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Abstract. We consider a disk-shaped thin elastic sheet bonded to a compliant sphere.
(Our sheet can slip along the sphere; the bonding controls only its normal displacement.)
If the bonding is stiff (but not too stiff), the geometry of the sphere makes the sheet wrin-
kle to avoid azimuthal compression. The total energy of this system is the elastic energy
of the sheet plus a (Winkler-type) substrate energy. Treating the thickness of the sheet h
as a small parameter, we determine the leading-order behavior of the energy as h tends to
zero, and give (almost matching) upper and lower bounds for the next-order correction.
Our analysis of the leading-order behavior determines the macroscopic deformation of
the sheet; in particular it determines the extent of the wrinkled region, and predicts the
(nontrivial) radial strain of the sheet. The leading-order behavior also provides insight
about the length scale of the wrinkling, showing that it must be approximately indepen-
dent of the distance r from the center of the sheet (so that the number of wrinkles must
increase with r). Our results on the next-order correction provide insight about how the
wrinkling pattern should vary with r. Roughly speaking, they suggest that the length
scale of wrinkling should not be exactly constant – rather, it should vary a bit, so that the
number of wrinkles at radius r can be approximately piecewise constant in its dependence
on r, taking values that are integer multiples of h−a with a ≈ 1/2.

1. Introduction

We model the wrinkling of a disk-shaped elastic sheet bonded to a compliant sphere, as
shown schematically in Figure 1. The source of the wrinkling is easy to understand: if we
assume for a moment that the sheet is inextensible in the radial direction and that the center
of the disk is attached to the north pole, then each circle |x| = r is approximately mapped
to the circle Sr on the sphere at distance r from the north pole. Since the arclength of Sr
is less than 2πr, circles |x| = r must wrinkle to avoid (large) compression. Roughly: the
typical slope of the wrinkling is determined by the geometry of the sphere (the contrast
between 2πr and |Sr|), while the wavelength is determined by competition between the
bending energy (which prefers coarse, large-amplitude wrinkling) and the substrate energy
(which prefers small deformations, hence fine, low-amplitude wrinkling).

The preceding account is oversimplified. Our sheet is not inextensible, and we permit it
to slip along the sphere. By stretching a bit in the radial direction the sheet can reduce
the energetic cost of wrinkling, since the circle |x| = r is then approximately mapped
to a circle on the sphere slightly longer than Sr. As we’ll explain in due course, the
macroscopic deformation of our sheet is determined by the competition between membrane
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effects (which prefer less stretching) and the energetic cost of wrinkling (which prefers more
stretching).

Figure 1. Circular sheet on a ball

The behavior of thin elastic sheets experiencing
compression due to geometric effects has recently re-
ceived a lot of attention. Without attempting a com-
prehensive review, let us mention studies concerning
a sheet on a deformable sphere [11, 16, 17]; indenta-
tion of a pressurized ball [20]; indentation of a float-
ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long

wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local λ-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the
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leading order term in the energy, minimization of the effective energy determines (at least
approximately) the length scale of wrinkling at radius r. Our problem has this character
because we consider a stiff elastic substrate, quite different in character from the liquid
substrate considered in [21] and stiffer than the relatively compliant Winkler foundations
considered in [11, 16, 20, 10] (see Section 2 for more about this).

As already mentioned, the minimum of our effective functional determines the macro-
scopic deformation and the limiting energy as the thickness h → 0. But more: it gives
a lower bound for the energy Eh when h is positive. (For the precise definition of Eh
see (1) below.) The amount by which Eh exceeds the minimum of the effective functional
is informative; therefore the estimation of this excess energy is a major focus of our work.
Our main mathematical result, Theorem 1, provides upper and lower bounds on the excess
energy, showing (very roughly speaking) that it is approximately linear in h.

Our estimate of the excess energy has implications for the fine-scale structure of the
wrinkling. This is because Eh includes the cost of changing the wrinkling pattern as a
function of the distance r from the center of the sheet, whereas the effective functional
ignores this cost. Indeed, the effective functional estimates the length scale of wrinkling by
balancing the azimuthal bending against the substrate term; this leads to the conclusion
(found also in [11]) that the scale of the wrinkling should be approximately proportional
to h (independent of r). It follows that the number of wrinkles at |x| = r should increase
approximately linearly with r. Our analysis of the upper bound on the excess energy shows
that the length scale of wrinkling should not be exactly constant – rather, it should vary
a bit, so that the number of wrinkles at radius r can be approximately piecewise constant
in its dependence on r, taking values that are integer multiples of h−a with a ≈ 1/2.

The picture that emerges has a lot of symmetry: the macroscopic deformation (de-
termined by minimizing the effective energy) involves radial tension, and the number of
wrinkles at radius r is an approximately (but not exactly) linear function of r. This sym-
metry is a conclusion, not a hypothesis, of our analysis. It is of course crucial that our sheet
is disk-shaped, and that the sphere is a body of revolution around the axis determined by
the center of the sheet.

It is not a new idea that energy scaling laws can be used to identify the wrinkled region
and to explain the local length scale of wrinkling. The best-understood examples are
problems where the geometry is simple (typically flat) and the direction of wrinkling is
fixed by some source of uniaxial tension (e.g. a stretched annular sheet [4, 2] or a hanging
drape [3]). Problems involving biaxial compression are less well-understood, though there
has been progress in special cases (e.g. the shape of a blister in a compressed thin film [5,
13, 7], and the herringbone pattern seen in a compressed thin film bonded to compliant
substrate [14]). The problem considered here involves compression, but its geometry is
rather controlled due to the presence of the substrate and the use of von Kármán theory.

The paper is organized as follows. Section 2 presents our model, states our main math-
ematical results (Theorem 1), and provides further discussion about their implications.
Sections 3 and 4 prove the lower-bound half of Theorem 1. The argument relies on certain
properties of the minimizers of some one-dimensional calculus of variations problems closely
related to our effective functional. Section 3 states the required properties in Proposition 3.1
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then uses them to prove the bound, while Section 4 provides the proof of Proposition 3.1.
Finally, Section 5 proves the upper-bound half of Theorem 1. This is done by identifying
an explicit wrinkling pattern (varying appropriately with r) with relatively small excess
energy. While the pattern given there is not the energy minimizer (we do not solve an
Euler-Lagrange equation), it provides an indication about how a wrinkling pattern should
look in order to achieve the minimum energy scaling law.

2. The model and the main results

We consider a thin elastic sheet of circular shape with thickness h > 0 and radius r0 > 0,
which sits on an elastic ball of radius R � r0. The energy of the system has three terms:
the membrane energy of the sheet, which measures deviation from the deformation being
an isometry; the bending energy of the sheet, which penalizes curvature; and a substrate
energy, which prefers the sheet to be sphere-shaped. For the membrane term we use a
Föppl-von Kármán model (taking Poisson’s ratio equal to zero for simplicity); for the
substrate term we use a Winkler foundation. Focusing on the energy per unit thickness
and normalizing by the Young’s modulus of the sheet, our elastic energy functional is

Eh(u, ξ) :=

ˆ
Ω

∣∣∣∣e(u) +
1

2
∇ξ ⊗∇ξ

∣∣∣∣2 + h2|∇∇ξ|2 dx+ αsh
−2

ˆ
Ω

∣∣∣∣ξ +
|x|2

2R

∣∣∣∣2 dx. (1)

Here Ω denotes the disk of radius r0, centered at the origin; u and ξ are the in-plane and
out-of-plane displacements of the sheet, and e(u) = (∇u + (∇u)T )/2 denotes the linear
strain associated with u. The nondimensional constant αs (which we assume is strictly
positive) determines the relative stiffness of the substrate compared to that of the film.
Since the substrate term involves only ξ and not u, our model requires that the sheet
conform to the sphere, but permits it to slide along the sphere. (The standard Föppl-von
Kármán bending term would be 1

12 |∇∇ξ|
2; we have dropped the factor 1/12 for notational

simplicity. This simplification does not change the problem significantly, though it affects
the precise form of the effective functional.)

