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Abstract

It is well known that an elastic sheet loaded in tension wiinkle and that the
length scale of the wrinkles tends to zero with vanishingkhéss of the sheet
[Cerda and Mahadevan, Phys. Rev. Lett. 90, 074302 (2003]givé the first
mathematically rigorous analysis of such a problem. Singenethods require
an explicit understanding of the underlying (convex) rethproblem, we focus
on the wrinkling of an annular sheet loaded in the radialdfiom [Davidovitch
et al.,, PNAS108(2011), 18227]. Our main achievement is identification &f th
scaling law of the minimum energy as the thickness of thetsiesels to zero.
This requires proving an upper bound and a lower bound thede she same
way. We prove both bounds first in a simplified Kirchhoff-Lasetting and then
in the nonlinear three-dimensional setting. To obtain theneal upper bound,
we need to adjust a naive construction (one family of wrisldeperimposed on
a planar deformation) by introducing a cascade of wrinKléee lower bound is
more subtle, since it must be ansatz-frge. 2000 Wiley Periodicals, Inc.

1 Introduction

In the last few years the wrinkling and folding of thin elastheets has at-
tracted a lot of attention in both the mathematics and pBys@enmunities (see,
e.g., the recent book by Audoly and Pomeau [2]). Wrinkledfigomations can
be viewed as (local) minimizers of a suitable elastic enecgysisting of a non-
convex “membrane energy” plus a higher-order singulampeation representing
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“bending energy”. Though the physically relevant wrinkgahfigurations are lo-
cal minimizers, we can begin to understand their charagtdotusing on (i) the
minimum value of the elastic energy, and (ii) the properté®ow-energy defor-
mations. In this paper we identify thgcaling lawof the minimum energy for
an annular sheet stretched in the radial direction. Thisireg proving an up-
per bound and a lower bound that scale the same way. A naiveagpto the
upper bound, based on a single length scale of wrinklings faiachieve the op-
timal scaling [12]; the successful approach uses a casdadenkles. The lower
bound is more subtle, since it must be ansatz-free. We ptdustiin a reduced
Kirchhoff-Love setting and later in a general ansatz-freed-dimensional setting.

As mentioned above, the behavior of thin elastic sheets thasted consider-
able attention from the physics community (see, e.g., workleeets of graphene
[18]). Mahadevan and Cerda considered the stretching ottargular elastic
sheet with clamped boundaries [6] (see alsd [29] for expamiand([15] for nu-
merical computation), by minimizing the elastic energylef membrane within a
particular ansatz. The problem we consider here is sinfilgrour viewpoint and
achievement are different: we prove an upper bound and ahingtansatz-free
lower bound on the elastic energy. Our analysis does notressuspecific form
for the solution.

Our treatment requires knowledge of the underlying conetaxed problem.
In the radial setting (se& [L2]) the relaxed problem redteessimple one dimen-
sional variational problem which can be analyzed quite detely. For this reason
we focus on an annular sheet stretched in the radial direeS@ convenient model
problem, rather than addressing the case consideréd in [6].

One might ask why we are so interested in the scaling law ofrtimmal en-
ergy. As mentioned above, stable configurations are loaailhmeers of the elastic
energy. It seems difficult to find such configurations anefity (the associated
fourth-order PDE is highly nonlinear). But we expect the sibglly-relevant con-
figurations to have relatively low energy. Therefore we chataim some informa-
tion about them by identifying the energy scaling law, therestigating the proper-
ties of configurations that achieve this law. While the pnépaper focuses mainly
on the energy scaling law, certain consequences are imtadevident. In par-
ticular, since our scaling law is linear mand the bending energy i& [ |1%us|?,
it is immediately evident that the low-energy configurasidrecome increasingly
complex ath — 0.

1.1 Context

Motivated by experiments, several physics papers haveestude wrinkling
of thin elastic films from a theoretical point of view. As &y mentioned, Davi-
dovitch et al.[[12] considered an annular film stretched enrédial direction (see
also [17] for related results). Dead loads applied both @nitiside and outside
boundary cause the film to wrinkle in some region. Indeedjéflbads inside are
large enough compared to the loads on the outer boundargiefoemation in the
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radial direction forces the concentric circles of the materear the inner bound-
ary to decrease their length by more than is required by thes®wo ratio of the
material. Therefore, the membrane needs to waste thisette circumference
either by compression or by buckling out of plane, contifmuto the energy with
some amount which depends bnin [12] they found an optimal solution (using
energy minimization methods) within a particular ansatd asing a linear stress-
strain law, obtaining conclusions about the extent of wedkegion and the period
and amplitude of wrinkles. In the present paper we conslisame problem us-
ing a nonlinear B model. We will prove an upper bound and a matching lower
bound without assuming any ansatz.

Our problem seems related to the experiment reported_in [RIdonsists of
a circular thin elastic film placed on a liquid substrate vathliroplet on top of
the film. In this case, the capillary forces at the boundargtsh the film in the
radial direction and the capillary forces from the drop &the film to wrinkle.
This experiment was studied theoretically [inl[32] (see §15j), though a lot of
questions still remain open. We believe that our methods atsaybe useful in the
study of this problem.

The idea of proving an upper bound and a matching lower boanth& min-
imum of the energy has a long history; see e.g., the work ofnKaid Muller
on a model for martensitic phase transformatior [23] (see ] for subsequent
progress). As in our setting, the energy linl[23] was compageal nonconvex
function of Du singularly perturbed by a higher order term. In the settih{28]
the minimizer develops a fine branching structure. Simila@nomena are seen
in uniaxial ferromagnets and type | superconductors (see, [€], [8], and [25]).
In all these settings there is a “relaxed problem”, whoseimmizers are the weak
limits of optimal configurations als — 0. The minimal energy fon > 0O is that of
the relaxed problem plus a small correction that scales lwitbne difference here
is the special character of the singular perturbation — ingnenergy rather than
surface energy — which leads to creation of smooth wrinkdéser than walls.

The main focus here is the scaling of wrinkles associatell wit 0. This is
different from mere identification of the extent of the wiled region, which can
be done by studying the relaxed problem or using the tensibah thheory. There
is a lot of literature on this application of tension field ¢ (see, e.g., the 1961
NASA report [30], [14], or a recent work on balloons [3]).

Our problem can be viewed as an example of tension-inducatkhmg. The
radial tension determines the wrinkling direction; therggescaling law gives the
excess energy due to positive thickness, and is relatect tartiplitude and length
scale of the wrinkles. Other problems with similar charaictelude the coarsening
of folds in a hanging drape (see, e.0..l[31], [4]) and the ads®f wrinkles at the
edge of a confined floating sheet (see, e.gl, [20], [L0], [24])
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1.2 The main idea

Before starting with rigorous arguments let us outline @suit and the main
ideas of its proof. We will work variationally, consideririge sum of the elastic
energy of the thin sheet and boundary terms representingvdnie done by the
loads. We first consider a simplified two-dimensional sgttivhere the elastic
energy is further split into a membrane and a bending ternmeiéfin terms of the
midplane deformation : R — R3. The membrane term is written as the integral of
areduced P stored energy density obtained in a systematic way from ttiginal
3D stored energy density. As the bending term we choosk%herm of the second
derivatives of the out-of-plane displacement as often geéme linear Foppl-von
Karman energy used for small slopes and deformations Zhimodel is a curious
hybrid since we use a nonlinear stretching term togethdr aiinear bending term.
One can ask why we don't also use a linear stretching partadity that scenario
would be very limited since it would lead to a very restrietiinear model for the
relaxed problem.

Since our focus is the limiting behavior as the thicknbss the sheet tends
to zero, we divide the energy Hyto get the energy per unit thickneEs. The
first step toward identification of the scaling law is to separthe contributions
to E, from wrinkling and from the bulk deformation. This is done dynsidering
a relaxed problem, where instead of the original storedggneéensity we use its
quasiconvexification and formally sket= 0 (seel[28] for more detail on this topic).

Under mild assumptions the relaxed energy is convex, sntal@ the original
energy, and independent of the thickness. Moreover, we shaint possesses a
unique solutiorug (up to a translation) which is radially symmetric and planvie
denote the relaxed energy af by &o; as we will see the enerdsi(up) is strictly
larger thansp. This is becauseg involves compression in the hoop direction in a
region close to the inner boundary (we will call it the “redalX region). Since the
thickness is small the sheet prefers to wrinkle rather tbatompress.

The idea of the construction for the upper bound on the mimnamergy is
to superimpose wrinkles upan. After optimizing the amplitude and wavelength
of the wrinkles in a naive ansatz we obtain a solution withrgyné&y + Ch|logh|.
To remove the logarithmic factor (i.e. to get the same sgadis the lower bound)
we need to work harder. We observe that the out-of-planegbdine deformation
decreases suddenly at the boundary of the relaxed regigristthe source of the
|logh| factor. At the same time, since the amplitude of the outlafi@ deforma-
tion is vanishing, the bending is vanishing as well. Themefae can introduce
branching of the wrinkles (changing their period) near therwary of the relaxed
region; this increases the bending but at the same time alEsethe amplitude
of the out-of-plane deformation, making the decrease obthef-plane displace-
ment less steep. By arguing this way we obtain a construstionse energy is
bounded by, +Ch.
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The lower bound miky, > &y + ch (c > 0 independent oh) is proved using
an argument by contradiction. In the simplified two-dimensi setting, we first
use the relaxed problem to prove an estimate on the outapiepiisplacements.
Then using interpolation we show smallnessDuf;, allowing us to project the
solution into the plane without changing its energy too md&hally, we compare
this projection withup and obtain a contradiction from an argument about the area
of the deformed annulus. The generalization to the nonlitle@e-dimensional
setting uses the main arguments of the 2D setting couplddngidity estimates
first derived by Friesecke, James, and Muller [16].

This paper focuses on the energy scaling law. It is naturaskcdhow the energy
is distributed more locally; for example, is the optimaltdisution (with respect
to radius) similar to that of the construction giving our appound? It is equally
natural to ask what the minimizer looks like; for example sirihe amplitude and
wavelength of wrinkling at radius resemble these of our construction? These
guestions remain open.

It seems worth noting that while we will repeatedly use théeElagrange
equation for the relaxed problem (to characterize the eslasolution), we will
never use the Euler-Lagrange equation from the origindblpro. In related stud-
ies, such ad 23], minimizers are known to have special ptiege We expect the
same to be true in the present setting, but the analysis afmaziers will require
techniques beyond those of the present paper.

The paper is organized as follows. In Sectidn 2 we describehtee dimen-
sional energy together with a reduced two dimensional modke definition of
the relaxed problem and a theorem about its unique mininszarSectioriB. Sec-
tion[ contains both the upper bound and the lower bound ireitheced 2D setting.
In Sectior[b we generalize the upper and lower bounds prav&eactior ¥ to the
three-dimensional setting.

We will use notatiork = (xg,%2,X3) = (X, x3) for points inR3, A: B = tr(ATB)
for the Frobenius inner product on matrices, aadd, for partial derivatives with
respect to the first and second variable.

2 The model

We are interested in deformations of isotropic elastic filims of annular
shape. We consider a nonlinear three-dimensional elaséigg (per unit thick-
ness) in a cylindrical domain with small thickndss
1

E3D u) = =
h (U hJax(-h/2h/2)

Wsp (Du) dx.

The stored energy densitysp (M) is assumed to be isotropic, so it can be written
as a symmetric function of the eigenvalues,/d¥1TM:

Wap (M) = fap(A1,A2,A3).
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Here and below, we assume ti\t= Du has strictly positive determinant; this is
natural, sinceM is the gradient of an elastic deformation.

As already mentioned, we are interested in deformationswofilar thin films.
We consider a thin cylindrical domaiR x (—h/2,h/2) with a cross-section

Q= {xeR?:Rp < |X < Rou}

for some radii 0< R, < Ryy. The dead loads are applied on the inner boundary
in the radial direction (with magnitud&,, pointing inwards) and on the outer
boundary (with magnitud&,, pointing outwards), so the film will mostly stretch
in the radial direction. These loads contribute to the tetedrgy as

Ti T, X
BP (u) := I u(x)- = ds— L“t/ u(x) - ——ds
h IX|=Rin [X|=Rout Rout
wherexX'= (xq,X2,0) and dSdenotes surface measure. We will show in Thedrein 5.1
that under suitable assumptions on the elastic energytgéfg, radii R, Rout,
and forcesTi,, Tout, We have

(2.1) rrl}inEﬁ’D(u) +BP(u) = &+ 0O(h),

whered&y is a constant (depending @ Tin, Toue andWap). Sincedy is the limiting
energy a$ — 0, we view it as representing the “bulk energy” of the defaiora
The orderh correction is the contribution from the wrinkling of the mierane.

