∣∣∣

≥ |M∗n
⊥
∗ |
∫

D j

ϕ j(x
′)dx−

∫

D j

∣∣∣Du0(x
′)n(x′)⊥

∣∣∣ϕ j(x
′)dx

=

∫

D j

(
|M∗n

⊥
∗ |−

∣∣∣Du0(x
′)n(x′)⊥

∣∣∣
)

ϕ j(x
′)dx

≥
∫

D j

κ0ϕ j(x
′)dx≥ κ0h|D j |/2.

Step 5: Using (5.12) and (5.13) together with the last relation we see from (5.11)
that

(5.14)

(∫

Q j+k

ũ(x)− τ(x3)−u0(x
′)dx

)
−
(∫

Q j

ũ(x)− τ(x3)−u0(x
′)dx

)
≥

∣∣D j
∣∣h(κ0/2−δ −kh)−ChJ 1/2|D j |1/2.

From (5.7) andδ =
√

CJ kh−3 ≈
√

J h−3.5 ≤√
ε, we see thatκ0/2−δ −kh≥

κ0/4 > 0 for ε . Cκ2
0 and smallh.

To finish the argument we sum (5.14) overj = 1, . . . ,k to obtain

(5.15) Ck|Q|h(κ0/2−δ −kh)≤
∫

Q
|ũ(x)−τ(x3)−u0(x)|dx+ChkJ 1/2|Q|1/2,

where we have used that|Q| and|D j | are comparable. Using the convexity ofgp

and Jensen’s inequality we have
∫

Q
|ũ(x)− τ(x3)−u0(x)|dx≤ J 1/2|Q|1/2,

and so after plugging the values ofδ , |Q|, andk into (5.15) we see that

h3κ0 ≤C
(
h1.25+h1.75)J 1/2 ≤Ch1.25J 1/2.

Hence we obtain

J ≥Cκ2
0h3.5 and J(Q, ũ) ≥Cκ2

0h2.5.
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Finally we cover the annulusA (r0, r0 +h) with approximately 2πr0h−1/2 distinct
copies ofQ to obtain

J(A (r0, r0 +h), ũ) ≥ η(r0)h
2,

whereη(r0) = Cr0κ2
0 . �

Appendix: Auxiliary lemmas

In this section we prove several lemmas which were used previously. Lemma
A.2 and Lemma A.5 were used in the proof of the lower bound in the three-
dimensional setting (Section 5.2). Poincaré inequality (Lemma A.6) was used in
the proof of the lower bound in the two-dimensional setting (Section 4.2), Lemma
A.3 and Remark A.4 were used in the proof of Lemma 4.8, and Lemma A.1 was
used in the definition ofW (see (2.6)).

Lemma A.1. Let W3D be a stored energy function of an isotropic elastic material
with

W3D(F) = g(I1, I2,J),

where J:= det(F), C := FTF, and

I1 := J−2/3 tr(C), I2 :=
J−4/3

2

(
(tr(C))2− tr(C2)

)
.

If g satisfies

∂g
∂ I1

(I1, I2,J) ≥ 0,
∂g
∂ I2

(I1, I2,J) ≥ 0(A.1)

for I1 ≥ 3, I2 ≥ 3, and J> 0, then for any M∈ R
3×2 we have

min
ξ∈R3

W3D(M|ξ ) = min
ξ∈R3,M⊥ξ

W3D(M|ξ ),

where(M|ξ ) denotes a3× 3 matrix with first two columns identical with M and
the third columnξ , and M⊥ ξ means the columns of M are perpendicular toξ . If,
moreover

∂g
∂ I1

(I1, I2,J)+
∂g
∂ I2

(I1, I2,J) > 0(A.2)

for I1 ≥ 3, I2 ≥ 3, and J> 0, the minimum of W3D(M|ξ ) is attained only if M⊥ ξ .