Our energy (1) is very similar to the one considered by Hohlfeld and Davidovitch in [11].
There are, however, two significant differences: (1) their energy has an additional term,
representing surface tension, which induces a state of (small) radial tension; (2) they focus
on the limit of “asymptotic isometry”, which is achieved when both the surface tension and
our αs tend to 0. Our situation is different, because we take αs to be nonzero (and fixed) as
h→ 0. As a result, our sheet does not achieve asymptotic isometry (despite the absence of
surface tension); rather, it is in a state of radial tension. To make the comparison with [11]

more explicit: their substrate term is K
Efh

´
Ω

∣∣ξ + |x|2
2R

∣∣2 dx – the same as ours except that

coefficient is K
Efh

instead of αsh
−2. (Here Ef is the elastic modulus of the sheet and K

is a constant determinicng the stiffness of their substrate.) Thus, their analysis (sending
h→ 0 while holding K fixed) corresponds, in our notation, to considering αs = K

Ef
h. This

is not the regime we consider; rather, our αs is fixed and positive as h→ 0.
We choose to work in dimensional variables: since u, ξ, and h have the dimensions

of length, our energy (1) has dimension length2. However the problem would not be
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significantly different if we worked in nondimensional variables, replacing x by x/R, etc.
The nondimensional version of the energy looks the same as (1) except that the domain
is a ball of radius r0/R, the factor in front of |∇∇ξ|2 is (h/R)2, and the substrate term is

αs(h/R)−2
´ ∣∣ξ + |x|2

2

∣∣2 dx.
This model can be criticized on the ground that the Winkler substrate term is somewhat

idealized. A more realistic model of a film bonded to a uniform elastic ball would replace
our Winkler term with a nonlocal expression involving the H1/2 norm of the surface dis-
placement (see for example [14] or Section 3 of [1]). This suggests replacing our Winkler
term by

αsh
−1

∥∥∥∥ξ(·) +
| · |2

2R

∥∥∥∥2

H1/2(Ω)

(2)

(which scales once again like length2). In fact our analysis of the lower bound would
also work for this nonlocal substrate term. However our analysis of the upper bound
requires estimating the energy of an explicitly-given deformation, which would be much
more difficult for a nonlocal model. Moreover the use of (2) would not eliminate another
key idealization, namely that the sheet is free to slip along the substrate. In addition, our
goal is to consider a thought-experiment not a physical experiment: how does geometry
induce wrinkling, when a thin elastic sheet is required to conform to a sphere? With these
considerations in mind, we take the view that the Winkler model used in (1) is appropriate
for our purposes.

Figure 2. The graph of
Wrel(η), superimposed on the
parabola η2. In the re-
gion corresponding to wrin-
kling Wrel(η) is linear; for val-
ues of η corresponding to an
unwrinkled state, Wrel(η) =
η2.

In fact, Winkler-type substrate terms have been used to
model many experiments. In [11, 16, 20, 10] (see also [21])
such a term arises from the gravitational potential of the
fluid below the sheet. There is, however, an important dif-
ference: in that work the prefactor scales like h−1, whereas
in (1) it scales like h−2. By considering one-dimensional
examples, one sees that in our setting the cost of wrinkling
(determined by optimizing the length scale, based on com-
petition between the bending and substrate terms) is O(1)
(half way between h2 and h−2); this is why it contributes
to the leading-order energy. In [11, 16, 20, 10], by contrast,
the different scaling makes the cost of wrinkling o(1) (so it
is subdominant).

We turn now to a discussion of our results. They involve
(1) identification of an effective functional F0, whose mini-
mum determines the radial strain in the sheet, the approx-
imate length scale of wrinkling, and the limiting behavior
of the minimum elastic energy (minEh) as h→ 0; and (2)

upper and lower bounds for the excess energy, defined as the difference between minEh
and minF0.

To describe the effective functional we must first discuss the energetic cost of wrinkling.
As explained in the introduction, wrinkling is a way for a circle |x| = r to fit into less
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space. We shall show that the elastic cost of such a circle “shrinking by amount −η” is
well-approximated by Wrel(η), where

Wrel(η) :=

{
η2 if η ≥ −2α

1/2
s ,

−4α
1
2
s (α

1
2
s + η) if η ≤ −2α

1/2
s .

(3)

More precisely, Wrel(η) estimates (with very small error) the cost of fitting a circle of length
1− η into a unit interval. If η > 0 (or slightly negative), it is optimal to deform the curve
uniformly in plane; in this regime the cost is entirely membrane energy and Wrel(η) = η2.
However if η is negative enough, it is better to deform the curve out-of-plane (to waste
arclength by wrinkling so to speak); in this regime the cost is obtained by optimizing the
length scale of the wrinkling, and the resulting formula is linear in η. The function Wrel(η)
is continuously differentiable, though its second derivative is discontinuous at the boundary
between the two regimes (see Figure 2).

As noted early in the Introduction, we expect the sheet to be in a state of radial tension,
since stretching a bit in the radial direction reduces the energetic cost of wrinkling. The
effective functional F0 captures this effect, by keeping (only) the energy due to radial
stretching and our estimate for the cost of wrinkling:

F0(v̄) :=

ˆ r0

0

[(
v̄′ +

r2

2R2

)2

+Wrel(v̄/r)

]
r dr. (4)

Here v̄ is a real-valued function of one variable (r = |x|), constrained by the boundary
condition v̄(0) = 0. We shall show that minimization of this one-dimensional variational
problem provides a good estimate for the radial deformation of the sheet. In addition, it
provides a lot of information about the length scale of the wrinkling at radius r (via the
analysis that led to Wrel).

Assuming that the sheet actually wrinkles (i.e. assuming that the excess length of the
outer circles is large enough to induce wrinkling rather than compression), the cost of
changing the length scale of wrinkling from circle to circle does not enter the leading-order
energy; rather, it contributes to the principal correction (the excess energy). Since we are
interested in how the wrinkling pattern changes with r, it is crucial to understand the
principal correction. In fact it seems to be of order h (more precisely: we have a lower
bound that is linear in h, and an upper bound that is almost linear in h).

Our main mathematical result is the following characterization of the leading-order en-
ergy and the principal correction:

Theorem 1. Assume αs ∈ (0, 2−8( r0R )4), and let ε be the excess energy, defined by

ε := inf
u,ξ
Eh(u, ξ)− min

v̄(0)=0
F0(v̄).

Then there exist constants h0 > 0, c0 > 0, and c1 < ∞, all depending on αs, r0, and R,
such that for any h ∈ (0, h0) the excess energy ε satisfies

c0h ≤ ε ≤ κ
(

1

h

)
h,
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where the correction κ(t) := exp
(
c1 (log t)1/2 log

(
log t

))
grows slower than tα for any

α > 0.

Since the minimum of the effective functional gives the leading-order elastic energy as
h → 0, it is important to note that its minimizer can be made entirely explicit. In fact,
assuming as in Theorem 1 that αs < 2−8( r0R )4 and using the Euler-Lagrange equation for
F0, it is straightforward to compute that

arg min
v̄(0)=0

F0 = v̄0(r) :=


−3
16

r3

R2 +

(
2α

1
2
s (r0/rw − 1) + 1

16
r2w
R2

)
r r ∈ (0, rw)

−2α
1
2
s r − 1

6

(
r3−r3w
R2

)
+ 2α

1
2
s r0 log

(
r
rw

)
r ∈ (rw, r0),

(5)

with rw := (16α
1
2
s r0R

2)
1
3 . The first interval (0, rw) in (5) corresponds to the unwrinkled

region, while the second interval (rw, r0) corresponds to the wrinkled region. The condition
αs < 2−8( r0R )4 is equivalent to rw < r0, i.e. it ensures that the wrinkled region is nontrivial.