2.1 The reduced model

Since we consider domains which are thin in #elirection, we can gain in-
sight by first considering a reduced two dimensional Kirdfthove model. In
this setting we are interested only in the deformation of oress section (e.g.
the mid-planexz = 0), knowing that we can extend the deformation to the thin
three-dimensional body by assuming that straight linesabto the plane remain
straight and normal to the plane after deformation. Assgrtfiis ansatz, the en-
ergy per unit thickness is the sum of the “membrane” and “beyicenergies

/W(Du) dx’+h2/ 2(Dv) X,
Q Q

wherev is the normal to the mid-surface of the deformatigh,s a certain qua-
dratic function (derived frori\sp) and the form ofV(Du) will be discussed in Sec-
tion[Z2. The second term (the bending energy) can be exqutessng the first and
second derivative af. In the 2D analysis we will replace the bending te(Dv)

by a simpler termD?uz|?. Though the new term doesn't represent a physically
correct bending energy, it is mathematically more conuaraed still captures the
main phenomenon. After including the boundary terms thedimzensional en-
ergy has the form:

2.2) En(U) = /Q W/(Du) + h?|D?us|2 dx’ + B(u),
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where the boundary terms are
X). X X)X
2.3 B(u) := / u(x) - =—dS—T, / u(x) -
(2.3) (U) := Tin IR, X) & 2y - ) ro
As in the general B setting our main result is a scaling law for the minimum
of the energy. We will show that B, is defined by[(Z2) then

muin En(u) = &+ O(h)

ds

for any sufficiently smalh > 0. The constanp is the minimum of the relaxed
energy (the same constant as[in]2.1)). The ohdeofrection is the contribution
from the wrinkling of the membrane.

2.2 The energy density

In this section we will describe the assumptions we imposherlastic energy
densityWap.

Since the energy densitysp (M) is isotropic, it is convenient to represent it
as a function of the principal strains (i.e., the eigenvwalig> A, > A3 > 0 of
(MTM)Y2):

Wsp (M) = f3p(A1,A2,A3).
We assume that
fap € C?([0,®)3), fap(1,1,1) =0, fp >0, 0<D?fzp <C,

(2.4)
fap(A1,A2,A3) > Co(AZ +AZ+A2)P12_Cy,

wherep € (1,2].

The main motivation to consider@th power lower bound for the energy den-
sity for large strains rather than the quadratic growth imétude a broader range
of materials. For example, Agostiniani et al. [1] showed tha growth condition
in (Z.4) with p=3/2 is satisfied by both theeo-Hookearompressible model and
Mooney-Rivlincompressible model, whereas these models do not satistiyajia
growth for large matrices (i.d_(2.4) withh= 2).

To define an elastic energy in the reduced two-dimensiontihggi.e. for
a mapu : R? — R3), we need to define a stored energy density as a function of
Du, i.e. for 3x 2 matrices. One way to do this is to optimize the missing third
component. We set

(2.5) W(M) := gQ]EQ)'V\éD(ME)»

whereM € R32 andM|é& denotes a & 3 matrix with first two columns identical
with M andé as the third column. It turns out that if we write
V\éD(F) = g(lla |27‘])7

J74/3
J:i=detF), C:=F'F, 11:=J"23tr(C), I,:= 5 ((tr(C))2 —tr(C?)),
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and if
ag ag ag ag
. —_— > — > _°
(2.6) dll(|1,|273)_07 dlz(ll’lz’J) >0, 0I1(|1’|2’J)+0I2(|1’|2’J)>o’

then theé that achieves the minimum iR(2.5) has to sati&fy M. For complete-
ness, we give a proof of this fact in the Appendix (see Lerini.A.

Isotropy of the energy density implies that(M) is a symmetric function of
eigenvalues of/ MTM:

(2.7) W(M) = f(A1,A2).
It is easy to see that the functidnis related tofsp. Let

Wsp(A1,A2) == argrgin fap(A1,A2,1).
t>

Then we immediately obtain
W(M) = f(A1,A2) = fap(A1,A2,Wap(A1,A2)).

Moreover, the functiorf inherits properties ofsp. Indeed, [[ZK) implies that
f € C?([0,»)?), f(1,1)=0, f>0, 0<D?f<C,

f(A1,22) > Co(Af +23)P?—Cy.
In contrast with three dimensions, the cgse- 2 in (Z8) is not very restrictive
in two dimensions. For example, two-dimensional energysifies obtained from
incompressible three-dimensional models have often atiadygrowth at infinity,
and so they satisfy quadratic lower bound for large straMswill prove our main
results assuming = 2 in two dimensions and & p < 2 in three dimensions.

For a givenA; > 1 we definew(A1) as the point of minimum for the function
f(Aq,-), i.e.

(2.9) f(A1,W(A7)) = rtrli(r; f(A1,t);

(2.8)

we callw(A1) thenatural widthof the strip with first principal strain;. We assume
that forA; > 1

(2.10) w(A1) is a differentiable and non-increasing function

We also assume that fag > 1 andA, > w(A1) the following conditions hold:

(2.11) (011(A1,A2) = 02f(A1,A2)) (A1 —A2) > 0,
(2.12) 011f (A1, W(A1)) + 912f (A1, W(A1))W (A1) > O,
(2.13) 012f(A1,A2) > 0.

The meaning of these relations will become apparent in a moniriefly stated
we use them to show convexity of the relaxed energy (seed®d8}i The strict
inequality in [ZIP) is not a typo — it is associated with atrconvexity of the
(relaxed) energy density in®in the tensile direction.
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Finally, we assume fak; > 1 that
(2.14) desz()\l,W()\l)) . ()\1 — W()\l)) > (912f (Al,W()\l)) . dlf()\l,W()\l))

Unlike (ZT1EZIB), this inequality does not seem to havample interpretation;
however it is satisfied by typical choices 6f(e.g. the one associated with an
incompressible neoHookea®3nodel). Condition[[Z14) will be used in our anal-
ysis of the relaxed problem (Lemrhal3.8 and equafion3.18)).

3 The relaxed problem

In this section we study relaxed problem and the propertiéts aninimizer.
First we definé)\;, the quasiconvexification of the energy densiy and we use
W; to define the relaxed energy functiori®. It follows from [2€] that in our case
W is convex, which we will use to show uniqueness (up to a tediosl) of the
minimizer ug of Eg. In the rest of this section we will study propertiesugf The
minimizer ug is rotationally symmetric, i.e. it can be described by a redlied
function v. We will formulate a one-dimensional variational problear ¥ and
explore the properties of (see Theorer-3.4). In particular, we will show that our
domainQ can be split into two parts — the outer part whegeis under biaxial
tension and the inner part whasgis compressed in the hoop direction. Moreover,
the amount of arclength which needs to be wasted to relievedmpression grows
linearly in the distance from the boundary between thesepiavts.

The wrinkling that occurs in our problem serves to avoid coeagion. In the
limit h — 0O it can be understood by considering the relaxed energytgéfigM),
defined as the quasiconvexificationVifM ):

1
3.1 W (M) := inf —/WD :¢ =MxonduU ;.
e won= it {5 [ wioe):o }
Intuitively: W; (M) is the energy density associated with the average defamati
gradientM, after the release of compression by infinitesimal wrirgklift is well
known that definition[(3]1) does not depend on the choict dbee article by
Pipkin [28] for more details aboW; in our setting).

Now we define the relaxed functional as
(3.2) Eo(U) := / W (D) d¥’ + B(u),
Q

whereB(u) was defined in[{Z]3).

It will be crucial to our analysis thal; (M) is a convex function of the 8 2
matrix M. Pipkin proved in[[2]] that this is true whenever the unrethxensity
W(M) is a convex function oMTM. This is true for a broad range of material
models. We shall assume throughout this paper that

W (M) is a convex function oM.
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As with Wap andW, it is convenient to represent the relaxed dengityas a func-
tion of the principal strains:

W (M) = fr(A1,A2).

We would like to write downf, explicitly. To do that we follow the idea of
Pipkin [28]. Using the natural widttv(A ) defined by[[Z1), we define

f()\l,)\z) )\1 > W()\z) and)\z > W()\l),
f()\l,W()\l)) A < W()\l) andA; > 1,
f()\z,W()\g)) AL < W()\z) andA, > 1,

0 )\1 <1 and)\z < 1,

(3.3) fm(A1,A2) =

andWp(M) := fi(A1,A2). Pipkin showed in[[28] that

V(M) < Win(M).
We will show in a moment that under our hypothe®¥gg M) is convex, in partic-
ularWm(M) < W (M), from which it follows immediately thatin(M) =W, (M).

We want to show thatj,, is convex. Pipkin[[28] showed that this is equivalent
to showing that the functiofi, is convex and monotone in both variables:

(3.4) D?fn >0, 0qfm>0, a=12

and satisfies the ordered force condition

(3.5) (01fm(A1,A2) — 02fm(A1,A2)) (A1 —A2) > 0.

(WhenWsp is the energy density of the incompressible neo-Hookearenagtf,

takes a particularly simple form, studied In]28]).

It is natural to expres§(3.4) arld (8.5) using some conditammf. First, in the
region whereA; > w(A2),A2 > w(A1) condition [3:4) follows from[{Z]8), whereas
the latter condition[{315) is equivalent {0 (21 11).

In the second case df(3.3), we see fréml(2.8) that
a]_fm(A]_,Az) = dlf()\l,W(A]_)) + azf()\l,W(Al))V\/(Al)) = a]_f()\l,W()\l)) > 0,
————

0

and obviouslyd, fn(A1,A2) = 0; therefore[(315) is satisfied in this case. By (P.12)
we see that

(36) dllfm()\lyAZ) = dllf (A]_,W()\l)) + alzf (Al,W(Al))V\/(A) > 0,
and by definition offy, alsodi2fr (A1,A2) = 0221 (A1,A2) = 0. Sincefy, is symmet-

ric, the third case follows immediately.

Finally, in the last cas#; < 1,A, < 1, both [33) and(315) are trivially satisfied.
We have shown that if satisfies[(ZI8)[(2.11), and{2112), thepsatisfies[[313), in
particulaiWy, is convex. Thereford, = f, and f, has the form[(3]3).
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3.1 The one-dimensional variational problem

We want to find a minimizer of the relaxed enerfly13.2). Assugiti is radially
symmetric, we formulate a one-dimensional variationabfam, which admits a
unique minimizew. Afterward we show some properties\of

To look for a radially symmetric minimizer, we consider

(37) Uo(l’, 6) = (V(r)> 6)

in polar coordinates. Thef(3.2) becomes the one-dimealsi@miational problem
Rout

3.8 '/-f\/, dr + Ry TinV(Rin) — RoutT: .

(3.8) LI r(V(r),v(r)/r)dr + RnTinV(Rin) — RoutToutV(Rout)

The function f; (A1,A2) is defined forA; > 0 andA; > 0. Since we do not
assume a priori that > 0 orv > 0 a.e., we need to extend the domainfoflt is
convenient to do it in the following way:

fr(A,w(A1)) if A1 >0,A2 <0,
fr (JA1],A2) if A1 <O.
Under our assumptions boté and f, are convex functions, and so we expect

this variational problem to be solvable using direct methofiCalculus of Varia-
tions providedTinRin < ToutRout-

(3.9 fr(A1,A2) == {

Remark3.1 If TinRin < ToutRout, We claim that any minimizer of (38) has tensile
hoop stress somewhere (iR, Rout). Indeed, if we denote by, andoy radial and
hoop stress, respectively, the optimality condition re@ds)’ = gg, 0;(Rin) =
Tin, 0r (Rout) = Tout- INtegrating the equation gives

Rout
/Ri 0g(r)dr = ToutRout — TinRin > 0,

and soog(r) > 0 for somer € (Rin, Rout)-

Remarlk3.2 Inthe casdi,Rin = ToutRout, the Euler-Lagrange equation implies that
the hoop stress is identically zero, and a minimizeEafl (& 8nique only up to an
additive constant (i.e. only is uniquely determined).

If TinRin > ToutRout, it IS easy to see that the energy[in{3.8) is not bounded from
below and so the minimization problem has no solution.

Remark3.3. It is important to understand what are the consequencesteh-ex
sion [3.9). We observe thdt being even in; means thab; f;(A1,A2) < O for
A1 < 0. Therefore,
a]_fr()\l,Az) >0
implies
A1>0.
Also, for anyA, < 0, the hoop stress

Jg = dzfr()\l,)\z) =0
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no matter how largéh,| is.

From now on we will always assume that

(3.10) TinRin < ToutRout-
We claim that under this condition there exists a uniquetsmiw to the variational

problem [Z8).

Theorem 3.4. Let f satisfyZ 82 TH)and let0 < Ry, < Royt and Ty be fixed. Then
there exists a range of inner-boundary loads, B subset of Tout, ToutRout/Rin),
such that minimizer v of2.8) exists, it is unique, and the following holds:

e There exists le (R, Rout) such that

v(r v(r

M cww) re®ab. W oww) e (LR,

i.e. there is tensile hoop stress {b,Ry) whereas in(Rpn,L) there is
compression in the hoop direction. We will call the regiorthwtensile
hoop stress thaon-relaxedegion and its complement tmelaxedregion.

e The deformation v avoids interpenetration, i.e.
v(r) > 0,V(r) > 0forr € (R, Rout)-

e Consider the function (n) = w(V/(r)) — @ representing the amount of
arclength we need to waste in the relaxed regiBp,L). Then

(3.11) h(L) <0
(and obviously (L) =0.)

Remark. Condition [3:T1l) means that the excess arclength assdaidte wrin-
kling at radiusr grows linearly as a function of the distance framwe will see
later that this introduces some difficulties in the upperrizbu

Remark.It is easy to show that the relaxed energy associated with@mripress-
ible neo-Hookean materi®V/(Du) = f(A1,A2) = C(AZ+ A2+ A 24,2 — 3) satis-
fies all assumptions of Theordm13.4. In the case of a mateitllaninear stress-
strain law, results analogous to Theorend 3.4 (but more @gypéire readily avail-
able in the geometrically linear setting by explicitly vimij down the solutiorv
(seell12]).