Proof. Isotropy of the material implies rotational invariance of the energy density
W3D, and so without loss of generality we can assume that

(A.3) M =




λ1 0
0 λ2

0 0


 .
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Therefore we want to minimize

W3D




λ1 0 x
0 λ2 y
0 0 z




among all possiblex,y,z. A simple calculation reveals that

(A.4)

J = λ1λ2z,

I1 = (λ1λ2z)−2/3(λ 2
1 + λ 2

2 +x2 +y2 +z2) ,
I2 = (λ1λ2z)−4/3(λ 2

1 λ 2
2 + λ 2

1 z2 + λ 2
2 z2 + λ 2

1y2 + λ 2
2x2) .

Using the AM-GM inequality we see thatI1 ≥ 3 and I2 ≥ 3 even if x = y = 0.
Fixing z and varyingx andy the value ofJ stays constant whereasI1 and I2 are
increasing functions ofx2 andy2. Therefore (A.1) implies thatW3D has its minimal
value (for anyzfixed) if x = y = 0. In the case (A.2) the conclusion follows by the
same reasoning. �

Lemma A.2. Let W3D satisfy(2.4)and (2.6). Then for any M∈ R
3×2 there exists

a constant C> 0 such that

W3D(M|v)−W(M) = W3D(M|v)−W3D(M|ξ )

≥Cgp (|v−ξ |) = Cgp(|(M|v)− (M|ξ )|),
whereξ = argminW3D(M| ·).

Proof. If |v− ξ | is large, the conclusion follows from the growth condition (2.4).
Let us therefore assume that|v− ξ | ≤ K. As in the proof of the previous lemma
we may assumeM satisfies (A.3). We write

v = (x,y,z)T , ξ = (0,0,Z)T ,

whereξ can be written in this form due to the previous lemma. We have

W3D(M|v)−W3D(M|ξ ) = (W3D(M|v)−W3D(M|w))+ (W3D(M|w)−W3D(M|ξ )) ,

where
w := (0,0,z)T .

We estimate

(A.5)

W3D(M|v)−W3D(M|w) = g(J, I1, I2)−g(J, Ī1, Ī2)

= ∇g· (0,J−2/3(x2 +y2),J−4/3(λ 2
1 y2 + λ 2

2 x2))

≥C(x2 +y2),

whereJ, I1, I2 are defined in (A.4) and

Ī1 = (λ1λ2z)−2/3(λ 2
1 + λ 2

2 +z2) ,
Ī2 = (λ1λ2z)−4/3(λ 2

1 λ 2
2 + λ 2

1z2 + λ 2
2z2) .
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We also have

(A.6)
W3D(M|w)−W3D(M|ξ ) = f3D(λ1,λ2,z)− f3D(λ1,λ2,Z)

= ∂33 f3D(λ1,λ2,ζ )(z−Z)2/2≥C(z−Z)2,

where we have used that∂3 f3D(λ1,λ2,Z) = 0 and D2 f3D > 0 (see (2.4)). By
adding (A.5) and (A.6) we obtain the desired inequality. �

Lemma A.3. Let the density function W3D satisfy (2.4) and (2.6). For any unit
vector u1 ∈ R

3 and another vector v1 ∈ R
3, |v1| > 1, we define

F̃ := argmin
{
W3D(F) : F ∈ R

3×3,Fu1 = v1,detF > 0
}

.

Then there exists an orthonormal basis u1,u2,u3 and orthogonal vectors v1,v2,v3

such that

(A.7)
F̃ui = vi , i = 1,2,3,

|v2| = |v3| = g(|v1|),

where g(t) is a Lipschitz continuous function. Moreover, there exist0 < C1 =
C1(v1) < C2 = C2(v1) such that

(A.8) C1gp

(
dist(G,SO(3)F̃)

)
≤W3D(G)−W3D(F̃) ≤C2dist2(G,SO(3)F̃),

for any G satisfying Gu1 = v1, detG > 0 (function gp was defined in(4.4)).