To explain the relationship between our effective functional F0 and the elastic energy
Eh, we note that F0 is closely related to the functional Fh, defined for (v̄, w̄) : (0, r0)→ R
by

Fh(v̄, w̄) :=

ˆ r0

0

[(
v̄′ +

1

2
(
r

R
− w̄′)2

)2

+ αsh
−2|w̄|2 + h2

∣∣∣∣w̄′′ − 1

R

∣∣∣∣2 +Wrel(v̄/r)

]
r dr. (6)

Indeed, the term αsh
−2|w̄|2 prefers w̄ = 0, and Fh(v̄, 0) differs from F0(v̄) by a term that’s

O(h2). This rather formal calculation will be justified by Proposition 3.1, which shows
(among other things) that |minF0 − minFh| ≤ Ch2. Thus (by the triangle inequality)
we can replace minF0 by minFh in the definition of the excess energy. The functional
Fh, in turn, is a lower bound for the elastic energy. This will be explained in Section 3;
briefly, it follows from Plancherel’s formula (v̄ represents the azimuthal average of the radial
displacement, while w̄ represents the azimuthal average of ξ+ |x|2/2R). Incidentally, when

wrinkling is not expected (i.e. if the minimizer (v̄h, w̄h) of Fh satisfies v̄h ≥ −2α1/2r for
r ∈ (0, r0)), the arguments in Section 3 show that the radial extension of (v̄h, w̄h) minimizes
Eh, so that minEh = minFh.

To explain how the minimizer of the effective functional provides information about
the length scale of wrinkling we must say more about our analysis of energetic cost of
wrinkling (the calculation behind Wrel, defined by (3)). Its starting point is an expression
for

Wr = azimuthal strain + substrate energy + azimuthal bending energy

integrated over the circle |x| = r (for the precise definition see (12)). It depends not only
on η (the argument of Wrel) but also on the normal displacement of the sheet (at radius r),
viewed as a function of θ. The formula (3) is obtained by optimizing the displacement. But
this calculation gives more than just the optimum; in particular, it reveals the extra energy
Wr −Wrel associated with a non-optimal choice of the wrinkling. The exact expression
is (20), but the main point is this: if ak(r) is the kth Fourier coefficient of ξ(r, ·) then
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Wr −Wrel is at least ∑
k 6=0

a2
k

(
k

r

)2(h|k|
r
− α

1
2
s

r

|k|h

)2

.

This suggests wrinkling with frequency k such that h|k|
r = α

1/2
s

r
|k|h , i.e. |k| = α

1/4
s r/h,

a choice that makes the length scale of wrinkling independent of r and proportional to
h. (Essentially the same calculation can be found in [11].) Our conclusions about the
length scale of wrinkling are not a surprise. Indeed, since this length scale is set by the
competition between the bending and substrate terms, it should not depend on r. Since
the wrinkles are arranged radially, it follows that the number per circle (the wavenumber
|k|) should increase linearly with r.

The preceding calculation considers each circle separately. But we have already men-
tioned that Eh is strictly above the minimum of F0, because the radial variation of the
wrinkling pattern costs additional (“excess”) energy, whose magnitude is at least of order
h. So our identification of an “optimal” k should not be taken literally. Rather, we expect

a wrinkling pattern such that Wr −Wrel is of order h. Thus: we expect that |hkr −α
1/2
s

r
kh |

should be at most of order h1/2 on the support of ak.
In Section 5 we provide an explicit wrinkling pattern whose excess energy is approxi-

mately linear in h. The observation in the last paragraph – that the active k at radius r can

be a certain distance from α
1/4
s r/h – turns out to be crucial. Since changing the wrinkling

pattern costs elastic energy, the successful construction avoids changing it too often. Very
roughly speaking, the active k is a function of r which approximates the linear function

α
1/4
s r/h but takes only values that are integer multiples of h−a with a ≈ 1/2. An account

of why such a construction seems necessary is provided at the beginning of Section 5.
One feature of our story is a little bit surprising. A wrinkled surface resists curvature in

the direction parallel to the wrinkles. In some recent studies of wrinkling this effect plays
a crucial role in determining the local length scale [16, 18]. Our problem is different from
the ones in those studies; the key differences (as noted earlier) are that (1) the coefficient
of our substrate term scales like αsh

−2 with αs fixed and positive as h→ 0, and therefore
(2) the leading-order behavior in our setting is not obtained from tension-field theory or
a relaxed problem, but rather by our effective functional. It is nevertheless natural to
wonder at what order the effect of curvature is felt as h → 0. Since our upper and lower
bounds on the leading-order correction (the scaling of minEh −minF0 with respect to h)
do not match, our results are consistent with the possibility that curvature effects might
play a role at this order. As for the length scale of wrinkling: while our results show that
it is approximately constant (this is required to get the correct leading-order behavior),
its small deviations from constancy might be influenced by effects that do not enter our
analysis, such as the extra cost of wrinkling in a curved environment.

3. The lower bound

In the rest of the paper . will stand for ≤ C, where C > 0 is a generic constant
depending on αs, r0, R. (The implicit constant is often dimensional.)
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The radial symmetry of the domain Ω and of the substrate allows for convenient repre-
sentation of the energy (1) in the radial coordinates (r, θ):

Eh(u, ξ) =

ˆ r0

0

(ˆ 2π

0

∣∣∣∣∂rur +
(∂rξ)

2

2

∣∣∣∣2+

∣∣∣∣∂θuθr +
ur
r

+
(∂θξ)

2

2r2

∣∣∣∣2
+
h2

r4
|∂θθξ|2 + h2|∂rrξ|2 +

αs
h2

∣∣∣∣ξ +
r2

2R

∣∣∣∣2 dθ

)
r dr (7)

+

ˆ r0

0

(ˆ 2π

0
2

∣∣∣∣ 1

2r
∂θur +

1

2
∂ruθ −

1

2r
uθ +

1

2r
∂rξ∂θξ

∣∣∣∣2+
2h2

r2
|∂θrξ|2 dθ

)
r dr.

Motivated by the fact that in thin sheets (i.e. h � 1 and so αsh
−2 � 1) the quantity

ξ + |x|2
2R should be very small, instead of ξ we consider w defined by

w(r, θ) = ξ(r, θ) +
r2

2R
.

Since for any f ∈ L2(0, 2π) we have

 2π

0
|f |2 = |f̄ |2 +

 2π

0
|f − f̄ |2, (8)

where f̄ =
ffl 2π

0 f , we see that for ūr(r) :=
ffl 2π

0 ur(r, θ) dθ we have

 2π

0

∣∣∣∣∂θuθr +
ur
r

+
(∂θw)2

2r2

∣∣∣∣2 dθ =

∣∣∣∣ ūrr +

 2π

0

(∂θw)2

2r2
dθ

∣∣∣∣2
+

 2π

0

∣∣∣∣∂θuθr +
ur
r

+
(∂θw)2

2r2
− ūr

r
−
 2π

0

(∂θw)2

2r2
dθ

∣∣∣∣2 dθ.

(9)

Defining w̄(r) :=
ffl 2π

0 w(r, θ) dθ, we use definition of w and (8) twice to write

 2π

0

∣∣∣∣∂rur +
(∂rξ)

2

2

∣∣∣∣2 dθ =

∣∣∣∣∂rūr +
1

2

( r
R
− ∂rw̄

)2
+

 2π

0
|∂r(w̄ − w)|2 dθ

∣∣∣∣2
+

 2π

0

∣∣∣∣∂r(ur − ūr) +
(∂rξ)

2

2
−
 2π

0

(∂rξ)
2

2
dθ

∣∣∣∣2 dθ.