The proof of Theoreri 34 consists of several steps. Firsprawe the existence
of a solutionv for [3.8) (Lemmd_31). Next, we show some elementary prasert
of v (Lemmal3®B), which will allow us to show the uniqueneswy ¢femmal3Y).
Afterward we prove the remaining propertiesvofThis consists of the following
steps:

¢ we show that any relaxed interval has to staRatLemma3.B);
e we showv(R,;T) > 0 andv(Ri,; T) < w(V(Rin; T))Rin for some loadst
(Lemmd3D);
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e we prove that(Ri, Rout) splits into a relaxed and a non-relaxed interval,
both of them non-empty;

e we show[31M).

Lemma 3.5. Under the assumptions of Theoré€ml 3.4, there exists a miginiz

of 39).
Proof. We start by rewriting[(3]8) in the form

Rout
min [ GO0/~ @ 0v) o,

Vewl’p(Rin Rout

where ¢ (r) = RO“Ler RinTin + Rot R| Rout Tout 1S the Ilnear interpolation between

RinTin andRoyTout. We observe thatgv) =r (¢'Y + ) Sincef = f, for large
strains by[(31B) and has p-th power growth bi (2. 8jr, has also p-th power growth
for large strains. Then the previous integral is boundethfoelow by

Rout p
c+/ <|\/(r)|p_ Oy 4+ (ﬂ) - ¢'(r)m> r .
Rin r r /. r
The assumptior{3:10) is equivalent@&(r) > 0. Hence it is clear that the energy
is bounded from below and that

any minimizing sequence is bounded/ift-P N L*(Rin, Rout)-

Therefore we can use direct methods of Calculus of Variationobtain a mini-
mizerv for this convex problem. O

In the following, we keeplyy fixed and treaflj, as a parameter, and write
v(r;T) for the minimizer of [3B) withTi, = T. We also define an interval

I = (Tout, ToutRout/Rin)-

Now we prove a bound ow, which will be useful afterward in showing the
unigueness and some properties of a minimizer

Lemma 3.6. Under the assumptions of Theoré€ml 3.4 there exist consfarts
Vmin < Vimax such that for any Te .# the minimizer ; T) satisfies

Viin < \/(I‘;T) < Vmaxforr € (Rin, Rout)-

Proof. Let T € .# be fixed and lew(r) := v(r;T). We write g, and oy for the
corresponding radial and hoop stress, respectively:

(312) Or = dlfl’(\/7v/r)7 Og = del’(\/7V/r)'

(1) Sincevis minimizer of [3.8), it satisfies Euler-Lagrange equation

. 1
(3.13) (ror(r)) =09 >0, ie. o = " (0g—0y),
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where the inequalitygg > 0 follows from the definition off,. Therefore
ror(r) is non-decreasing, and thus we obtain

(3.14) a1 f (V(r),v(r)/r)

=0r(r) > ;Ur(Rin) = %Tm > %Tm > %Tout > 0.

We see from Remaik33.3 that
V(r) >0forr € (Rn,Rout)-
We define
H(A):=df(A,w(A)) forA >1

This quantity represents force required to uniaxiallytstren elastic body
to A times of its original length. It is natural to expect monatity of H.
Under our assumptions this is true. Inde€d, {2.12) implies

H'(A) = (0.F(A,W(A))) = A1 f(A,W(A)) +012F (A, w(A))W(A) >0
and so
H is a strictly increasing function
Using [Z.I38) and the monotonicity o6 (r), H(V(r)) satisfies
HV (r)) <015 (V(r),v(r)/r) = i (r) < TouRout/Rin-
So by monotonicity oH
V(r) < H_l(ToutRout/Rin) = Vimax

(2) We want to show that; > 0g in (Rin, Rout)- First, let us prove thatg # or
everywhere. Otherwise leg be such that;(ro) = gg(ro). By differenti-
ating [3.I2) we obtain

1 v
0f = Ouafy V' + 01z - (\/— F) .

Then using Euler-Lagrange equatién (3.13) we see\lis@a solution to
the second order ODE

% (02 (V,v/r) — 01 £ (V,V/I))

1
= 011 (V,v/r) V' + 012 (V,v/r) - T (\/ - %/)

with valuesV (ro) = v(ro)/ro =: Kk for somek. At the same time we see
thatV(r) := kr is a solution to the same ODE wit{(rg) = V/(rp) and
V(ro) = Vv(rp). Sinceds;1 f, > 0 the ODE satisfies the uniqueness principle
and sov=V in (R, Rout), & contradiction with the values of atR;, and
Rout-
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Sinceo; # 0g, we have eitheog > 0; or 0g < oy in the whole interval.
In the first case[{3.13) would imply that is a non-decreasing function of
r, a contradiction with the boundary conditions tgr. Therefore

(3.15) Or > 0g i (Rin, Rout)-
(3) By virtue of [Z11) and(3.15) we see
V(r) > v(r)/r forr € (Rin,Rout)-
Then it follows from [ZIB) and{3.14) that
01T (V(r),V(r)) > o01f (V(r),v(r)/r) > %Tout >0
u
and immediately
whereVnin depends only o, andRin Tout/Rout-
O

We have seen i .(3.3) that the relaxed densitgan be expressed in terms of

f. As a consequencd, partially inherits the strict convexity of. We use the
convexity to show uniqueness af

Lemma 3.7. Under the hypotheses of Theoréml 3.4, a minimizer @) is
unigue.

Proof. Let v be a minimizer of[(318). By Lemn{a_3.6 we know that
1 < Vimin < V(1) < Vmaxfor r € (Rin, Rout).-

From [Z8) and(3]6) we have tha f, (A1,A2) > 0 for A; > 1, which together with
convexity of f, in both variables implies the uniqueness/ofMoreover, we know
by Remarl{Z311 that there exigis< (Rin, Rout) With nontrivial hoop stress:

0g(ro) > 0, i.e. v(rg)/ro > w(V (ro)).

Since f; (A1,A2) = f(A1,A2) for Ax > 1, A2 > w(A;), strict convexity off (in par-
ticular the factd,2f > 0) implies thatv(rp) is uniquely determined. This together
with the uniqueness of completes the argument. O

Lemma 3.8. Let us assume that there exists a non-empty relaxed regerthere
is a maximal interval A, B) C (Rin, Rout) such that

v(r)/r <w(V(r)) forr € (AB).
Then under the assumptions of Theofem 3.4 we havdrf.
Proof. To prove thatA = R, let us assume th#& > Ry,. Thenog(A) =0 andoyg
is strictly positive in a left neighborhoo@# of A. This in particular means that

f(v,v/r) = f(V,v/r)in % . Hence we can do all our computations witinstead
of f,.
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We differentiate[[3.112) it/ to obtain
;L , 1 vy 1 2 v ,
0h = Braf V' + Z0f (\/— F) = A (detD f <\/— F) + 01, arr) ,
where we have used| = d11f(V,v/r)V' + d12f (V,v/r)(v/r) to express/’. Now
consider the limitr  A. Sinceog(r) — 0, from the Euler-Lagrange equation
ro; = og — oy we know thatg; (r)r — —a; (A) = —01f(V(A),v(A)/A). Therefore
we get

O'é(A) = Fjl-lf (detsz (\/(A) — L?) — Opof 01f> > 0,

where the last inequality follows froni (Z]14) witky = V/(A) (note that by the
definition of A, w(V (A)) = v(A)/A). Therefore there exists no such poinand the
relaxed region has to starti&y,. O

The next lemma shows that there exists a range of [daglsch thaw(r; T) > 0
forr € (Rin, Rout) @andv(-; T) has a non-empty relaxed region.

Lemma 3.9. Under the assumptions of TheorEml 3.4 there exists a rangmd$|
T in . such that

V(Rin;T)
3.16

(3.16) R
Proof. By Lemmd3.b and{2.10) we know thatV' (Rin; T)) > W(Vimax), and so it
is enough to show that

<W(V(Rn;T)) and (Rip; T) > 0.

0<V(Rn; T) < W(Vmax)Rin

for some range of loads.

Let T € .# be arbitrary. As a preliminary step, we observe that v(R,; T)
is continuous function fof € .# U Tyy:. This follows in the standard way from the
uniqueness of minimizers. We also see that- V(Rn; T) is a continuous func-
tion of T € .# U Ty This is an immediate consequence of the optimality condi-
tion 01 f; (V(Rin; T),V(Rin; T)/Rin) = 6;(Rn) = T and monotonicity ob; f; (A1,A2)
in the first variable. Then using (2]10) we see that> w(V(Rn;T)) is also a
continuous function. By the same argument the same is tue (8,; T) and
W(V (Rout; T)) as well.

Now we turn to the main point: the value ofR,; ) at the endpoints of/.
If T = Tou, the solution has the form(r; Toyt) = kr for somek > 1 such that
01fr (K, K) = Tin = Tout, and so clearlyw(Riy; Tout) = KRin > 0 in this case. In fact,
there is no relaxed region (and therefore no compressioherhbop direction)
whenT = Toyt.

At the other endpoinT = TouRout/Rin We no longer have uniqueness of a min-
imizer for (38) (see Remailk=3.2). Nevertheless, such nmz@mis unique up to
a translation, i.ev'(-; T) is uniquely determined, and it satisfie$Rou; T) /Rout <
W(V(Rout; T)). Indeed, sincdra;)’ = gg > 0 andRn0; (Rin) = RoutTr (Rout), we
have thatoy = 0. This immediately implies(Rout; T) /Rout < W(V (Rout; T)).
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Now we consider a sequence of loaliise .7, Tx /' T = ToutRout/Rin- As be-
fore we have a sequence of unique minimizgrs: v(-; Tx), where each of them has
a non-empty non-relaxed region (see Renfiark 3.1). We hawersimoLemmda 3B
that any relaxed region has to starRgt, and therefore having a non-relaxed region
implies vi(Rout) /Rout > W(V, (Rout)). We also know that(-;T) is determined only
up to an additive constant, and so theoretically it is pdedimat different subse-
quences of v} are converging to different minimizev$-; T ). We show that this is
not the case, i.e. thak converges to one particular minimizef; T). Let us take
a subsequence df} (labeled the same) which converges to some ¥(-;T).
Since Vi(Rout) /Rout > W(Vi(Rout)), continuity of v(Rou; <) and w(V (Rout;+)) im-
plies

V(Rout) /Rout > W(V(Rout))
At the same time, we know that doesn’'t have a non-relaxed region, and so
V(Rout) /Rout < W(V (Rout) ). This shows thag(Ryyt) = W(¥ (Rout) ) Rout; i-€. the lim-
iting v(-; T) is uniquely determined. Therefore the whole sequengé converges
to this particular minimizer. This in particular shows théR,;-) is continuous
from the left atT = ToutRout/Rin-

To summarize, we have shown that

V(Rn;T) >0 for T = the left endpoint of#;
V(Rn; T) < W(VmaxRn  for T = the right endpoint of# .

Continuity of v(Riy;-) and the fact that & w(Vinax) implies that there are some
T € .# such that

0< V(Rn; T) < W(Vinax)Rin-
This completes the proof of the lemma. O

Corollary. LetT € .# be such that{3.16) is true. Then under the assumptions of
Theorenf3 M4 there existse (Rin,Rout) such that the intervalRi,, Rout) splits into
a relaxed regiofiR;,, L) and a non-relaxed regig, Royt)-

Proof. SinceT satisfies [[3.16), the relaxed region is non-empty. By virdfie
Lemma3.B it has to be of the forfiRn, L) for L € (R, Rowt). Using Remark=3]1
we see that the non-relaxed region is also non-empty, anéassariljL < Roy.
This completes the proof. 0

It remains to show{311). Let us compute the derivativh fofr r < L:

(3.17) () = (W V() V() (Vi) - 2 ).

r
Sincer < L, the hoop stressy = 0 and together with Euler-Lagrange equation
(0= (roy)’ in this case) we obtain

0=0p(r) = a2 f (V(r),w(V(r))), % = Gr(r) = oLt (V(r),w(V (),
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(a is a positive constant) and by differentiating
0= d1af (V(r),w(V (r))V'(r) + 022 (V (1), w(V (r))) - (W) (V'(r)) -V'(r),
—% = on (V' (r), WV (r))V'(r) + 912 (V(r),w(V (r))) - (W) (V'(r)) - V'(r).

We solve this linear system fef (r) and(w)’ (V' (r))v’(r) and substitute the result
into (3I1). Atr =L we haveV —v/r =V —w(V), thush/(L) < 0 is equivalent to

(3.18) deD?f(V(r),w(V(r)))- (V(r) —w(V(r))) >
Or2f (V (1), w(V'(r))) - 01 f (V(r),w(V(r))),

exactly matching conditioi{Z.14).
This completes the proof of Theordm1I3.4.

3.2 Uniqueness of the minimizer
In this section we show the uniqueness of the minimizer ferrtiaxed prob-

lem (32).