RemarkA.4. As a consequence of (A.8) we obtain a similar condition forW – for
a given unit vectorn∈ R

2 and another vectorm∈ R
3 we have

C1gp(dist(G,SO(3)F)) ≤W(G)−W(F) ≤C2dist2(G,SO(3)F),

whenGn= Fn = mandW(F) = min{W(H) : Hn = m}.

Proof of Lemma A.3.We first prove (A.7). SinceW3D is frame-indifferent and
isotropic, we can assume WLOG thatu1 = e1 andv1 = λ1e1, λ1 > 1. Then we
want to find all matricesF that minimize

min{W3D(F) : Fe1 = λ1e1}.
Let F be such a matrix. We see from Lemma A.1 that the first column ofF and the
third column ofF are perpendicular. SinceFe1 = λ1e1, this means thatF13 = 0.
Since the second and third column are interchangeable, the first and second column
are also perpendicular, i.e.F12 = 0. By the same lemma we also have that the
second and third column ofF are perpendicular. Therefore, up to a rotation which
fixes the first column,F is diagonal:

F =




λ1 0 0
0 λ2 0
0 0 λ3


 .
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We claim thatλ2 = λ3. Indeed, strict convexity off3D implies

W3D(F) = f3D(λ1,λ2,λ3) =
f3D(λ1,λ2,λ3)+ f3D(λ1,λ3,λ2)

2

> f3D(λ1,
λ2 + λ3

2
,

λ2+ λ3

2
) = W3D(F ′)

(whereF ′e1 = λ1e1), unlessλ2 = λ3. Moreover, since

λ2 = argmin
t>0

f3D(λ1, t, t),

it follows thatλ2 is a Lipschitz continuous function ofλ1.
We observe thatλ1 ≥ λ2. Indeed we will show that

(A.9) f3D(λ1,λ1,λ1) < f3D(λ1, t, t)

for anyt > λ1. We compute1

J(λ1, t, t) = λ1t
2 > λ 3

1 = J(λ1,λ1,λ1),

I1(λ1, t, t) = λ 4/3
1 t−4/3 +2λ−2/3

1 t2/3 > 3 = I1(λ1,λ1,λ1),

I2(λ1, t, t) = λ−4/3
1 t4/3 +2λ 2/3

1 t−2/3 > 3 = I2(λ1,λ1,λ1),

where the two latter inequalities follow from the AM-GM inequality. Therefore
for t > λ1 we have thatI1(λ1, t, t) > I1(λ1,λ1,λ1), I2(λ1, t, t) > I2(λ1,λ1,λ1), and
J(λ1, t, t) > J(λ1,λ1,λ1), and so (A.9) follows from (2.6).

To prove (A.8), we fix the matrixF (thereforeλ1 ≥ λ2 are also fixed). It is
sufficient to show the lower bound and upper bound only forG for whichW3D(G)−
W3D(F) is small:

(A.10) C1dist2(G,SO(3)F) ≤W3D(G)−W3D(F) ≤C2dist2(G,SO(3)F)

(the upper bound and the lower bound for “large”G follow from the growth as-
sumptions onf3D – see (2.4)).

We start with the lower bound. As before, we can assumeF is diagonal with
entriesλ1,λ2,λ3 = λ2. Let σ1 ≥ σ2 ≥ σ3 ≥ 0 be singular values ofG. We first see
that

λ1 = G11 = tr(Ge1⊗e1) ≤ σ1 ·1 = σ1,

where the inequality follows from von Neumann’s Lemma (Lemma 4.6), andG11

denotes the upper left entry of matrixG. SinceW3D(G) depends only on the singu-
lar values ofG, we will try to estimate both sides of (A.8) in terms of the singular
values ofF andG.

1See (2.6) for definition ofJ, I1, andI2.
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We start with estimating LHS of (A.10). We know

dist2(G,SO(3)F) = min
R∈SO(3)

tr
(
(G−RF)T(G−RF)

)

= tr
(
GTG

)
+ tr

(
FTF

)
−2 max

R∈SO(3)
tr
(
RFGT) .