(10)

Plugging (9) and (10) into (7) we get that

Eh(u, ξ)

=

ˆ r0

0

(∣∣∣∣∂rūr +
1

2

( r
R
− ∂rw̄

)2
+B(r)

∣∣∣∣2+Wr

( ūr
r
, w(r, ·)

)
+
αs
h2
|w̄|2 + h2

∣∣∣∣∂rrw̄ − 1

R

∣∣∣∣2)r dr

+Rh(u, ξ),
(11)
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where B(r) :=
ffl 2π

0 |∂r(w̄ − w)|2 dθ,

Wr(η, ξ) :=

∣∣∣∣η +

 2π

0

1

2r2
(∂θξ)

2 dθ

∣∣∣∣2+h2r−4

 2π

0
|∂θθξ|2 dθ + αsh

−2

 2π

0

∣∣∣∣ξ −  2π

0
ξ

∣∣∣∣2 dθ,

(12)
and

Rh(u, ξ) =

ˆ r0

0

 2π

0

∣∣∣∣∂r(ur − ūr) +
(∂rξ)

2

2
−
 2π

0

(∂rξ)
2

2

∣∣∣∣2 dθ r dr

+

ˆ r0

0

 2π

0

∣∣∣∣∂θuθr +
ur
r

+
(∂θw)2

2r2
− ūr

r
−
 2π

0

(∂θw)2

2r2

∣∣∣∣2 dθ r dr

+

ˆ r0

0

( 2π

0

1

2

∣∣∣∣1r ∂θur+r∂r(uθr )+
1

r
∂rξ∂θξ

∣∣∣∣2+h2|∂rr(w − w̄)|2+
2h2

r2
|∂θrξ|2 dθ

)
r dr.

(13)
To show that ε ≥ c0h, we need to gather some properties of the functionals Fh:

Proposition 3.1. Under the condition αs < 2−8(r0/R)4, the functional Fh, defined in (6),
admits a unique minimizer (v̄h, w̄h). Moreover, denoting σh(r) := v̄′h + 1

2( rR − w̄
′
h)2, there

exists C = C(αs, r0, R) such that

|F0(v̄0)− Fh(v̄h, w̄h)| ≤ Ch2, (14)ˆ r0

0
w̄2
hr dr ≤ Ch4,

ˆ r0

0
w̄′2h r dr ≤ Ch2,

ˆ r0

0
|v̄h − v̄0|2r dr ≤ Ch2,

σh(r) = 4α1/2
s (r0/r − 1) for r ∈ ((2rw + r0)/3, r0),

(15)

where rw = (16α
1
2
s r0R

2)
1
3 and v̄0 is defined in (5). Finally, for any non-negative B ∈

L1(0, r0) and any (v̄, w̄) such that

e :=

ˆ r0

0

[(
v̄′+

1

2

( r
R
− w̄′

)2
+B

)2

+αsh
−2|w̄|2+h2

∣∣∣∣w̄′′−1

R

∣∣∣∣2+Wrel(v̄/r)

]
r dr−Fh(v̄h, w̄h) ≤ 1,

we have ˆ r0

0

(
2σh(r)B(r) + (v̄ − v̄h)2

+

)
r dr ≤ Ce. (16)

The proof of Proposition 3.1 will be given in Section 4. Since Rh ≥ 0, relation (11) and
the fact Wr(η, ξ) ≥Wrel(η), together with (16) applied with v̄ := ūr imply a lower bound

inf
u,ξ

ˆ r0

0

(
2σh(r)B(r) +Wr

( ūr
r
, w(r, ·)

)
−Wrel

( ūr
r

)
+ (ūr − v̄h)2

+

)
r dr

. inf
u,ξ
Eh(u, ξ)− Fh(v̄h, w̄h),

which using (14) can be postprocessed into

inf
u,ξ

ˆ r0

0

(
2σh(r)B(r)+Wr

( ūr
r
, w(r, ·)

)
−Wrel

( ūr
r

)
+(ūr − v̄h)2

+

)
r dr ≤ C

(
ε+ h2

)
, (17)
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where we recall that ε = infu,ξ Eh(u, ξ)−F0(v̄0) and B(r) =
ffl 2π

0 |∂r(w̄−w)|2 dθ. To obtain
the desired lower bound for the left-hand side in (17), for r ∈ (0, r0) let {ak(r)}k∈Z be the
Fourier coefficients of w(r, ·). To simplify notation, we will drop the r-dependence in ak(r).
Then

B(r) =
∑
k 6=0

(∂rak)
2 ,

Wr(η, w(r, ·)) =

∣∣∣∣η +
1

2r2

∑
k∈Z

a2
kk

2

∣∣∣∣2 +
∑

k∈Z\{0}

a2
kk

2r−2

((
kh

r

)2

+ αs

(
kh

r

)−2)
.

The lower bound ε ≥ c0h will be a consequence of the following lemma:

Lemma 3.1. Let δ > 0, and let %0, %1 ∈ (0, r0) be such that %0 < %1 <
√

2%0 and

ūr(%i)

%i
≤ −2α

1
2
s − δ, i = 0, 1. (18)

Then we have a lower bound of the form

1∑
i=0

(
Wr

(
ūr(%i)

%i
, w

)
−Wrel

(
ūr(%i)

%i

))
+

 %1

%0

B(r) dr

≥ min

(
δ2

4
,
δ

8

(
l

%0

)2

α
1
2
s ,
δ

2

(
32

α
1/2
s

(%0

l

)2
+ 8α1/2

s

(
l

h

)2)−1)
, (19)

where l := %1 − %0.

Condition (18) expresses the fact that the sheet is expected to wrinkle at circles r =
%i, i = 0, 1.

Proof of Lemma 3.1. Recall that l = %1 − %0 and let ki := α
1/4
s %i/h. As explained in

Section 2, ki is the optimal wrinkling wavenumber at position %i, i.e. the one which
minimizes the energetic cost of wrinkling. By reorganizing the definition of Wr we get

Wr(η, w(r, ·)) =

∣∣∣∣η +
1

2
σ

∣∣∣∣2 + 2α
1
2
s σ +

∑
k 6=0

a2
k

(
k

r

)2(h|k|
r
− α

1
2
s

r

|k|h

)2

,

where σ(r) :=
ffl 2π

0
1
r2
|∂θξ|2 dθ =

∑
k 6=0 a

2
k(
k
r )2 ≥ 0 represents the arclength wasted by

wrinkling. Since in all the quantities only the modulus of k appears, to simplify the notation

we assume that ak = 0 for k < 0. From the definition of Wrel we get for η < −2α
1/2
s the

following identity:

Wr(η, w(r, ·))−Wrel(η) =
1

4

∣∣∣∣σ + 2

(
η + 2α

1
2
s

)∣∣∣∣2 +
∑
k>0

a2
k

(
k

r

)2(hk
r
− α

1
2
s
r

kh

)2

. (20)

If either σ(%0) ≤ δ or σ(%1) ≤ δ, then the conclusion of the lemma follows easily. Indeed,

in this case we can write (18) as η + 2α
1/2
s ≤ −δ with η = ūr(ρi)/ρi for i = 0 or i = 1; it



12 PETER BELLA AND ROBERT V. KOHN

follows that 1
4 |σ + 2(η + 2α

1
2
s )|2 ≥ 1

4δ
2, which implies the conclusion of the lemma. So we

may assume for the rest of the proof that σ(%0) ≥ δ and σ(%1) ≥ δ.
Let K := k1−k0

2 = l
2
α
1/4
s
h . We consider two cases. If the energy at %0 is not concentrated

near the optimal wavenumber k0, meaning∑
|k−k0|>K

a2
k

(
k

%0

)2

≥ 1

2
σ(%0), (21)

then by (20)

W%0

(
ūr(%0)

%0
, w(%0, ·)

)
−Wrel

(
ūr(%0)

%0

)
≥

∑
|k−k0|>K

a2
k

(
k

%0

)2(hk
%0
− α

1
2
s
%0

kh

)2

≥
∑

|k−k0|>K

a2
k

(
k

%0

)2( h

%0
|k − k0|

)2

(21)

≥ σ(%0)

8

(
l

%0

)2

α
1
2
s .