First, it is easy to check thak defined in [3J7) is a minimizer for the relaxed
energyEg (since the functional is convex, any solution of the Eulagtange equa-
tions is a minimizer). Sinc&g is not strictly convex, the uniqueness of the min-
imizer is not clear. It is however true: we now show tbgts (up to an additive
constant) the only minimizer of the relaxed problem. Indemgpose that there
exists another minimizew; of the relaxed problem. By convex duality fBp we
have:

min _ Ep(u) = max / —D(0)dX,
ueWLP(Q,R3) oel? (QR33) JQ
diva=0, o.n=T atoQ

whereD(0) = SUR:g3-3 (0,F) —W(F) is the convex conjugate &ff. Since

Uo IS a minimizer ofEg, we know that the maximum on the RHS is attained
for op = %—V;"(Duo). From the definition of the convex conjugdbewe see that
(00,Dup) —W (Dup) < D(0p), and after integratioo(u;) > [, —D(0)dx. Since
the deformationu; is a minimizer ofEqg as well, we obtain an equality in the
last relation. Hencéop,Du;) — W (Dug) = D(0p) a.e. inQ and consequently

0o = %% (Duy) a.e. inQ. It follows that

(3.19) Dug = Du;

at points wherd\; is strictly convex aDup (i.e. at points where the eigenvalues
A1 > Az of (DUl Dup)¥/? satisfyA; > 1 andA; > w(Ap)).

We have proved in Theorem 8.4 that the hoop stress is tensillyg in the
non-relaxed region

(3.20) Qn = {x:L < |X| < Rout}
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with R, < L < Royt. By Qr = Q '\ Qn We denote its complement, i.e. the relaxed
region. Since the both stresses are tensi2ynas a consequence Bf(B.3) we have
V\/r(DU()) :W(DUO).

Using the strict convexity dfV; in the non-relaxed regiof2y we see that

(3.21) Uo(X) = ui(x)+C

for x € Qn. We may assume without loss of generality t8at 0. In the relaxed
regionQgr we need to replac&€(3119) by

Dug(X) - n(X) = Duy(X) - n(x), X e Qr
wheren(x) = ﬁ is a unit vector in the radial direction. This concludes theop

of unigueness, because integrating the last relation imattlial direction extends
validity of (8:23) to the whole se®.

4 The 2D result

In this section we show the matching upper and lower bountiseisimplified
Kirchhoff-Love setting. After stating the main result ofdtsection we prove the
upper bound by superimposing wrinkles on the solutigof the relaxed problem.
We use LemmBl2 to create simple wrinkles whereas Lemmardv&ps a tool
to create a family of wrinkles with changing wavelength rtbarfree boundary. In
the rest of the section we prove a matching lower bound. Usamgmad$4.H,_4]7,
and 4.8 we show that E(upn) is close tosp, then alsduy has to be close tBup.
As a consequence we obtain a bound on the out-of-plane despkntu, 3. By
interpolation we show the smallnessii, 3, which allows us to projeath to the
plane without changing its energy too much. The final ingretlis a comparison
of ug with the projection oi, (LemmaZ.D).

For Theoreni 411 we will assume that the lower boundid (2.8)with p= 2
rather than just X p < 2. The stronger assumptign= 2 is only required for the
second half of the proof of the lower bound (e.g. for the jpdémtion), whereas the
first half of the proof of the lower bound (especially Lemrds 47 [4.8, and the
Poincaré inequality) requires only<d p < 2. Since the real purpose of the two-
dimensional result is to lay the ground for the proof of the¢hdimensional case,
many of the preparatory lemmas are proved in the more gesetftaig 1< p < 2.

Let us now state the main result of this section:

Theorem 4.1. Let us assum@.8) with p= 2 and all hypotheses of Theorédml3.4.
Then there exist constarfis< C; < C, independent of h such that

(4.2) &+Cih< muinEh(u) < &p+Coh,
whered&y is the minimal value of the relaxed probld@2d).

Remark. TheorenT 41l doesn’t necessarily require all hypothesesheben 31,
In fact, some of them can be replaced by assumptions on thé&woly of the
relaxed problem (which are consequences of The@rein 3.4).
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4.1 The upper bound in the two-dimensional setting

To obtain the upper bound, we must construct a test funcijdar any (small)

h > 0 with energy
En(un) < & +Ch,

where the constar@® is independent oh. A naive approach would be to super-
impose a “single family of wrinkles” (with a well-chosen jmt independent of,
and a well-chosen amplitude that depends)omw.f. [12] (see alsd ]13] for a simi-
lar calculation). The energy associated with thjhas the expected scaling away
fromr = L (the edge of the wrinkled region). However the membrane andling
energies are both singular & L; as a result, the total energy (after integration)
is too large, of orde#p + O(h|logh|). The singularity in the bending term can
be avoided by introducing a boundary layer, however we hatdéound a similar
way of avoiding the singularity in the membrane term (whistagsociated with
stretching in the radial direction).

To get a linear correction a more complicated constructieens necessary,
using a “cascade of wrinkles” rather than a “single familygfnkles.” In other
words, the period of the wrinkling changes repeatedly asappeoaches the edge
of the wrinkled region. Constructions of this type have besed in other settings,
for example in studies of compressed thin film blisters |4, 22

Recall that the solution of the relaxed problem has compmd®wop strain
whenr < L. The essential purpose of the wrinkling is to avoid this cospive
hoop strain by out-of-plane buckling. In the following lerasy we writeg, (r) for
the compressive hoop strain to be avoided. Up to a factormof this amounts to
“the amount of arclength to be wasted by wrinkling” along timage of the circle
of radiusr.

Lemma 4.2 (see Lemma 2 in[5]) For everye, > 0 there exists a smoot#d’™
planar curvey(e,) = (yi(&)(t), 2(&)(1)) : R — R? with properties

ldyl=14¢€, &n>0, y(—t)=—y{)

yit+2m =yo+ ().

and satisfying the bound

Vi—t|+dyi— 1+ || <Ce., |yl +|ay] +|deyel <Ce?,
|0e.v1| <C,  [0e.yol <Ce 2, |92y <Ce2,
* . e

where C does not depend @p. Moreover, the bound is sharp (in terms of the
scaling ing,) for small values o€,.

Idea of the proof (see Lemma 2[5} for more detail): We constructy by repara-

metrizing the curves
~ t
V) = < Asint >
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so that|d y| = 1+ &,, whereA is chosen such thqu"wtf/(t)\ dt = 2mn(1+¢,). By

considering the sma#; limit we obtainA = p(ak)akl/2 (p being a smooth function
on [0,1]). This leads easily to the desired estimates. O

We would like to use Lemmia4.2 to superimpose wrinkles on fap@planar
deformationug obtained from the solutior to the relaxed probleni(3.8). Though
this naive construction does not achieve optimal energynggat can be modified
(using Lemm&4I]3) to obtain a construction with optimal ggescaling. Therefore
it makes sense to analyze the naive construction, to urahersthy it fails and also
to motivate the successful construction.

The naive construction is based on Lenima 4.2 and proceeddi@sd. After
we obtain the parameter(r) (amount of wastage of arclength) fromwe deter-
mine the right period of wrinkles to obtain the optimal segli A bit of calculation
reveals that the stretching terms scale kké (k is the number of wrinkles) and
the bending terms scale lik€k?. Using this we see that the optimal number of
wrinkles is of order

k:=|h~Y2].
Fromv we obtain the amount of wastage of arclength as

_ W(V(r))
0=
forr € (Rin,L). Following the proposed idea we define a solutignn Qg (using
radial coordinates, 8) by

(4.2) Un(r, 8) = v(r)f + wk))(ke)mr v(r )M%
and asp elsewhere. Froni{3.11) we know that~ L —r (i.e. &, is of orderL —r)

forO<L—-r<«1. Slnceds2 Vo R E, 32 by Lemm&Z4.P, the contribution @k, un3
to the bending energy is divergent:

L
h/ | ey Un3|%r dr ~ hPk™ / 3/2 rdr: h3/ (L—r)"3rdr.

It is clear that the bending energy is of ordein the regionR, <r <L —h.
Therefore a boundary layer in the regibn- h < r < L would solve this issue
provided the integral over this layer of the néi Un 3|2 is at most of ordeh=?.

Now let us try to compute the contribution from the stretghémergy near the
transition from the relaxed to the non-relaxed state. InrédggionR, <r <L—90
(for a fixedd > 0) the termd; u, 3 from the membrane energy satisfies

L5 L-5 X )
/ \o”?ruhg\zrdrz/ k‘2<|\/(r)yg| + V(1) de, 2 )rdr.
Rin Rin

By Lemmal[4.P the first term in the parentheses is of oedarhereas the second
term is of orders . Therefore, near the free boundary (where< 1) the second
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term is dominant and we obtain

L-o L-o
/R Ghsrdr~ [ ke o = h(log(8) —log(L - Rn)).

We see that by setting = h (or any power oh) we would obtain energy scaling
h|logh|.

We now begin discussion of the successful constructiongchvases a “cascade
of wrinkles” nearr = L. The main tool is LemmB4.3. Whereas Lemimd 4.2 in-
volved wrinkled curves, Lemnia34.3 involves wrinkled stripswhich the length
scale of wrinkling doubles from one side to the other. It jmleg the basic building
block for our cascade of wrinkles.

Lemma 4.3. Let B= (0,l) x (O,w) withO<I,w<1, F:(0,]) = R, and e be a
positive function or(0,1) satisfying|€/| < c, |€¢’| < c, and l/c < e < cl for some
¢ > 0. Then there exists a smooth deformati¥(s,t) defined on B and w-periodic
in the t variable such that for any (0, w) the following holds:

Wi(sit) =F(s), SG(OI)
(W2, W3) (st) = ((S))(w)’ s€ (0,1/4)

(W2,W3) (st) = ( t > se (3/41,])
LIJ(S,O):(F()OO) W(sw) = (F(s),w,0), se (0,1),

and
|0sWa 2+ |0sWs2 <CWAI L, |aW| =1+¢(s), |[DW|*<C(I3wWP+w ),
where C depends just on ¢ apds the curve defined in Lemrhal4.2.

Proof. To prove this lemma we just need to defig, W3 such that the required
estimates are true. The idea of the construction is verylaino the proof of
LemmdZ.2. To simplify the notation we first assume- 1.

First, let us fix 0< € < 1 anda € [0,1]. We consider a planar curve:

y:t— (t,A[(1—a)sin(2mt) + a sin(4mt)]),

where A = A(g,a) is such that the length of([O,w]) is exactly (1+ €). More
specifically, we define

A =1 [ 7Dl
= Flg/ot \/1+(2rrA)2[(1—a)cos(2nT)+201 cos(4rT))?dr

with A such that\(1) = 1 (sinceA is strictly increasing function oA, there exists
a unique such).
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Considering the smal-limit, we obtain
A=p(e,a)e"’?,
wherep € €*([0,1] x [0,1]). Consequently we have that

oA
oked'a
Using y we define a new reparametrized curve

M(g,a,t) =§foAL(t).

This curve obviously satisfig’(t)| = 1+ € and
Fi(e,a,t) =t—gpi(g,a,t), Mo(g,a,t) = eY2py(g, a1 t),
wherepq, o2 € €°([0,1] x [0,1] x R). From there we get estimates
|0:T 1|+ 6T 1] <C, |0qT1] <Ce,
|Oeel 1|+ |Oeal 1| +[0stT1| <C,  [daal 1|+ [0atl 1] + [0l 1| < Ce,
|0ka% a5 < CeY2% Kk I.n>0.
Now we are ready to define the mdp We set
Wi(st) :=F(s), Wa(st):=T1(e(s),@(s),t), Ws(st):=T2(e(s),p(s)t),
whereg is a smooth increasing function ¢@,1) satisfying
@(s)=0  se(01/4),
0<g(s)<1 se (1/4,3/41),
p(s) =1 se (3/41,),
and¢’ < 3/l. Then
OsW(st) = (F'(5), 0T 1€ + 0o 19/, 0T 2€ + 3aT2¢)
aW(sit) =(0,61,0T>2),
and using previous estimates together veith | we obtain desired bounds
GW|=1+e(s),  [0Wa>+|dWs2 <CI L.

To finish the proof in the case = 1, we get the estimates @f¥ in the same way
as for the first derivatives ¢9:

D2, <C
‘attl'p2| SCL |astl'|',2‘ SC, |dssl'|',2‘ SCI?l
0¢W3| <CIY2,  |0qWs| <CITY2,  |dsW3| < CI7¥/2,
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It remains to show the lemma for genevali.e. we need to defin® on B =
(0,1 x (0,w). Let¥ come from the proof of this lemma for the case=1 (W is
defined on(0,1) x (0,1)). Then we simply set

W(st) = (F(s),wa(s t/w), ws(s,t/w) ).
Now it is an easy calculation to show tHétsatisfies all the estimates. O

Remark.Later we will use LemmB4l 3 to create a test function for theeufound
for En. The definition of the functior from LemmaZ4B will be based on(the
solution of the relaxed probleri(B.8)), and- will be the corresponding natural
width. LetM(s) =F'(s)ey @ e+ (1+€(s))e; @ & be a 3x 2 matrix. Since % ¢(s)

is the natural width, we have thBW (M(s)) = a(s)e; @ e; for some scalar function
a(s). By definition we knowM(s)11 = dsW1(s). Then the boundedness BPW

(seel[2ZB)) implies
JwWow) - [Wme) < ¢ [ [(0%.a9)- (F9eoe+avee)|
B B B

— [ 108af? ¢ ol

where we used tha,¥| = 1+ e (see Lemm@&4]3) and the rotational invariance of
W. Using Lemmd&Z]3 we obtain

/BW(DLIJ) +R2[D2w) - /BW(M(S)) <C(W R [Wi 2w l2)).