We claim that maxR∈SO(3) tr
(
RFGT

)
is equal to the sum of singular values of

FGT . To show this, we use the singular value decompositionFGT =UDVT , where
U,V ∈ SO(3) andD is a diagonal matrix (with the singular values ofFGT as diag-
onal entries). Then tr

(
RFGT

)
= tr

(
RUDVT

)
= tr

(
VTRUD

)
= tr(QD). SinceQ is

a rotation, we have that tr(QD)≤ tr(D), and the maximum is attained (forQ = I ).
The sum of singular values ofFGT is by definition equal to

tr
((

FGTGFT)1/2
)

= tr
((

GTG
)1/2

F
)

.

We writeF = (λ1−λ2)e1⊗e1 + λ2I and obtain

tr
((

GTG
)1/2

F
)

= (λ1−λ2)
(√

GTG
)

11
+ λ2tr

(√
GTG

)

= (λ1−λ2)
(√

GTG
)

11
+ λ2(σ1+ σ2+ σ3) .

We know that
√

GTG has eigenvaluesσ1,σ2,σ3, and so tr(GTG) = σ2
1 + σ2

2 + σ2
3 .

Therefore we see that
(A.11)

dist2(G,SO(3)F) =(σ2
1 + σ2

2 + σ2
3)+ (λ 2

1 + λ 2
2 + λ 2

2)

−2λ2(σ1 + σ2+ σ3)−2(λ1−λ2)α

=(σ1−λ1)
2 +(σ2−λ2)

2 +(σ3−λ2)
2 +2(λ1−λ2)(σ1−α),

whereα denotes

(A.12) α = (
√

GTG)11 = (
√

GTGe1,e1).

We claim that

(A.13) α ≥ λ 2
1

σ1
.

Indeed, we writeG = UDV, whereU,V ∈ SO(3) andD is a diagonal matrix with
entriesσi, i = 1,2,3. We define a unit vector

x = (x1,x2,x3) := Ve1.

By virtue of (A.12) we get

α = (
√

GTGe1,e1) = (VTDVe1,e1) = (DVe1,Ve1) =
3

∑
i=1

x2
i σi.
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We also know thatGe1 = λ1e1, and so

λ1e1 = UDVe1 = U

(
3

∑
i=1

σixiei

)
.

In particular, sinceU ∈ SO(3), we see that the norm of the vector on the RHS is
λ1, i.e.

(A.14)
3

∑
i=1

x2
i σ2

i = λ 2
1 .

To summarize, we have

α =
3

∑
i=1

x2
i σi ,(A.15)

3

∑
i=1

x2
i = 1 and

3

∑
i=1

x2
i σ2

i = λ 2
1 .(A.16)

To find the lower bound forα , we simply optimize∑3
i=1 x2

i σi assuming (A.16).
Using method of Lagrange multipliers we observe that for∑3

i=1 x2
i σi to be minimal

onexi has to be zero. We see that∑3
i=1x2

i σi is equal to:

λ 2
1 + σ2σ3

σ2 + σ3
if x1 = 0,

λ 2
1 + σ1σ3

σ1 + σ3
if x2 = 0,

λ 2
1 + σ1σ2

σ1 + σ2
if x3 = 0.

Using conventionσ1 ≥ σ2 ≥ σ3 and (A.14) we see thatσ1 ≥ λ1 ≥ σ3. Since

λ 2
1 + σ1σ3

σ1 + σ3
≤ λ 2

1 + σ2σ3

σ2 + σ3
⇐⇒ λ 2

1 ≥σ2
3 and

λ 2
1 + σ1σ3

σ1 + σ3
≤ λ 2

1 + σ1σ2

σ1+ σ2
⇐⇒ λ 2

1 ≤σ2
1 ,

the minimum of (A.15) is equal toλ
2
1 +σ1σ3

σ1+σ3
. Finally, we observe thatσ2

1 ≥ λ 2
1

implies
λ 2

1 + σ1σ3

σ1+ σ3
≥ λ 2

1

σ1
.