In the other case we have

σ(%0)

2
≤

∑
|k−k0|≤K

a2
k(%0)

(
k

%0

)2

≤ 2
∑

|k−k0|≤K

a2
k(%1)

(
k

%0

)2

+ 2l

ˆ %1

%0

∑
|k−k0|≤K

(∂rak(r))
2

(
k

%0

)2

dr,

where we used an elementary inequality f2(l) ≤ 2f2(0) + 2l
´ l

0 f
′2. To estimate the first

term on the right-hand side, we observe that (k/%0)2 ≤ 2(k/%1)2 and that for |k− k0| < K

we have |hk/%1 − α
1
2
s %1/(hk)| ≥ h

%1
|k − k1| ≥ α1/4

s
l

2%1
. Hence

2
∑

|k−k0|≤K

a2
k(%1)

(
k

%0

)2

≤ 16

α
1/2
s

(%1

l

)2 ∑
|k−k0|≤K

a2
k(%1)

(
k

%1

)2(hk
%1
− α

1
2
s
%1

hk

)2

.

For the second term we observe that for |k − k0| ≤ K we have |k/%0|2 ≤ 4α
1
2
s /h2, and so

2l

ˆ %1

%0

∑
|k−k0|≤K

(∂rak(r))
2

(
k

%0

)2

dr ≤ 8α
1
2
s
l2

h2

 %1

%0

B(r) dr.

Summing these two and using that %2
1 ≤ 2%0 yields

δ

2
≤ σ(%0)

2
≤
(

32

α
1/2
s

(%0

l

)2
+ 8α1/2

s

(
l

h

)2)
·
(

LHS of (19)

)
,

which concludes the proof of the lemma. �
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Proof of the lower-bound half of Theorem 1, i.e. the estimate ε ≥ c0h. Let I be any inter-

val of length α
−1/4
s r

1/2
w h1/2 such that I ⊂ [(2rw + r0)/3, (rw + 2r0)/3] (such intervals exist,

provided that the constant h0 in the statement of Theorem 1 is chosen sufficiently small).
The condition I ⊂ [(2rw+r0)/3, (rw+2r0)/3] assures that I stays away from the inner and
outer boundaries of the wrinkled region (which are at rw and r0 respectively). One verifies

using (5) the existence of a constant C2 > 0 such that v̄0(r)
r + 2α

1/2
s ≤ −2C2 for all r ∈ I

(and all such intervals I). It follows that ūr(r)
r + 2α

1/2
s ≤ −2C2 + (ūr(r)−v̄0(r))+

r . Hence at

each r ∈ I we have either ūr(r)
r + 2α

1/2
s ≤ −C2 or (ūr(r)−v̄0(r))+

r ≥ C2. Writing I = (a, b),
let us define M0 ⊂ (a, (2a + b)/3), M1 ⊂ ((a + 2b)/3, b) to be maximal sets such that for
r ∈M0 ∪M1

ūr(r) ≤ −2α1/2
s r − C2r. (22)

We distinguish two cases. If |M0| < |I|/6 or |M1| < |I|/6, the complement I \ (M0 ∪
M1) has measure at least |I|/6 and inside this complement (22) is false, and so by above

considerations (ūr(r)−v̄0(r))+
r ≥ C2. Using the triangle inequality, this gives (ūr−v̄h)++|v̄h−

v̄0| ≥ (ūr−v̄h)++(v̄h−v̄0)+ ≥ (ūr−v̄0)+ ≥ C2r, which then implies (ūr−v̄h)2
++|v̄h−v̄0|2 &

1, which in turn after integration yields
´
I((ūr − v̄h)2

+ + |v̄h − v̄0|2) & |I|.
In the other case, i.e. if both |M0| ≥ |I|/6 and |M1| ≥ |I|/6, for i = 0, 1 we can choose

ρi = arg minρ∈Mi Wr(
ūr(ρ)
ρ , w(ρi, ·))−Wrel(

ūr(ρ)
ρ ), and apply Lemma 3.1 to get

ˆ
I
Wr

(
ūr(r)

r
, w(r, ·)

)
−Wrel

(
ūr(r)

r

)
+B(r) dr &

|I|min

(
1,

(
l

%0

)2

α
1
2
s ,

(
32

α
1/2
s

(%0

l

)2
+ 8α1/2

s

(
l

h

)2)−1)
,

where the fact that l = ρ1 − ρ0 ∼ α
−1/4
s r

1/2
w h1/2 implies that the right-hand side in the

previous estimate is at least of order h. Combining the two cases we getˆ
I
(ūr − v̄h)2

+ + |v̄h − v̄0|2 +Wr

(
ū(r)

r
, w(r, ·)

)
−Wrel

(
ū(r)

r

)
+B(r) dr & |I|h.

Finally, we use estimate (17) together with the fact that σh & 1 and r ∼ 1 inside [2rw +
r0)/3, (rw + 2r0)/3], and the estimate on the difference v̄h − v̄0, and cover at least half of
[2rw + r0)/3, (rw + 2r0)/3] with disjoint intervals like the interval I considered above to get
the desired lower bound ε & h. �

4. Proof of Proposition 3.1

Proof of Proposition 3.1. We begin by showing that Fh achieves its minimum. Indeed,
replacing the membrane term in (6) by its positive part – that is, replacing the first term

under the integral by
(
v̄′ + 1

2( rR − w̄
′)2
)2

+
– makes the problem convex. This modified

problem achieves its minimum by the direct method of the calculus of variations. We
claim that its minimizer (v̄h, w̄h) also minimizes the original functional Fh. This follows
from the fact that for (v̄h, w̄h) the expression v̄′h+ 1

2( rR − w̄
′
h)2 must be non-negative almost
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everywhere (since otherwise one can easily modify (v̄h, w̄h) to obtain a competitor with
strictly smaller energy). Heuristically this is clear, since the relation v̄′h + 1

2( rR − w̄
′
h)2 ≥ 0

says simply that the sheet is in tension in the radial direction. This argument also shows
that the minimizer (v̄h, w̄h) is unique, since the modified functional is everywhere convex,
and strictly convex whenever v̄′ + 1

2( rR − w̄
′)2 > 0.

At risk of redundancy we sketch another proof that the minimizer exists, by applying
the direct method of the calculus of variations directly to Fh. Indeed, since h is strictly
positive the functional Fh controls the second derivative of w̄. Therefore for a minimizing
sequence w̄′ would converge strongly, and this can be used to pass to the limit in the first
term.

To obtain information about the form of (v̄h, w̄h), we first set w = 0 and minimize
Fh(v, 0), which is the same as minimizing F0. This can be done by guessing that (0, r0)

splits into two non-trivial intervals: (0, rw), where v̄(r)/r ≥ −2α
1/2
s , meaning in this region

the sheet will not wrinkle (hence we use that Wrel(η) = η2 here), and (rw, r0), where the
sheet wrinkles. Solving the resulting ordinary differential equation leads to the explicit
form (5) for the minimizer v̄0 of F0.

Using the optimality properties for (v̄h, w̄h) and v̄0 we get that DFh(v̄h, w̄h) = 0 and
DvFh(v̄0, 0) = 0. In addition, for any smooth test function ϕ we have for some function g:

DwFh(v̄0, 0)ϕ =

ˆ r0

0
−2

(
v̄0 +

1

2

r2

R2

)
r

R
ϕ′r dr =

ˆ r0

0
g(r)ϕ(r)r dr.