As already mentioned, we will later set.= v, the solution of the relaxed prob-
lem, ande := &,, the excess arclength, so thfatV(M) is the energy of the relaxed
solution. This remark will be then used to compare the elastergy of the con-
structed deformation with the energy of the relaxed satufehich isép).

Remark.SinceW is periodic int, we can assume it is defined in an infinite strip
(0,1 x R.

Remarkd.4. In LemmaZ3B we have estimated the siz&8f, not onlyD?W3 (in
fact, the third component d¥ was the most oscillatory, and so it is larger than
other two). We will use this fact later in the proof of the uppeund in the general
three-dimensional setting.

By (311) and smoothness @fwe can choose a small > 0 and constants
0 < ¢ < ¢; such that—c¢; < dre, < —¢p in the interval(L — d,L). We define a
deformationu, by changinguy, (defined in[[ZR)) in the regiob— d < r < L. The
idea is to create a cascade of wrinkles by superimposingkiggncoming from
LemmdZ.B in smaller and smaller rectangles as we appmroadh We define (for
a non-negative integem:

In:= (L— 847" L— 34~ (M)
_2n

an:=L—-04"", In:=|lnl, W, = ?2*”,
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and forr € 1, we set:
Un(r, 8) = V()f + Wo0 + v(r)Waks
whereW¥ comes from LemmB&4.3 applied to the rectarigle (0, w;,) with
F(s) :=Vv(s—an), e(s) := &(s—an), W= Wp, | :=

We do the construction in the regibhy :=UN_1n x (0, 27m) with N = —1/2log,(h)

(N is chosen such that®® = h~1). Since the doubling of a period defined in
LemmaZ4.B happens strictly inside the given interval, th& ind second deriva-

tives ofuy, are continuous at eac (i.e. there are no jumps in the first derivative
of up, between, andl,.1).

To finish we just need to defing, in a region close to = L. Consider the
strip (L — 4N, L) (observe that it includety). By LemmalZP the amplitude
of un3 atay is of orderwye. Y?(ay) ~ 8%2h%2. The length of the interval is
5 (4N —4-(N+D) = 3/4. 5h. We multiply u, by a smooth cut-off function iy
to bring the out-of-plane displacementwf to zero atay.1. Since the length of
the intervally is of orderh and the value oDuy is bounded in that interval, the
membrane energy is bounded G in this interval. The second derivative of the
new deformation in this region is at most of ordier/2, and so the bending energy
in this region is less tha@h? « (h~/2)2«h = CH. Overall we obtain:

.

N
En(un) — Eo(Up) < Ch+C sznk (W3 + 02 (1, 2w3 + wi 112) ]
n=
<Ch(1+h%2M) <Ch

4.2 The lower bound in the two-dimensional setting
In this section we want to prove the lower bound

(4.3) ueVUgIZI?Q) En(u) > & +ch
for somec > 0 independent ofi. Our argument uses the convexity of the relaxed
problem; we shall have to work a lot because the relaxed @noli$ not strictly
convex. We will proceed by contradiction, assuming theie deformatioru with
energy very close to the enerdy of the relaxed solution. After obtaining a bound
on the out-of-plane displacemantwe use interpolation to show smallnes$af;.
This allows us to project the deformatianinto the x-y plane without altering its
energy too much (i.e. we obtain a planar deformation withrggnelose to&y).
Finally, we conclude the proof by showing that it is not pbksito have a planar
deformations with energy close 3.

The results in the first part of this section will be usefubdkster for the proof
of the three-dimensional case; therefore we prove themmasgwnly 1< p <2
in @38). On the other hand, it is convenient to assyme 2 in the interpolation
argument used later in this section, and so from that poimt@assume = 2.
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We define

t2 i

t? ifo<t<1
4.4 t):=4¢ 2 o1
(4.4) gp(t) {%Jr%_%, if t>1,

for some 1< p < 2. We observe that the functi@p is monotone, convex, ar@f.
Since it also satisfiegy(2t) < 4gp(t), convexity ofgy, implies

(4.5) gp(a+b) <2(gp(a) +gp(b)).

The proof of the lower bound is divided into six steps:
Step 1: To proceed by contradiction, we assume that for any smalb0< 1 there
exists a sequence of functiongs.t.

En(upn) < &+ oh.
This is equivalent to
(4.6) En(un) — Eo(ug) < Oh,

hence using\f <W and definition ofEy we immediately obtain
/Q W (DUn) — W (Do) dX + B(Un — Uo) = Eo(tn) — Eo(Uo) < 3h.

Sinceup is the minimizer of the relaxed enery, it has to satisfy Euler-Lagrange
equation

/QDWr(Duo) :DpdX +B(¢) =0

for any test functionp € WL-P(Q, R3). SinceDW; (Duyp) is bounded, we can easily
take test functions iv11(Q, R®). Using the relation fotp := up — uj, yields

4.7) / W (DUn) — W (DUo) — DW (DUo) : (Dun — Du) dX’ < h.

Q
Step 2: We would like to obtain a pointwise lower bound on the integraf the
last relation.

Lemma 4.5. Assume@Z8) holds. Let Fe R3<2 be an orthogonal matrix with
singular valuesA; > 1, A2 < A1, and n be the right singular vector corresponding
to A; (i.e. FTFn= AZn). If there existk > 0 and an open neighborhood of
(A1,A2) such that

(4.8) D?f,(01,02) > key @ ey for (01,0) € %,

then there existsoc> 0 (depending only o1,A2, K, %, and growth of W) such
that for any Ge R3*2

(4.9) WH(G) =W (F) —DW(F) : (G—F) > cogp (|(G—F)-nl).
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Proof. We first prove the statement for large strains (i.& i large). Letoy > o»
are the singular values @. We observe that the coercivity ¥/ (G) (see [ZB))
implies that\; (G) has alsap-th power growth for large matrices. IndeedGthas
only tensile stress, we haVé(G) =W (G), i.e. W (G) has the same growth ¥¢.
Otherwise, we know from the ordered force inequalify](3t&) t

fe(01,02) > fr(01—1,1) > c(|G|P - 1),

where the last inequality follows from the coercivity W and from the fact that
strains(A; — 1,1) produce only tensile stresses (and/¢e= W in this case). Thus
the LHS of [49) grows at least IikK&|P. Since the RHS has at most such growth,
the conclusion follows.

It remains to prove the statement in the case
Gl <M

for someM. First, we observe that in this ca& — F) -n|? and|(G— F) - n|P are
comparable, and so we can replagein @.9) with a quadratic function, i.e. we
need to show

(4.10) W (G) —W(F) —DWi(F) : (G—F) > co|(G—F) -nf?

for any |G| < M (possibly with a differenty than in [49)). We start by com-
puting DW; (F). SinceW is rotationally invariant, we can assume without loss of

generality that
A O 1
F = 0 Az 7n == o .
0 O

Then a simple calculation reveals that

ay 0
DW(F)=(0 a2},
0O O

wherea; = 01 (A1,A2) anday = d>f,(A1,A2). We observe thatr; > 0, a; > 0,
and thata, = 0 iff Az < w(A1). We rewrite [ZD):

(4.11) Wi(G) —W(F)+DW(F): F > DW (F) : G+co(G—F)-n?
= m1G11+ a2G2+Co ((611— M)+ G3 + Ggl)
= (a1 — 2CoA1) Gu1 + G2 + Co (GEy + G5 + G53) + CoAf

We choosey > 0 small enough so that; — 2cgA1 > 0. The LHS of the inequal-
ity depends only on singular values®f Hence, we can provE(4]111) by maximiz-
ing the RHS among all matric&swith given singular valuesy > g>. We give the
argument assuming thet — 2cpA; > a» (the proof in the casa; — 2cpA1 < a3 is
analogous).
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To prove [4.111) we will use the following lemma due to von Neumm (see, e.qg,

[286]):
Lemma 4.6. If A,B are nx n matrices with singular values
012>:-2>0n, P12 Pn

respectively, then

=}

[tr(AB)| <) orpr.
r=1

We shall apply the lemma to find the maximal possible valubeRHS[4.T11)
among all matrice§ with singular valuess; > o,. First we setA := (G|0) (the
3 x 3 matrix with first two columns identical wit® and the third column equal 0)
andB = diag(a1 — 2cpA1, a2,0). Then the lemma gives

(a1 —2cpA1) G11+ 02622 < (01 — 2CoA1) 01 + 0207.
ForA:= G'G andB = diag(1,0) the lemma implies
Gi1+ G5+ G5 < of.

Together we see that the RHS Bf(4.11) is at njagt— 2coA1)01 + 202 + 00012 +

01 0
co}\f. To see that this bound is optimal, we Gg:= | 0 02 | asG. We got that
0O O

the RHS of[4.11) is maximal for the choi@= Gy, and so we need to proMe{Z4110)
only for G = Gg for anyo; > 0, > 0, i.e. to show

(4.12) fr (O'l, 0'2) — fr ()\1,)\2) -D fr ()\1,)\2)(0'1 — )\1, 0o — )\2) > Co(O'l — )\1)2.
Using Taylor’s expansion df; at the pointA1,A;), and assumptions(2.8) aid{4.8)
we see that

fr (01,02) — fr(A1,A2) = Df, (A1,A2) (01— A1,02— A2)

(01,02)
2/( (D2f,(§) (0 — &), 0— &) dE

A1,A2)
> 1k (01— A1)?,

where the last inequality follows from the fact it f, > ke, ® e, in a non-trivial
part of the segment betweén,,A,) and (o1, 02) (remember tha6 is bounded),
andD?f, > 0 otherwise. This completes the proof of the lemma since wevet
that [4.12) holds witltg = c; K. O

Lemma 4.7. AssumelZ8) holds. Let Fe R3<2 be an orthogonal matrix with
singular valuesl < A, < A1 < K. If there existk > 0 and an open neighborhood
% of (A1,A2) such that

D?f,(d1,02) > k| for (01,00) € %,
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then there existsgc> 0 (depending only o1, A2, Kk, % ,K, and growth of W) such
that for any Ge R3*2

(4.13) W (G) Wi (F) —DW(F) 1 (G—F) > cogp (IG—F|).

Proof. The idea of the proof is simple and resembles proof of theipusdemma.
If Gis large, we get the statement the same way as in the predousd.

Otherwise we can assun®@| < M for some (possibly largéyl. For any suctG
the part of the segment connectifgandG (i.e. F +t(G—F) for t € (0,1)) which
belongs toZ will be at leaste part of the whole segment. The LHS Bf{4.13) can
be written as

/01<D2V\/r(F +1(G—F))(G—F),G—F)(1—t)d,

and the integral is at leag{1—t)|G — F|? along the non-trivial part of the segment
and non-negative everywhere else. Therefore 14.13) fallow O

Before proceeding to step 3, we need one more lemma, thahisin char-
acter to the preceding ones but involW#snstead oi\;.

Lemma 4.8. AssumdZ8) holds. Let Fe R3*? be an orthogonal matrix with sin-
gular valuesA; > 1, A, <w(A;), and n be the right singular vector corresponding
to A1. If there existx > 0 and an open neighborhoo# of (A1,A2) such that

D?f(01,02) > Key® ey for (01,02) € %,
then there existsoc> 0 such that for any Gz R3*2
(4.14) W(G) —W(Fo) —DW(Fo) : (G—F) > cogp (dist(G,SA3)F)) ,
where bn = Fn and W(F) = W(F).

Proof. LetH € R3*2 pe such thaHn = GnandW/(H) is minimal among all such
H. We observe

W(H) =W (H), W(Fo) =W (Fo).

Arguing as we did in the proof of Lemnia%.5 (i.e. using rotaéibinvariance otV
andW; to computeDW andDW;) we also have

DW(Fo) : (G—F) =DW (Fo) : (H — Fo).
We claim that
W(G) —W(H) > cgp(dist(G,SQ3)H))

follows from {Z8). We give a proof of this fact in the Apperdsee Lemm@&ZAl3
and RemarkAW).
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Now LemmdZb and the previous inequality imply that the LH§4al4) is at
least
(4.15) [W(G)—W(H)]+ W (H) —W (Fo) — DW (Fo) : (H — Fo)] >
Co(9p (dist(G,SQAB)H) +gp (|(H —Fo) - nl))

(co is a generic constant, i.e. it can change from line to line).
We claim that in the second term on the RHS[Qf (#.15) we have

|(H—Fp)-n| > cdist(H,SQ(3)F).
To prove it, we first observe that without loss of generality gan assuma =
(1,0). Then using[(AT’) we see that
H = (v1|v2) andFy = (w1|wo),

wherevy L vy, [vo| = g(|vi|) andwy L wy, |wo| = g(|wi|). There clearly exists a
rotationR € SQ(3) such thatv;||Rwy andv,||Rw,, and the vectors have the same
orientation; thus

dist(H, SQ[3)Fo)? < v — Rw|? + vz — Rwo|? = (|va] — jwa|)? + ([v2| — [w])?

= (Jval = Iwa)?+ (g(va|) — g(jwa))? < e(jva| — [wa|)* < ¢|(H — Fo) -n[2.