We have proved (A.13).
Now we are ready to finish the proof of the lower bound. By virtue of (A.11):

dist2(G,SO(3)F)≤ (σ1−λ1)
2+(σ2−λ2)

2+(σ3−λ2)
2+2(λ1−λ2)

(
σ1−

λ 2
1

σ1

)
,

For the middle term in (A.10) we have:

W3D(G)−W3D(F) = f3D(σ1,σ2,σ3)− f3D(λ1,λ2,λ2)

≥
3

∑
i=1

∂i f3D(λ1,λ2,λ2)(σi −λi)+C|(σ1,σ2,σ3)− (λ1,λ2,λ2)|2

= ∂1 f3D(λ1,λ2,λ2)(σ1−λ1)+C
3

∑
i=1

(σi −λi)
2,
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where we have used strict convexity off3D (see (2.4)) and∂2 f3D(λ1,λ2,λ2) =
∂3 f3D(λ1,λ2,λ2) = 0 (a consequence of the definition ofλ2). Therefore, it remains
to show

(A.17) 2(λ1−λ2)

(
σ1−

λ 2
1

σ1

)
≤C∂1 f3D(λ1,λ2,λ2)(σ1−λ1).

We observe that sinceσ1 ≥ λ1, we have
(

σ1− λ2
1

σ1

)
≤ 2(σ1−λ1). Sinceλ1,λ2 are

fixed and∂1 f3D > 0, (A.17) immediately follows (with constantC depending on
λ1).

We now turn to the proof of the upper bound. This is easy, sincewe have
already done all the work. We know that

dist2(G,SO(3)F) = (σ1−λ1)
2 +(σ2−λ2)

2 +(σ3−λ2)
2 +2(λ1−λ2)(σ1−α)

≥ (σ1−λ1)
2 +(σ2−λ2)

2 +(σ3−λ2)
2 +2(λ1−λ2)(σ1−λ1),

where we have usedα ≤ λ1. This is true by (A.15) and (A.16):

α =
3

∑
i=1

xi (xiσi) ≤
(

3

∑
i=1

x2
i

)1/2( 3

∑
i=1

x2
i σ2

i

)1/2

= λ1.

We also know

W3D(G)−W3D(F) = f3D(σ1,σ2,σ3)− f3D(λ1,λ2,λ2)

≤
3

∑
i=1

∂i f3D(λ1,λ2,λ2)(σi −λi)+C|(σ1,σ2,σ3)− (λ1,λ2,λ2)|2

= ∂1 f3D(λ1,λ2,λ2)(σ1−λ1)+C
3

∑
i=1

(σi −λi)
2,

where we have used boundedness ofD2 f3D (see (2.4)). To finish the proof, it
remains to observe that

∂1 f3D(λ1,λ2,λ2)(σ1−λ1) ≤C(λ1−λ2)(σ1−λ1)

holds trivially (with λ1 > λ2 being fixed). �

Lemma A.5. Let F,G ∈ R
3×2. Let ξ ∈ R

3 satisfiesξ ⊥ F, det(F|ξ ) > 0, and
|ξ | = l(F), and similarly letζ ∈ R

3 satisfiesζ ⊥ G, det(G|ζ ) > 0, |ζ | = l(G),
where l(A) is a Lipschitz continuous function of singular values of A. Then there
exists constant C such that

dist((F |ξ ),SO(3)(G|ζ )) ≤Cdist(F,SO(3)G).

Proof. Without loss of generality we assume columns ofF lie in thex-y plane, i.e.
F31 = F32 = 0. LetR∈ SO(3) be such that

(A.18) dist(F,SO(3)G) = |F −RG|.
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We show thatRcan be chosen such that columns ofRGlie in thex-y plane as well.
We know that (see the proof of Lemma A.3):

dist2(F,SO(3)G) = tr(FTF)+ tr(GTG)−2tr
(
(FGTGFT)1/2

)
.