We can use (5) to get explicit formula for g, and in particular to show that g is bounded by
some constant Cg. Here by DFh = 0 and DvFh = 0 we mean that the Gateaux derivative
(i.e. directional derivative) of the functional Fh vanishes for every direction (v, w) and
(v, 0), respectively.

Recall that σh(r) = v̄′h(r) + 1
2( rR − w̄h(r)′)2 (see (5)) and define σ0(r) := v̄′0(r) + 1

2
r2

R2 .

Then using a simple identity for f(x, y) = (x+ 1
2y

2)2 of the form

f(x, y)− f(a, b)−Df(a, b) · (x− a, y− b) =
((
x+ 1

2y
2
)
−
(
a+ 1

2b
2
))2

+
(
a+ 1

2b
2
)

(y− b)2,
(23)

we get using Taylor’s theorem with the remainder in the integral form (here we use that
W ′rel is absolutely continuous)

Fh(v̄0,0)− Fh(v̄h, w̄h)−DFh(v̄h, w̄h) · (v̄0 − v̄h,−w̄h) (24)

=

ˆ r0

0

[
(σ0 − σh)2 + σh(w̄′h)2 + αsh

−2w̄2
h + h2w̄′′2h +

ˆ v̄0/r

v̄h/r
W ′′rel(ξ)(v̄0/r − ξ) dξ

]
r dr,

Fh(v̄h,w̄h)− Fh(v̄0, 0)−DFh(v̄0, 0) · (v̄h − v̄0, w̄h)

=

ˆ r0

0

[
(σ0 − σh)2 + σ0(w̄′h)2 + αsh

−2w̄2
h + h2w̄′′2h +

ˆ v̄h/r

v̄0/r
W ′′rel(ξ)(v̄h/r − ξ) dξ

]
r dr.
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We have already observed thatDFh(v̄h, w̄h) = 0, DvFh(v̄0, 0) = 0, and also |DwFh(v̄0, 0)ϕ| ≤
Cg

´ r0
0 |ϕ(r)|r dr. We add the previous two relations and use these facts about DFh to ob-

tain

ˆ r0

0

[
2(σ0 − σh)2+ (σh + σ0)(w̄′h)2+ 2αsh

−2w̄2
h + 2h2w̄′′2h +

ˆ v̄0/r

v̄h/r
W ′′rel(ξ)(v̄0/r − v̄h/r) dξ

]
r dr

≤ Cg
ˆ r0

0
w̄hr dr.

(25)
First observe that both σh ≥ 0 and σ0 ≥ 0 – the first relation comes from the Euler-

Lagrange equation while the second can be derived either by direct computation or also
through the Euler-Lagrange equation. Next we observe that W ′′rel ≥ 0 a.e., which fol-
lows from convexity of Wrel and can be also explicitly computed. Hence, using that
σh ≥ 0, σ0 ≥ 0,W ′′rel ≥ 0 we see that all the terms on the left-hand side of (25) are
non-negative, in particular

´ r0
0 2αsh

−2w̄2
hr dr .

´ r0
0 w̄hr dr, which by Hölder’s inequality

implies
´ r0

0 w̄2
hr dr . α−2

s h4, which in turn shows that the right-hand side in (25) is at most

of order h2.
Since the right-hand side in (24) is bounded by the left-hand side in (25), we see that

Fh(v̄0, 0)− Fh(v̄h, w̄h)−DFh(v̄h, w̄h) · (v̄0 − v̄h,−w̄h) . h2.

Using that DFh(v̄h, w̄h) = 0, we get that Fh(v̄0, 0)−Fh(v̄h, w̄h) . h2. The trivial fact that
Fh(v̄0, 0) ≥ Fh(v̄h, w̄h) (which holds since Fh(v̄h, w̄h) is the minimum over a larger class of
test functions) permits us to conclude (14).

The right-hand side in (25) being . h2 also implies
´ r0

0 w̄′′2h r dr . 1, which by an interpo-

lation inequality ‖∇f‖L4(Br0 ) . ‖f‖
1/4
L2(Br0 )

‖∇2f‖3/4
L2(Br0 )

+ ‖f‖L2(Br0 ) implies
´ r0

0 w̄′4h r dr .

h2. We recall the definition of σh, σ0, and see that
´ r0

0 |σh − σ0|2r dr . h2 implies´ r0
0 |v̄

′
h − v̄′0|2r dr . h2. Since Wrel(η) is uniformly convex in the regime η ≥ −2α

1/2
s ,

meaning in the region where v̄0(r)/r lies well within this regime we get control in L2 on
the difference (v̄0(r) − v̄h(r))/r, by a standard embedding of W 1,2 into Lp in R2, for any

p ∈ [1,∞) we get (
´ r0

0 |v̄0 − v̄h|pr dr)1/p ≤ C(p)h, and (15) follows. In addition, since for
r ∈ J := (min(rw, r0/2), r0) we have r & 1, we also see that |v̄h(r)− v̄0(r)| . h when r ∈ J .

To obtain the formula for σh, we observe that v̄0(r) ≤ −2α
1/2
s for r ∈ (rw, r0) together

with the above L∞ bound on v̄h − v̄0 implies, assuming h is small enough, that v̄h(r) ≤
−2α

1/2
s for r ∈ ((2rw + r0)/3, r0), which in turn gives W ′rel(v̄h(r)/r) = −4α

1/2
s for r ∈

((2rw + r0)/3, r0). Solving the Euler-Lagrange equation (σh(r)r)′ = W ′rel(v̄h(r)/r) together
with the corresponding boundary condition σ(r0) = 0, we immediately obtain the formula
for σh.
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To prove (16), using (23) again we get for any B ∈ L1(0, r0) and any (v̄, w̄)

e =

ˆ r0

0

[(
v̄′ +

1

2

( r
R
− w̄′

)2
+B

)2

+ αsh
−2|w̄|2 + h2

∣∣∣∣w̄′′ − 1

2

∣∣∣∣2+Wrel(v̄/r)

]
r dr−Fh(v̄h, w̄h)

≥
ˆ r0

0

[(̄
v′ +

1

2

( r
R
− w̄′

)2
+B − σh

)2

+ σh
(
w̄′ − w̄′h

)2
+ αsh

−2(w̄ − w̄h)2+ h2
(
w̄′′ − w̄′′h

)2]
r dr

+

ˆ r0

0
2σh(r)B(r)r dr +

ˆ r0

0

(ˆ v̄(r)/r

v̄h(r)/r
W ′′rel(ξ)(v̄(r)/r − ξ) dξ

)
dr,

where the last term is non-negative by the convexity of Wrel. Using interpolation we get
that

´ r0
0 (w̄′− w̄′h)2r dr . e, which then implies

´ r0
0 (v̄′− v̄′h)+r dr ≤

´ r0
0 |v̄

′− v̄′h +B|r dr .

e + e1/2 . e1/2. Arguing as above we can show that v̄h(r) > −2α
1/2
s for small (but not

too small) values of r. Combining this with the strict positivity of W ′′rel, we deduce for
such r the smallness (in terms of e) of the L2 norm of v̄ − v̄h. This can be upgraded using
a Sobolev inequality to get

´ r0
0 (v̄ − v̄h)2

+r dr . e. The proof of Proposition 3.1 is now
complete.