Hence the RHS of(4.15) satisfies

Co(9p (dist(G, SQA3)H) +gp (|(H —Fo) - n[))
> Co[gp (dist(G, SQ(3)H) +gp (dist(H, SA(3)Fo))] = cogp(dist(G, SA3)Fo)),
where we used inequalitf (4.5). This completes the proofeshind Z.B. O

We continue the proof of the lower bourdd {4.3).

Step 3: It is clear that there existg > 1 such that the region where the smaller
singular value oDup is at leasip is non-empty. We will denote this regidyy, and
its complement i asR,. Lemmag.45 and 4.7 applied o {¥.7) imply

/ng(\Duh(%)—Duo(%)D d>(+/R gp (|(Dun(X') = Duo(X) - n(x)[) d¥' < Cah,

whereC > 0 depends only ong, W, and choice op. We now use the Poincaré
inequality adjusted to our setting (LeminalA.6). We obtain

], 90(1un) —en—wa(x) )& < | ga(|Du(X) ~ Dug(x) )X < Ch

P P
for somec;,.

We would like to extend the previous estimate into the wHale We fix a
direction 8 and define (using radial coordinates)

f(t) = uh(t,B) — Uo(t,e), te (RinyRout)-
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Let us callM the radius of the boundary betwelp andR,, and let

K:_/n dt+/ (t) — cal)

Then by the Poincaré inequality appliedfteon (R, Rout) we get

[0 —cahat < [ gp(1t' ) ok <K
R =Ry P B

for somecg. We also have
Rout
(Rou~M)gp([on— Col) = | ™ apllon o)t
Rout Rout
<o [ a0 - [ Moo ) <ck

and so

(4.16)
Rout

(1f(t)—c |)dt<C</Rom (1f(t)—c |)dt+/R°“‘ (Ice —c |)dt> <CK
i Op h < - Op 0 - Op(|Co —Ch <CK.
Finally, by integrating[{4.16) ir® we obtain

(4.17) | 86(1un() — e = o) & < Ch,

Step 4: The next step in the proof is the interpolation betwélens|| 2q) and

||D? Unal|L2(q). For that reason we assurpe= 2 (instead of a more general<’L
p < 2) for the rest of this section. (Since the previous lemmabkhei used later
(see Sectiohl5), we proved them assuming only 1< 2.)

Whenp = 2, (£17T) reads

[[Un(X') — cn — Uo(X)[[f2(q) X' < C3h.

Without loss of generality we can assue= O, since our problem is translation
invariant; in particular we have

(4.18) [una]1%q) < CBh.

Since
En(up) — h2||D2Uh3||L2 >m|nE0() &0,

we have that

(4.19) ||D2uh,3||EZ(Q) <d/h.
Interpolating betweer {4118) arld (41 19) we obtain
(4.20) ||Duhg|||_2 <Co.

Step 5: We want to estimate

/Q IW(Dun) —W(Du?)| X,
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whereul? = (up1,Un2,0) is the projection ofu, into the x-y plane andA(X) :=
Dun(X) — Dut?(x'). By 1) the previous integral is equal to

[ F(020x),02(x)) — Ta(x),22(0)) | X

whereog; (X)), 02(X) andA1(X'),A2(X) are the singular values of matricBsi,(X)
and Duﬁz(x’ ), respectively. Since the singular values of a matrix arestliitz
functions of the corresponding matrix (see, e.g., Corpl&a6.2 in [19]), we have

(4.21)

|f(01(X), 02(X)) = f(A1(X), A2(X) | = [DF (& (X)) (01(X) = A1(X), 02(X) = A2(X) )
< CIDf(E(X))IAX)],

I
whereé (X) is a point on a segment connectif@ (X), 02(X)) and(A1(X),A2(X)).
By @8)Df(1,1) = 0 andD?f < C, and soDf({) < C(|{| +1). Using quadratic
growth of f ((Z8) with p= 2) we obtain

(422)  DHEN)P <CIEX)P+1) <C(FEX))+1)
<C/(f(01(X), 02(X)) + F(As(X),A2(X) + 1),

where the last inequality trivially follows from the convexof f. Integrating
#23) and usind{4.22) together with Holder inequality e

[ 11(610),020¢)) ~ 1(2a(x), Aol ¢

<C (/ Df (& \de’> v (/Q\A(x’)\zdx’>l/2

<o [ wiow) +wou 1) " Owsllm
Therefore by[[4.20) and usinh< 1,h < 1 we have that
( /Q IW(Dun) —W(DU)| dx’>2
<C Z/QW(Duh)dx’Jr/Q IW(Duy) — W(Du2)| dx’+1> 5
<Cd (é"o + oh+ 1+/Q W (Dup) —W(Duf?)| dx’>
<C's <1+ /Q W (Dup) —W(Dup?)| dx’) .

It follows easily that

/Q |W(Duh) —W(DU%ZM dx < C51/2’
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and so
(4.23)
|En(Un) — En(Up?)| < C8Y2+1?(|D%Un ][ q) < C(8Y/2+ 5h) <C3"2

Equations[{416) and({4.P3) together imply
E(u}?) — Eo(up) < C&Y/2,

whereE(v) = [oW(Dv) + B(v) (v is just an in-plane deformation, so there is no
bending term present).

Step 6: Observe that the last relation does not depend on thickmessmore.

In fact, to finish the proof we just need to show that the mimmef the energy
En over in-plane deformations has to be strictly larger thanrtiinimum of the
relaxed energ¥y:

Lemma 4.9. Under the assumptions of Theoreml 4.1 we have

min En(u) > min  Ep(u) = &.
ueW22(Q R2x {0}) h( ) ueW?22(Q,R3) 0( ) 0

Proof. Let us assume the contrary, i.e. for any sndait O there exists a function
u: Q — R? such that

[ w(ouax +B() §£o+5:/V\/r(Duo)dx’+B(uo)+5.
Q Q

The plan is to obtain a contradiction by showing that the suefau(Qgr) and
Uo(Qr) should be very similar using one argument and at the samevényaliffer-
ent for another reason (hefk is the relaxed region introduced near (3.20)). First,
using Euler-Lagrange equation fag we can replace the boundary teBtu— up)
by the gradient term:

/QW(Du) — Wi (DUo) — DW (DUg) - (DU — Dug) d¥’ < 8.

SinceW > W andW is convex, the integrand in the last relation is non-negativ
a.e. Therefore the last relation remains true if we integoaer the relaxed region
Qg instead of the whole domai@. To proceed, we would like to find a matrig
such thatV; (Dug) = W(Fo) (i.e. we want to relax compressive stressebig if
they are present). We know tHatly has compressive stresses in the hoop direction
(and tensile in the radial direction), which means tRaandDug coincide in the
radial direction and are different in the hoop directioa, i.

Fo(X)n(X) = (Dup(X))n(X) and Fo(X)n*(X)=cn*(xX)

with somec > (Dupn*)nt. Moreover, it can be easily seen that in this case
DW; (Dup) = DW(Fp). We rewrite the previous inequality to obtain

W(Du(X)) — W(Fo(X)) — DW(Fo(X)) - (Du(X) — Dug(x)) dX < C8.

Qr
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Using LemmadZ18 wittp = 2 we see that
dis?(Du,SQ3)Fy) d¥ < C3,
Qr

whence
(4.24)

U(QR)| - / detFodx" < / detDu — detro| X < C 5+ 5%7) <C&Y2
QR QR

Further we see that
(4.25) defy > detDug.

Indeed,Fy andDujg are “same” in the radial direction (i.&gn = (Dug)n), whereas
due to compression in the hoop direction in the relaxed moiuly we have that
(Font)nt > ((Dug)n*)nt. Hence we gef{4.25) by taking product of the two pre-
vious relations. Finally integratin@ (4J25) we obtain

(4.26) detRydx > detDupdx = |Uo(QR)|.
Or Qr
To finish the proof we want to show
(4.27) |u(QR)| < |uo(QR)| +C3Y°.

Then by combiningl{4.24) anf{4]27) we get
detFodX < |uo(Qr)| +C3Y3,
Qr
contradicting [[4.26) sincé > 0 can be arbitrary small.
To show [Z2) we set := 3/3 and define

A = u(Qr) N {x € R?: dist(x, up(QRr)) > €}
Then
(4.28)
U(QR)| < [{x € R?: dist(x,Up(QR)) < €}| + |.#| < |uo(Qr)| +Ce + |.#|.
It is enough to estimate the size @f. Arguing as before (c.f[{417)), we know
that
[Ju—Uo| P2 2y < CO,
whence

@29  e2u () g/u1M/)\u—uo\2dx’§Hu—uoHEz(QR,Rz)gCé.

By virtue of (£29)

| = / detDudx’ — detFodX + detDu— detRy dx
i) ) )

u iz u(z

<clu(a)|+ / | detDu— detfo| d¥' < Ce~2+C&Y2 < C&Y3,
Qr
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Using this estimate i .{4.28) we obtaln{4.26). O

This completes the proof of the matching lower and upper 8anrthe two-
dimensional settind{4.1).

5 The 3D result

In this section we will prove the scaling law for the minimurhtbe elastic
energy in the nonlinear three-dimensional setting. As engrevious section, we
need to show an upper and a lower bound. As usual in problertissotype, the
upper bound is an easy consequence of the upper bound fobtlsetiing. The
main goal is therefore to show the lower bound in this moresgarsetting.

As explained in Sectiofl 2 we consider a nonline@rehergy
1
~ hJaxon

instead of the reduced2energy [Z.2). The boundary term in th® 3etting is
defined as

EP(u): Wap (Du) dx

T R T, X
BP(u) = -1 u(x) - — —L“t/ u(x) - —— ds.
- (U) h Jig=Rn ) Rin hJig=Rou ) Rout

The main result of this section is

Theorem 5.1. Under the hypothesis of Theor€ml3.4 there exist consfaat€; <
C, independent of h such that

&+Ch< min E3P (u) 4+ B3P (u) < & +Coh.
ueWP(Qx(—h/2,h/2))

5.1 The upper bound in the three-dimensional setting

The construction of a test functiaif® in the three-dimensional setting is based
on the test functioru, defined in the previous section to show the upper bound
in the two-dimensional setting. Following proposed Kirofi.ove ansatz, the
normal to the mid-surface remains straight and normal tartitesurface after de-
formation. Therefore, we just need to find how much shouldh efthese normals
stretch. It follows from the definition oV (see [Zb)) that for any’ € Q there
exists a facton (X') such that the vectaw (X )v(X) satisfies

W (Dun (X)) =Wap (Dun(x)|a (X)v (X)),

wherev(X) is the unit normal tai,(Q) atuy(X'). We observe thad (X') is bounded
and|Da| < C|D?u,|. We define the solution as

UL (X) == Uun(X) +x3- a(X)v(X)

and compute
DU (x) = (Dun|av) +x3- (D(av)|0).



36 P. BELLA, R.V. KOHN

Then
Ex° (ux’) — En(Un)
1
(5.1) < H/ Wsp ( (Duplav) +x3- (D(av)|0) ) —Wap (Dup|av) dx
Qx(~h/2,h/2)
1

<= x3 - DWap (Dup|av) : (D(av)|0) +x3-C|D(arv)[?dx
hJax(-h/2h/2)

< ChZ/Q ID(av)2dX < Chz/Qa(x’)z\Dv\er IDaPdX

whereC depends ol DAWsp || . We know thath? [, |D?un|? is bounded byCh
(see Remarkl4), and thus using boundednefsipfind

/ IDv[2dX gc/ ID2un |2 X
Q Q
we obtainh? [, a?|Dv|?dx < Ch. A similar estimate is true for the second term:
h2/ IDaf2dX < Ch2/ D2y 2dx < Ch
Q o}

Together we have obtained
EXP(U¥P) < En(un) +Ch< & +Ch

5.2 The lower bound in the three-dimensional setting
Our goal is to show a lower bound similar [a_{4.3):
5.2 min E3P(u) +BP(u) > & +ch
®-2) UEWLP(Qx (~h/2h/2)) (W +Bp(u) = o+
To first approximation, the proof df(3.2) consists of slgiour domain, applying
the two-dimensional lower bound on each slice, then patctiiam together. But
two new features require changes in the argument. Firsgribegy densityV in
2D was derived from the3 energy density\sp assuming the missing third com-
ponent is optimal. Therefore we need to estimate how muckhilet component
of Du differs from the optimal one, and how the optimal vector delseon the
first two components. As a second feature, whddeu2ed interpolation we need
to proceed differently by using a rigidity theorem.
Let h > 0 be fixed and consider a functieneWP(Q x (—h/2,h/2)). Then
for any fixedxs € (—h/2,h/2) we define

u(X) == 0(x,xz)
for X' € Q. Sinceug is the minimizer of the relaxed ener@y we have that
& = Eo(Uo) < Eo(U) < / W(Du) d¥ + B(u)
Q

and we set
R:= / W/(Du) d¥X + B(u) — & > 0.
Q



WRINKLES IN AN ANNULAR THIN FILM 37

Our initial goal is to show that iR is small thenDu is close to some function
(which is derived fronDug). We use Euler-Lagrange equation to replace boundary
termB by DW,; and obtain

/ W (Du) — Wi (DUo) — DW (Duo) (DU — Dug) d = R.
Q
Using notation of Lemm@&41.8 this can be rewritten as

/ W(Du) — W(Fg) — DW(Fo)(Du — Duo) d¥ = R,

whereFp(x) - n(X) = Dug(X) - n(x) andW (Fo(x)) =W (Dup(x)). We apply Lemma
F.3 to get

(5.3) / gp (dist(Du(x), SA3)Fo(X))) dX < CR
Q
Now we go back to the[3 body. We see that
h/2
3D 3D
E(0) + BP(0) — & = h/h/z/ W/(DG(X)P) dx+

h/2
/ /W DU dXI—I—B( ( ))—é"o dX3:Z|1—|-|2,
h/2

/ Du( x’)

10
whereP = (0 1) . LetZ(x) € R? be such that
00

Wsp (DU(X)P|Z (X)) = W(DG(x)P).
Then Lemm&AR implies
h/2
(5.4 b= [ [ 0n(1D800 — (DBIPIZ )
and by virtue of [BB)

Iy > h/hz/gp dist(DG(X)P, SA3)Fo(X'))) dx.