SinceF31 = F32 = 0, the RHS in the last relation does not change if we replaceF
by its first two rows. The last term is then equal to tr

(
(GTG)1/2(FTF)1/2

)
, and we

obtain
dist2(F,SO(3)G) = ||(GTG)1/2− (FTF)1/2||2.

Now let S∈ SO(3) be such that(SG)31 = (SG)32 = 0. We want to compute

dist(F,SO(2)SG),

where we treatF andSGas 2× 2 matrices (since both their third rows vanish).
Following the previous reasoning we obtain

dist2(F,SO(2)SG) = ||((SG)TSG)1/2− (FTF)1/2||2 = ||(GTG)1/2− (FTF)1/2||2.
We have shown that dist2(F,SO(2)SG) = dist2(F,SO(3)G), i.e. thatR can be
chosen such thatRG lies in thexy plane.

We have

dist2((F |ξ ),SO(3)(G|ζ )) ≤ ||(F |ξ )−R(G|ζ )||2

= ||F −RG||2+ |ξ −Rζ |2 = dist2(F,SO(3)G)+ |ξ −Rζ |2.
SinceF andRG lie in thex-y plane, bothξ andRζ are perpendicular to this plane.
It is straightforward but tedious to show that in factξ andRζ have the same ori-
entation. Then we just use the fact that|ξ | = l(F) and |ζ | = l(G) together with
Lipschitz continuity ofl to obtain

|ξ −Rζ |= |l(F)− l(RG)| ≤C|F −RG|= Cdist(F,SO(3)G).

We are done since (A.18) and the previous relation imply

dist2((F |ξ ),SO(3)(G|ζ )) ≤ |(F |ξ )−R(G|ζ )|2

= |F −RG|2+ |ξ −Rζ |2 ≤Cdist2(F,SO(3)).

�

Lemma A.6 (Poincaré inequality). Let gp be as in(4.4)with 1< p≤ 2. Then there
exists a constant C(U, p) such that for every v∈W1,p(U) there exists a constant̄v
and ∫

U
gp(|v− v̄|)dx≤C

∫

U
gp(|∇v|)dx.

Proof. We first observe that sincegp(t) ≤ 1
2 min(tp, t2) and gp is convex, there

existsC such that

(A.19) gp(s+ t) ≤C(sp + t2), for everys, t ≥ 0.

In the proof we will use the following truncation result proved in [16]:



50 P. BELLA, R.V. KOHN

Proposition(Truncation). SupposeU ⊂ R
n is a bounded Lipschitz domain. Then

there exists a constantC(U, p) with the following property: For eachv∈W1,p(U)
and eachλ > 0, there existsV : U → R such that

(i) ||∇V||L∞ ≤Cλ
(ii) |{x∈U : v(x) 6= V(x)}| ≤ C

λ p

∫
{x∈U :|∇v(x)|>λ} |∇v|p dx,

(iii ) ||∇v−∇V||pLp(U) ≤C
∫
{x∈U :|∇v(x)|>λ} |∇v|p dx.

Let us denote

K :=
∫

U
gp(|∇v|)dx.

By the proposition withλ = 1 there existsV ∈W1,∞ such that|∇V| ≤C and

||∇v−∇V||pLp ≤C
∫

{|∇v|>1}
|∇v|p dx≤CK.

The standard Poincaré inequality implies

(A.20)
∫

U
|V −V̄|2 dx≤C

∫

U
|∇V|2 dx≤C

(∫

{v6=V}
|∇V|2 dx+

∫

{v=V}
|∇V|2 dx

)

≤C|{v 6= V}|+C
∫

{v=V}
|∇V|2dx≤CK.

We also get

(A.21)
∫

U
|V −v−a|pdx≤C

∫

U
|∇V −∇v|pdx≤CK.

Using (A.19), (A.20), and (A.21) we obtain
∫

U
gp(|v− (a+V̄)|) dx≤C

(∫

U
|V −V̄|2 dx+

∫

U
|V −v−a|pdx

)
≤CK.

�
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