�

5. The upper bound

To prove the upper bound, it is sufficient to define for each h ∈ (0, h0) a deformation
(uh, wh) with the property Eh(uh, wh) ≤ Fh(v̄h, w̄h) + κ(1/h)h. Indeed, combining this
with (14) gives the desired upper bound Eh(uh, wh) ≤ F0(v̄0) + κ(1/h)h (with a possibly
different c1 in the definition of κ). Since we do not attempt to get the optimal κ, it is
enough to do this only for some discrete set of h, which has 0 as its limit point and has the
property that neighboring h differ at most by a factor of 2. In practice, we will eventually
restrict our attention to values of h such that hδ−1/2 is an integer, where the value of δ is
close to 0. To simplify the notation, we drop the subscript h from the deformation to be
constructed, writing (u,w) rather than (uh, wh).

Our construction is guided by the proof of the lower bound. The basic idea is to modify
the minimizer (v̄h, w̄h) of Fh by wrinkling where necessary, and estimate the increase in
the energy due to wrinkling. Using (20), the amount of arclength we need to waste at each
circle (together with the optimal length scale of wrinkling) can be read off from (v̄h, w̄h).
Nevertheless, learning from the proof of the lower bound we anticipate that we should not
really use wrinkling with the optimal period, since it will be costly to change this period
too often – B(r) would then be too large (in fact of order O(1)). Anyway, as we explained

in Section 2, it is not necessary for the wavenumber k to take the “optimal” value α
1/4
s r/h

at radius r. Rather, what matters is that |hkr −α
1/2
s

r
kh | be at most of order h1/2. We shall

achieve this by making the wrinkling modes appear/disappear over length scales of order

h1/2. It takes some time to motivate the construction. We shall explain the key ideas in
two passes.
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First pass. Our first pass is unsuccessful, but still informative. As noted above we propose
to use just choices of k that are integer multiples of h−1/2, changing from one k to the next
on a length scale of order h1/2. Since the amplitudes of the modes change over scale h1/2,
one finds after some calculation that B(r) is of order h (which is OK). But what does it
mean to “change from one k to the next?” The obvious (though ultimately unsuccessful)
idea is to use “building blocks,” as done for example in [8, 3, 19]. The building block
between two radii (say, r1 and r2) would have single-mode wrinkling at the two extremes
(r = r1 and r = r2) and a suitable interpolation in the middle. A standard approach to this
interpolation would be to take w(r, θ) = w̄h(r)+f(r)k−1

1 sin(k1θ)+g(r)k−1
2 sin(k2θ), where

k1, k2 are the optimal choices at r1 and r2 respectively, and f = 1, g = 0 near r1 while f =
0, g = 1 near r2. Recall that k1, k2 ∼ h−1, while by our choice of r1 and r2, |k1−k2| ∼ h−1/2.
To make the second term in the “error” Rh (see (13)) negligible one needs to choose −∂θuθ
to be approximately the deviation of (∂θw)2/2r from its average. Computing (∂θw)2 =
f2(r) sin2(k1θ)+g2(r) sin2(k2θ)+2f(r)g(r) sin(k1θ) sin(k2θ), we see that the first two terms
are of order 1 with a period of order h (since k1, k2 ∼ h−1), and therefore their contribution
to uθ (i.e. after integrating once in θ) will be of order h. However the remaining term is
problematic. Indeed, it can be written as f(r)g(r)[− cos((k1 + k2)θ) + cos((k1 − k2)θ))].
The (k1 + k2) term is not harmful by the same argument as above, however the (k1 − k2)

term is problematic. In fact it provides a term of order h1/2 in the expression for uθ; this
occurs because (k1−k2) ∼ h−1/2 whereas k1, k2, and k1 +k2 are all of order h−1. Moreover,

since w changes with r on length scale h1/2, so should uθ. Thus one expects ∂ruθ ∼ 1.
This makes the third term in Rh (the cross term) of order 1 – much too large.

In summary: we need a better answer for what it should mean to “change from one k
to the next.”

Second pass. To get started we need some notation. We will consider an ansatz (u,w)
of the form ur(r, θ) := v̄h(r) + uosc(r, θ) and w(r, θ) = w̄h(r) + wosc(r, θ), where for each

r ∈ (0, r0) we require
´ 2π

0 uosc(r, ·) =
´ 2π

0 wosc(r, ·) = 0. Then using (11) we get that

Eh(u,w)− Fh(v̄h, w̄h) =ˆ r0

0

[
2σhB(r) +B2(r) +Wr

(
v̄h(r)

r
, w(r, ·)

)
−Wrel

(
v̄h(r)

r

)]
r dr +Rh(u, ξ),

(26)

where recall that B(r) =
ffl 2π

0 |∂r(w̄−w)|2 dθ, σh = v̄′h+ 1
2( rR − w̄

′
h)2, and ξ(r, θ) = w(r, θ)−

r2

2R . Using (20), we know that Wr −Wrel completely vanishes in the tensile region (i.e.

where v̄h(r)/r ≥ −2α
1/2
s and wosc = 0) and will be small also in the rest of the domain

(i.e. in the wrinkled region) provided that both
∑

k ak(r)
2(k/r)2 is approximately equal

to −2(v̄h(r)/r + 2α
1/2
s ) and (hk/r − α1/2

s r/(hk))2 is small in the support of ak. The first
condition says that the wrinkling wastes the right amount of arclength, while the second

condition says the wrinkling should be near the optimal frequency k = α
1/4
s r/h.
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The key issue is how to avoid the problematic cos((k1 − k2)θ) term that appeared
in uθ in the first pass. To explain the idea, we pretend for the moment that the fre-
quencies k are allowed to be real-valued, not just integers. Let us define wosc(r, θ) =

A(r)r
´
R h

1/2m[h1/2(k − α1/4
s r/h)] cos(kθ)/k dk, where m is a non-negative smooth mask

(specifically: a nonnegative function supported in (−1/2, 1/2) such that
´
Rm(t) dt = 1).

The function A(r) modulates w and should be chosen so that the wrinkled profile wastes

the right amount of arclength. For such w we compute (∂θw)2 = hA2(r)
´
R
´
Rm[h1/2(k −

r/h)]m[h1/2(l − r/h)] sin(kθ) sin(lθ) dk dl. As before we want to compute the integral

(in θ) of this quantity, which has the form 1
2hA

2(r)
´
R
´
Rm[h1/2(k − r/h)]m[h1/2(l −

r/h)]( cos((k+l)θ)
k+l − cos((k−l)θ)

k−l ) dk dl. Focusing on the latter “troublesome” integral involv-

ing the term cos((k − l)θ)/(k − l), we see that while its value is not small it does not
change in r (except for the dependence on A), which can be seen by the change of variables

k̂ = k− r/h, l̂ = l− r/h in the double integral. Therefore, the contribution to uθ from this
part will be r-independent, and so ∂ruθ will not be too large. For discrete frequencies this
problematic quantity will become h-periodic in r; the periodicity can be used to show that
it is almost constant with very small derivative.

The argument just sketched almost works. Unfortunately it doesn’t quite work, since
when the r-derivative of uθ falls on the A(r)-term, one seems to need that uθ itself is small
– which is unfortunately not true. To overcome this difficulty, the argument presented
below includes a further tweak – it uses only frequencies that are multiples of hδ−1/2 for
some δ > 0.

In the rest of this section we use the preceding ideas to give an honest proof of the
upper bound. To get started, we fix a small δ > 0 and we require from now on that all
the constants be independent of δ. For r ∈ (0, r0) and θ ∈ [0, 2π) we define w(r, θ) :=
wosc(r, θ) + w̄h(r, θ) with

wosc(r, θ) := A(r)rhδ/2
∑
k>0

m
[
hδk − α1/4

s rh−1/2
] √2 cos(kNθ)

kN
,

where m should as before be a smooth non-negative mask, A will be chosen later, and
N := hδ−1/2 has without loss of generality an integer value. Since in the following we will
need estimates on derivatives of m, we make a particular choice m(t) := exp(−1/(1−4|t|2))
if |t| < 1/2 and m = 0 elsewhere.