We want to extendry(x') € R®*2? into a 3x 3 matrix. To do that, we find a vector
V € R3 such that detF(x')|V) > 0 and
Wap (Fo(X)|V) = minWap (Fo(X)[€).
EcR3
Observe that the choice W¥fis unique. We define
(5.5) M(X) := (Fo(X)|V).
LemmdZAD then implies
dist((DG(x)P|{(x)), SAZ)M(x)) < Cdist(DIi(x)P, SA3)Fo(X)),
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and so
66 te=T [ [ gl ds((DRPIEX), SOEHMIX)) )

By adding [5.#) and{516), and by usirlg{4.5) (the triangkegumlity forg, with
factor 2) we obtain
C
ESL(0) + B3P (0) — & > = dist(Di(x), SO3)M(X))) dx.
PO+BPO - [ 6 (dis(DIX),SOIM(X))

Moreover, from the previous analysis (sSE€{#.17)) we knat/tthere exists a func-
tion 1 of x3 alone such that

1 2 N . -
b 80 (1300 T0x6) ~ (X)) ¢ b < CLER (@) + B(@) — o).
By adding those two inequalities we obtain

J(Q,0) < C(EP(0) + B (0) - ),
where forU C Q we define

1

JU,0) =
S h Jux(-h/2h/2)

dp (dist(Dl(x),SQ3)M(X))) dx

1

h Ux(—h/z,h/z)gp (16(x) = T(xg) — uo(X)]) dx.

We will obtain the lower bound from the following importaihma:

Lemma 5.2. Let h> 0 be sufficiently small and letbe such thatrg,ro+ 2h) C
(Rin,L). Then

‘J('Q{(rO» fo+ h)v ﬁ) >n (ro)h2>
where</ (a, ) is an annulus with radior < 8 andn = n(rp) > 0is a decreasing
function of p.

The proof of the lemma will be given in Sectibn1.3. The desimver bound
is an easy consequence. Indeed, forBRy ro < L —2hwe know by Lemm&%h]2
that

J(o (rg,ro+h),0) > n(ro)h?.
Adding such inequalities forp = Ry, + kh such thatRy, < ro < (Rp +L)/2—2h
we obtain that
K K
I(e/ (Rn, 1), 0) > ¥ n(ro(K))W? > N (Ra+1)/2) $ b2 >Ch
k=0 k=0
for someC > 0, whereK = (R —L)/2h— 2 and we used monotonicity of.

Besides proving Lemnia$.2 (see the next section), the pfdbédower bound
&2) is finished.
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5.3 Proof of Lemmal5.2

Proof. Let us first sketch the idea of the proof. We assumtes small energy
(i.e. J(0) is small), and want to compare it witlhy. We take a collection ahi~1/2
neighboring cubes in the hoop direction, each cube with Bidgsing a rigidity
theorem we show that i almost constant on each cube and doesn’t change much
between the cubes.

Sinceu'has small energy, we prove that ofted is larger tharDup in the hoop
direction. After integration in the hoop direction we obtdéhatu— up can not be
small in most of the cubes. On the other hamthaVing small energy implies that
{0 — up has to be small in thk? sense, contradicting the previous fact.

For better understanding we split our proof into severgiste
Step 1:Let us consider a part a¥ (ro, ro+ h) with the length approximatelyt$/2.

We set

k:=[h~Y?
and for a giverf € (0,2m) we define R cubes in the radial coordinates

Qi = (ro,ro+h)yx(8+io,0+(i+1)o) x (—h/2,h/2),
wherei =1,...,2k ando = h/ro. We denote by2 the union of those cubes and
set
7 :=h(2,0)+| 2| :/ gp (dist(Dii(x), SAB)M(X))) dx
2

+Z@gp(|ﬁ(x)—r(x3)—uo(%)|) dx-+ 2|
Step 2: We claim that_# > Ch*5 for some positiveC. To prove the claim, we
shall suppose that
(5.7) 7 =¢h3®,

and give a lower bound fa. SinceM is defined in terms afiy (see[5b)), we have
IDM(X)| < C and consequently

/Q gp (distDA(X), SA3)M,)) ck

gc/Q_ gp (dist(Di(x), SOB)M (X)) dx+C|Qi|h2,

whereM; := M(x;) with x; being a point irQ; (e.g. center 0€)). Using the rigidity
estimates of [1] (see alsb]16]) we obtain a rotatiyron each cub€; such that

(5.8) /Qgp(|Dﬁ(X)—RiMi|)dX§C/

and
k-1

> (R -Rua) <C/N7
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Using convexity ofgp, and Jensen’s inequality we get

_ a+pB ; _
(5.9) gp<|Ra |ZG+B+1|> _3ila gp<|;—a+1|)

Since the RHS in the previous relation is small, so is theragnt ofg, on the
LHS (in particular, it is smaller than 1), and so we can takeaseg root of both

sides to obtain
|Rs —Rq 11| < 4/C_#h3k=:6.
We also know

R€SO3), |M|<C, |n=1, |Mi—M; <Ckh |n(x)—n(y)| <Ckh

Therefore we can choose one rotat®n(e.g. amongdr;), a matrixM, (amongV;)
and a unit vecton;- such that for any’

< th73B71 < Ch0‘5.

(5.10) ‘R;I\/Iin(x’)l ~RM.nt

<C(5+kh).

Step 3:For j € {1,...,k} we have
(5.11) ( /Q 09 70x) —uo(x’)dx> _ ( /Q )~ T0x) - uo(x’)dx>
= [ (D)~ Duo(x)) () ¢ () x
- / [(DAG) — RM) () + (RMin()* ~RM.nt ) +
Dj
(RM.n2 — Duo(X)n(x) ") | 95(x) o

whereD; = Ui‘iiji and 0< ¢;(x) < his a weight coming from the integra-
tion (more precisely, ifQ; function ¢; is linear going from 0 tdh, ¢;(X') = hon
Qj+1,---,Qj+k-1, and then decays linearly fromto 0 in Qjn). We point out that
nt used in[501) means a unit vector in the orthoradial (hoaecton. The first
two parts of the last integral can be directly estimated @) and [5.10) using
convexity ofg, and Jensen’s inequality as [0{b.9):

(612) | [ (DG —RM)N(X)"g;(x) x| <Ch 7 H2D;[2

and

(5.13) /D (Ril\/hn()d)L - R*M*nj) ¢;(X)dx| <C|D;| (Sh-+KkH).

Step 4: In this step we show a lower bound for the remaining integral

/DJ. (RM.n! = Dug()n(x)" ) ¢ (x) dx
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using the fact thabug is “smaller” in the hoopf-) direction tharR,M.,. Arguing
as in the proof ofl(4.25) we see that for any unit planar vegtare have

IM.x| = [Duo(X)n(X)*| > Kk > O,

wherek depends monotonically only on the radial positioa X | (and approaches
0 asrg — L). Therefore (usingo := K (ro+ h))

/Dj (R*M*nj - Duo(x)n(x’)i) ¢;(x) dx

> ‘&Mmj/n 9;(X)dx

_ '/D DUo(X )n(x) ; (x') dx
> Mot [ 93(0¢)dx— [ [Duo()nee) ™| ¢ o
_ /Dj (IM.n| = [Puox)n(x)* ) 95X i
E/D_Koqb,-(mdxz koh|Dj|/2.

J

Step 5: Using [5.12) and{5.13) together with the last relation we fsem [5.11)
that

(5.14) ( /Q 09 70x) —uo(x’)dx> _ ( /Q )~ T0x) - uo(x’)dx> >
IDj|h(ko/2— & —kh) —Ch_#Y2|Dj|"/2.

From [&T) andd = /C_Zkh 3~/ _#h=35 < /¢, we see thako/2— & —kh>
Ko/4 > 0 for ¢ < CkZ and smalh.
To finish the argument we sufi(5]14) over 1,...,k to obtain

(5.15) CK2|h(ko/2— & —kh) < /3 |G(X) — T(x3) — Up(X)| dx+Chk_# 1/2|.2|Y/2,

where we have used thg®| and|D;| are comparable. Using the convexity gf
and Jensen’s inequality we have

[1809 = 100) o o < _r M2 .22,

2

and so after plugging the values &f|2|, andk into (51%) we see that
h3K0 < C (h1‘25+h1'75) /1/2 < Chl'25/1/2.

Hence we obtain
7 >Ckén*>  and  J(2,0) > Ck§h*>.
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Finally we cover the annulus/(ro,ro + h) with approximately 2roh~1/2 distinct
copies of2 to obtain

J(,ﬁzf(ro,ro—l-h) ) > r;(ro)h

wheren (ro) = Crokg. O

Appendix: Auxiliary lemmas

In this section we prove several lemmas which were usedquslji. Lemma
A2 and Lemmd_Ab were used in the proof of the lower bound & ttiree-
dimensional setting (Sectidn’b.2). Poincaré inequalignimalA®) was used in
the proof of the lower bound in the two-dimensional settiBgdtio4.R), Lemma
B3 and Remark’AJ4 were used in the proof of Lenima 4.8, and LefAd was
used in the definition oV (see [Z.5)).

Lemma A.1. Let Wyp be a stored energy function of an isotropic elastic material
with

Wap (F) =g(l1,12,9),
where J.=detF),C:=FTF, and
\]74/3
l1:= 3723 (C), lp:= 5 ((r(C))* —r(C?)).
If g satisfies
(A1) @(|1,|2,J) >0, @(|1,|2,J) >0
oly ol

for 11 >3, 1, > 3, and J> 0, then for any Me R3*? we have

minWsp(M[§) = min  Wap(M[),
EcR? ECRIMLE

where(M|&) denotes & x 3 matrix with first two columns identical with M and
the third columrg, and M_L & means the columns of M are perpendiculagtdf,
moreover

Jg Jg
a|1(|17|27‘J) al (|17|27‘])>0

forly > 3,1, > 3, and J> 0, the minimum of 4 (M|¢&) is attained only if ML &.

(A.2)

Proof. Isotropy of the material implies rotational invariance loé energy density
Wsp, and so without loss of generality we can assume that

M O
(A.3) M=[0 A].
0 0
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Therefore we want to minimize

)\1 0 x
Wep | O A2 y
0 0 z

among all possible,y,z. A simple calculation reveals that

J= )\1)\22,
(A.4) = (MA22) P2+ A2+ 8% +y2+ P,

lo= (MA2) P (ABNZ+ A2+ AZ2 + AR +A2x2).
Using the AM-GM inequality we see thdt > 3 andl, > 3 even ifx=y = 0.
Fixing z and varyingx andy the value of] stays constant wheredsand|, are
increasing functions of? andy?. Therefore[[All) implies thatkp has its minimal

value (for anyz fixed) if x =y = 0. In the casd{Al2) the conclusion follows by the
same reasoning. O

Lemma A.2. Let Wyp satisfy(@4) and @8). Then for any Mc R3*? there exists
a constant C> 0 such that
Wap (M[v) —W(M) =Whp (M|v) —Wap (M|§)
> Cgp(Iv—¢[) = Cap(|(M[v) = (M[E)]),
where§ = argminWsp (M| +).
Proof. If [v—&| is large, the conclusion follows from the growth conditi@a4).

Let us therefore assume that— | < K. As in the proof of the previous lemma
we may assumm satisfies[[AB). We write

=(xy2", £=(0,02),
whereé can be written in this form due to the previous lemma. We have
Wap (M|v) —Wsp (M([€) = (Wap (M|V) —Wap (M[W)) + (Wap (M|w) —Wap (M(<)),

where

w:=(0,0,2)T.
We estimate
Wsp (M|V) —Wap(M|W) = g(J,11,12) — g(J, 11, 12)
(A.5) = Dg (0,723 +y2), 37 4P (A2 + 22x%))
C(x®+y?),

wherel, l1, 1, are defined in[{A}4) and
= (MA2) P2 (A2 422+ 2),
o= (MA22) P (A2AZ+ A 22 +A32).
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We also have
A6) Wap (M|w) —Wap (M|&) = fap(A1,A2,2) — fap(A1,A2,2)
' = Ozafap(A1,42,{)(2—2)?/2 > C(z— 2%,

where we have used thafsp(A1,A2,Z) = 0 andD?fzp > 0 (see [ZK)). By
adding [A%) and{AJ) we obtain the desired inequality. O

Lemma A.3. Let the density function My satisfy 4) and Z8). For any unit
vector y € R3 and another vectoriye R3, |v;| > 1, we define

F :=argmin{Wsp (F) : F € R¥3,Fu; = vi,detF >0} .

Then there exists an orthonormal basiswp, us and orthogonal vectors;w,,vs
such that

Ifui =V, i = 1,2,3,
V2| = [va| = g(|va));

where dt) is a Lipschitz continuous function. Moreover, there efist C; =
Ci(v1) < Cy =Cy(v1) such that

(A8) Cigp (dist(c;, SQ3)F )) < Wap (G) — Wap (F) < C,dis?(G, SO3)F),
for any G satisfying Gu= vy, detG > 0 (function g, was defined iff4.4)).

(A7)

RemarkA.4. As a consequence df(A.8) we obtain a similar conditionVfor for
a given unit vecton € R? and another vectan € R® we have

Cigp(dist(G,SQ3)F)) <W(G) —W(F) < Cdist(G,SQ3)F),
whenGn=Fn=mandW(F)=min{W(H) : Hn=m}.

Proof of Lemm&ZAl3We first prove [[AY). Sincé\kp is frame-indifferent and
isotropic, we can assume WLOG that= e; andvy; = A1, A3 > 1. Then we
want to find all matrice§ that minimize

min{Wsp (F) : Fey = A1er }.

Let F be such a matrix. We see from LemmalA.1 that the first colunth afd the
third column ofF are perpendicular. Sindée; = A€y, this means thaf;3 = 0.
Since the second and third column are interchangeable r¢harfid second column
are also perpendicular, i.é7> = 0. By the same lemma we also have that the
second and third column &f are perpendicular. Therefore, up to a rotation which
fixes the first columnk- is diagonal:

A 0 O
F=10 A, 0].
0 0 A3
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We claim thatA, = A3. Indeed, strict convexity ofsp implies

fap(A1,A2,A3) + fap(A1,A3,A2)
2

Wap (F) = fap(A1,A2,A3) =
Ao+Asz Ax+ A3
2 72

(whereF’e; = A1€1), unlessA, = Az. Moreover, since

> fap(Aq, ) =Wap(F')

Az = argmin fap(Aq,t,t),
t>0

it follows that A, is a Lipschitz continuous function af;.
We observe thak; > A,. Indeed we will show that

(A.9) fap(A1,A1,A1) < fap(Ag,t,t)
for anyt > A;. We computﬂ
JALt1) = At2 > A3 = J(A1, A1, A1),
(A tt) = A3 43 4 242323 5 3= 13 (A1, Ap, Ag),
(A, t,t) = A; P31 227323 5 3= 15(A, A1, Ay),
where the two latter inequalities follow from the AM-GM ingality. Therefore
fort > A1 we have thatl()\l,t,t) > |1()\1,)\1,)\1), |2()\1,t,t) > |2()\1,)\1,)\1), and
J(A1,t,t) > J(A1,A1,A1), and so[(AD) follows from[{2]6).
To prove [AB), we fix the matri¥ (thereforeA; > A, are also fixed). It is

sufficient to show the lower bound and upper bound only&éor whichWsp (G) —
Wsp (F) is small:

(A.10)  Cudisf(G,SQ3)F) < Wsp(G) —Wap (F) < Codist(G, SO(3)F)

(the upper bound and the lower bound for “largé’follow from the growth as-
sumptions onfsp — see[[ZK)).

We start with the lower bound. As before, we can asséne diagonal with
entriesAy, A2,A3 = Ay, Let gy > 0> > 03 > 0 be singular values db. We first see
that

AM=Gn=tr(Ge®e) <o1-1= o071,

where the inequality follows from von Neumann’s Lemma (Lealf®), andG;,
denotes the upper left entry of mat® SinceWsp (G) depends only on the singu-
lar values ofG, we will try to estimate both sides df{A.8) in terms of theggifar
values ofF andG.

lSeeEZB) for definition ad, I1, andls.
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We start with estimating LHS of{A:10). We know
dis?(G,SQ3)F) = min tr((G—RF)"(G—RF
(G, SQ3)F) = min tr((G~RF)T(G-RF)

B T Ty T
=tr(G'G) +tr(F'F) ZRGngé)tr(RFG ).

We claim that mag.sqs tr (RFG') is equal to the sum of singular values of

FG'. To show this, we use the singular value decomposfi@! =UDV T, where

U,V € SO3) andD is a diagonal matrix (with the singular valuesfo®' as diag-

onal entries). Then {RFG") =tr (RUDVT) =tr (VTRUD) =tr(QD). SinceQis

a rotation, we have that(@QD) < tr (D), and the maximum is attained (fQr=1).
The sum of singular values &G' is by definition equal to

r ((FGTGFT)"?) = ((G76)"*F).

We writeF = (A1 — A2)e; ® €1 + A2l and obtain

tr((676)"*F) = (A~ 42) (VGTG)_+atr (VETG)

— (A= A) (\/GTG)11+)\2(01+ 0o+ 03).

We know thaty/GT G has eigenvaluees, g,, 03, and so #G' G) = 02 + 0% + 02.
Therefore we see that
(A.11)

dist(G,SQB)F) =(07 + 02+ 02) + AL+ A2+ A2)

—202(01+ 024 03) —2(A1 — A2)
=(01—A1)2 + (02— A2)%+ (03— A2)? + 2(A1 — Ap) (01— @),

wherea denotes

(A.12) a=(VGTG)11= (VG'Gey,e1).
We claim that
)\2
(A.13) a>-L
01

Indeed, we writeG =UDV, whereU,V € SQ(3) andD is a diagonal matrix with
entriesa;,i = 1,2, 3. We define a unit vector

X = (X1,X2,X3) :=Vey.

By virtue of (A.12) we get

3
a=(VGTGe,e) = (V' DVe, &) = (DVe,Vey) = leizai-
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We also know thaGe; = A1e1, and so

3
Ae; =UDVe =U <Zloixia> .
i=

In particular, sincéJ € SQ(3), we see that the norm of the vector on the RHS is
)\1, ie.

3
(A.14) XPa? = A2,
2,5
To summarize, we have
3
(A.15) a=Yxa,
2,
3 2 3 2 2 2
(A.16) c=1and co- = A1,
i;& i;& = A

To find the lower bound foo, we simply optimizezf’zlx,-zoi assuming [[AT6).
Using method of Lagrange multipliers we observe thagﬁ;rlxizoi to be minimal
onex; has to be zero. We see thgt_; x?a; is equal to:
)\12—|-0203 if X, =0, )\12—|-0103 if X, =0, )\12—|-0'10'2
02+ 03 01+ 03 01+ 02
Using conventioro; > g, > 03 and [A14) we see that; > A1 > 03. Since

if X3 =0.

A2+ 0103 A2+ 0,0 A4+ 0105 A2+ 010
i+ 003 _ALH+0203 oo 52 0ngM 0108 AL+ 010
01+ 03 Oy + 03 01+ 03 g1+ 02

2
the minimum of (&) is equal t81-2% . Finally, we observe thap? > A?
implies

—=A2<d?

Af-i— 0103 > Af

o1+03 ~ Op

We have proved{A13).
Now we are ready to finish the proof of the lower bound. By arai (A 11):
. )\2
dis?(G,SO3)F) < (01— A1)?+ (02— A2)°+ (03— A2)* +2(A1— A2) (‘71 - Fl> :
1

For the middle term i .{AJ0) we have:
Wap (G) —Wap (F) = fap(01,02,03) — fap(A1,A2,A2)

3
> glai fap(A1,A2,A2)(Gi — Ai) +C|(01, 02, 03) — (A1, Az, A2)|?
i=

3
= 01fap(A1,A2,A2) (01— A1) +C Z(Ui — )2,
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where we have used strict convexity &p (see [ZH)) and, fap(A1,A2,A2) =
03f3p(A1,A2,A2) = 0 (a consequence of the definition/f). Therefore, it remains
to show

2

A
(A.l?) 2()\1 —)\2) <O' — F11> < Cal f3D()\1,)\2,)\2) (0'1 — )\1)

Af

We observe that sincg; > A1, we have(a — ?:) < 2(01—A1). SinceAq, A, are

fixed andd; f3p > 0, (AI1) immediately follows (with constai@ depending on
A1).

We now turn to the proof of the upper bound. This is easy, simeehave
already done all the work. We know that

dis(G,SQ3)F) = (01— A1)? + (02— A2)% 4 (03— A2)? + 2(A1 — A2) (01— @)
> (01— M)+ (02— A2)% + (03— A2)? + 2(A1 — Ap) (01— A1),
where we have used < A;. This is true by[[A1b) and(A16):

3 3 12 44 1/2
a="Yx(x0)< z 2o? | =M
i; (X%0) (;x) (izl& .> 1

We also know

Wap (G) —Wap (F) = fap(01,02,03) — fap(A1,A2,A2)

3
< zldi fan(A1,A2,A2)(G — Ai) +C (01, 02, 03) — (A1, A2, A2)|?
i

3
= 01fap(A1,A2,A2) (01— A1) +C Zi(ai — )2,
i=

where we have used boundednessDéfsp (see [ZH)). To finish the proof, it
remains to observe that

01f3p(A1,A2,A2) (01— A1) < C(AL—A2)(01— A1)
holds trivially (with A1 > A, being fixed). g

Lemma A.5. Let FG € R®?, Leté € R3 satisfiesé | F, detF|&) > 0, and
|&| = I(F), and similarly let{ € R3 satisfies{ | G, det(G|{) > 0, |{| = I(G),

where [A) is a Lipschitz continuous function of singular values of Aeil there
exists constant C such that

dist((F|¢),SQ3)(G|{)) < Cdist(F,SQ3)G).
Proof. Without loss of generality we assume columng-dfe in thex-y plane, i.e.
F31 = F32=0. LetR € SQ(3) be such that
(A.18) dis{F,SQ3)G) = |[F —RG.
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We show thaR can be chosen such that columndR@lie in thex-y plane as well.
We know that (see the proof of LemmaA.3):
dis?(F,SQ3)G) = tr(FTF) + tr(GTG) - 2tr((FGTGFT)1/2) .

Sincekz; = F3p = 0, the RHS in the last relation does not change if we repface
by its first two rows. The last term is then equal (BT G)¥/2(FTF)/2), and we
obtain
disf(F,SQ3)G) = [|(GTG)Y? — (FTF)Y2||2.
Now let Se SQ(3) be such thatSG)31 = (SG)32 = 0. We want to compute
dist(F,SQ(2)SG),

where we treaF and SGas 2x 2 matrices (since both their third rows vanish).
Following the previous reasoning we obtain

dis?(F,SQ2)SG) = [|((SGTSGY? ~ (FTF)*?|* = ||(GTG)"2 — (FTF)¥?| 1%

We have shown that diF, SQ(2)SG = dist(F,SQ3)G), i.e. thatR can be
chosen such th&Glies in thexy plane.
We have

disf((F|€),SQ3)(G|¢)) < |(F|&) - R(G[{)||?
= [|[F —RG|*+ & —R{|> = dist(F,SQ3)G) + & —R{|*

SinceF andRGlie in thex-y plane, both§ andR{ are perpendicular to this plane.
It is straightforward but tedious to show that in fécandR{ have the same ori-
entation. Then we just use the fact thé&t = | (F) and|{| = |(G) together with
Lipschitz continuity ofl to obtain

|€ —R{| = |I(F) - I(RG)| < C|F —RG = Cdist(F,SQ3)G).
We are done sinc€(A18) and the previous relation imply

dis?((F|€),SQ3)(G|{)) < |(F|€) — R(G|7)[2
= |F —RG?+|& —RZ|?> < Cdisf(F,SQ3)).
O

Lemma A.6 (Poincaré inequality)Let g, be as in@34)with 1 < p < 2. Then there
exists a constant @, p) such that for every € WP(U) there exists a constant
and

[, opllv=ax=c [ g(Ov)
Proof. We first observe that sincgy(t) < %min(tp,tz) andgp is convex, there
existsC such that
(A.19) Op(S+1t) <C(sP+1t%), for everyst > 0.
In the proof we will use the following truncation result peavin [16]:
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Proposition(Truncation) Supposé) C R"is a bounded Lipschitz domain. Then
there exists a consta@{U, p) with the following property: For eachc W1P(U)
and eachA > 0, there exist¥ : U — R such that

(i) [IBV]|= <CA

(i) €U V00 AV} < 5 ey IOV ax
("') HDV_ DVHEp(u) < Cf{er:|Dv(x)\>)\} |DV|de'

Let us denote
K= /U gp(|0V]) dx.
By the proposition withA = 1 there exist& € W% such thai0V| < C and

IOv—0OV||P <C |Ov|Pdx < CK.
{|0Ov|>1}

The standard Poincaré inequality implies

(A.20) /\V—V\zdx§C/|[lV|2dx§C</ |DV|2dx+/ |EIV|2dx>
U u {vAV} {v=V}

§C|{V7£V}|+C/ IOV |2dx < CK.
{v=V}
We also get
(A.21) /|V—v—a|pdx§C/ |0V — Ov|Pdx < CK.
U U
Using [A19), (A20), and{A21) we obtain
/gp(|v—(a—|—\7)|)dx§C</ |v—\7|2dx+/ |V—v—a|pdx> <CK.
U U U

O
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