To estimate the excess energy, we now estimate term by term the right-hand side of (26).
Using definition and properties of Wr and Wrel (see (12) and (20)), we estimate difference
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of the third and fourth term in (26):

Wr

(
v̄h(r)

r
, w(r, ·)

)
−Wrel

(
v̄h(r)

r

)
=

1

4

∣∣∣∣σ(r) + 2(
v̄h(r)

r
+ 2α1/2

s )

∣∣∣∣2 (27)

+A2(r)hδ
∑
k

m2
[
hδk − α1/4

s rh−1/2
](h1/2+δk

r
− α1/2

s

r

h1/2+δk

)2

, (28)

where σ(r) = A2(r)hδ
∑

k>0m
2[hδk − α

1/4
s rh−1/2]. To estimate (28) we observe that

the function f(t) = h1/2+δt/r − α1/2
s r/(h1/2+δt) vanishes for t = α

1/4
s r/h1/2+δ and |f ′| .

h1/2+δ/r nearby, and by the support condition for m we see that (28) is bounded from

above by A2(r)hδh−δ[(h1/2+δ/r)h−δ]2 = A2(r)h/r2. Since in the following we will choose
A such that |A| . 1 and A will be supported away from the origin, we see that we will
have A2(r)h/r2 . h. To simplify the notation, from now on we will assume that αs = 1
(in the general case all the subsequent constants might depend also on αs).

In order to make (27) small, we would like to choose value of A(r) such that σ̃(r) :=

A2(r)hδ
´
Rm

2[hδk − α1/4
s rh−1/2] dk = A2(r)

´
Rm

2(k̂) dk̂ = −2( v̄h(r)
r + 2α

1/2
s ) if the right-

hand side is positive (wrinkled region), and A(r) = 0 if it is non-negative (non-wrinkled
region). We have introduced σ̃ as a proxy (a less oscillating approximation) for σ, since
we do not want A to oscillate on scale hδ, which would be inevitable if we defined A using

σ(r) = −2( v̄h(r)
r + 2α

1/2
s ). The advantage of using σ̃ instead of σ to define value of A is

that in this case A2 is as smooth as v̄h. In addition, since we will also need control on
derivatives of A (and not only A2), we cut off A on scale h near the transition between the
flat and wrinkled region (where derivatives of A would be singular):

A(r) :=

0 r ∈ (0, rw),

η
(
r−rw
h

) (
−2
(
v̄h(r)
r + 2α

1/2
s

))1/2 (´
Rm

2
)−1/2

r ∈ (rw, r0),

with η being a smooth cutoff for (2,∞) in (1,∞) (i.e. η(t) = 1 if t > 2 and η(t) = 0 if

t < 1). While without the cutoff η the derivative A′(r) would blow-up like (r− rw)1/2, due

to this cutoff we see that |A′| . h−1/2, and similarly |A′′| . h−3/2.
To estimate (27), we will use the following simple observation: For any smooth compactly

supported function f and any n ∈ N there exists C, which depends on the support of f ,
such that for any t ∈ (0, 1) and any shift ζ ∈ R we have∣∣∣∣t∑

k∈Z
f(tk + ζ)−

ˆ
R
f

∣∣∣∣ ≤ Ctn ∥∥∥f (n)
∥∥∥
∞
. (29)
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Indeed, for n = 0 this holds more generally for m-th derivative of f , since
´
R f

(m) = 0
implies∣∣∣∣t∑

k∈Z
f (m)(tk + ζ)−

ˆ
R
f (m)

∣∣∣∣ = t

∣∣∣∣∑
k∈Z

f (m)(tk + ζ)

∣∣∣∣≤ t#{k : f (m)(tk + ζ) 6= 0
}∥∥∥f (m)

∥∥∥
∞

≤ C
∥∥∥f (m)

∥∥∥
∞
,

where ‖g‖∞ := sup |g|. Moreover, for any m ≥ 1 we have∣∣∣∣∑
k∈Z

f (m)(tk + ζ)

∣∣∣∣ =

∣∣∣∣∑
k∈Z

f (m)(tk + ζ)− t−1

ˆ
R
f (m)

∣∣∣∣= ∣∣∣∣∑
k∈Z

f (m)(tk + ζ)− f (m)(tk + ζ ′)

∣∣∣∣
≤ t
∣∣∣∣∑
k∈Z

f (m+1)(tk + ζ ′′)

∣∣∣∣,
and so by induction we get (29) for any derivative of f . In addition, since the previous
chain of equalities (except for the first one) holds also for m = 0, we get (29) also for f
itself, which finishes the proof of (29).

This observation, applied to f = m2 with n ≥ 1/δ, yields after a change of variables
the estimate

|σ(r)− σ̃(r)| = A2|hδ
∑
k

m2[hδk]−
ˆ
R
m2[hδk] dk|

≤ CA2hδ(hδ)n−1‖(m2)(n)‖∞ ≤ C‖(m2)(n)‖∞h ≤ (Cm/δ)
(C′m/δ)h,

where in the last step we used an estimate for ‖(m2)(n)‖∞. Using the triangle inequality

we have |σ(r)+2( v̄h(r)
r +2α

1/2
s )|2 . |σ̃(r)+2( v̄h(r)

r +2α
1/2
s )|+ |σ(r)− σ̃(r)|2. Since the first

term on the right-hand side vanishes if r− rw 6∈ (0, 2h) and is O(1) inside this interval, the

previous estimate on σ(r)− σ̃(r) implies that (27) is bounded by (Cm/δ)
(C′m/δ)h.

Next we turn to B(r) =
ffl 2π

0 |∂rwosc|2 dθ = hδ
∑

k(kN)−2[∂r(A(r)rm[hδk − rh−1/2])]2.
From now on we will repeatedly use the fact that due to the support condition on m, we
have m[hδk − rh−1/2] 6= 0 only for at most h−δ values of k, and kN & (r/h). Due to this,

and also since |A′| . h−1/2, we see that |B(r)| . hδh−δ(r/h)−2(h−1/2)2 . h, where the

last h−1/2 comes from derivative in r. Hence in the wrinkled region |B(r)| . h and B = 0
otherwise, and so

´ r0
0 (σhB(r) +B(r)2)r dr . h.

We now estimate the remainder Rh, which consists of five terms:ˆ r0

0

 2π

0

∣∣∣∣∂r(ur − ūr) +
(∂rξ)

2

2
−
 2π

0

(∂rξ)
2

2

∣∣∣∣2 dθ r dr

+

ˆ r0

0

 2π

0

∣∣∣∣∂θuθr +
ur
r

+
(∂θw)2

2r2
− ūr

r
−
 2π

0

(∂θw)2

2r2

∣∣∣∣2 dθ r dr

+

ˆ r0

0

( 2π

0

1

2

∣∣∣∣1r ∂θur+r∂r (uθr )+
1

r
∂rξ∂θξ

∣∣∣∣2+h2|∂rr(w − w̄)|2+
2h2

r2
|∂θrξ|2 dθ

)
r dr =:

5∑
i=1

Ti.
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To do the estimates we first define uθ and ur:

uθ,+(r, θ) := A2(r)r2hδ
∑
k,l

m
[
hδk − rh−1/2

]
m
[
hδl − rh−1/2

] sin((k + l)Nθ)

(k + l)N
,

uθ,−(r, θ) := A2(r)r2hδ
∑
k 6=l

m
[
hδk − rh−1/2

]
m
[
hδl − rh−1/2

] sin((k − l)Nθ)
(k − l)N

,

uθ(r, θ) :=
1

2r
(uθ,+ − uθ,−), ur(r, θ) :=

r

R
wosc(r, θ) + ūr(r).

To estimate T1, we use definition of wosc, together with the support condition on m
and the fact kN & h−1, to see that |wosc| . h1−δ/2 and |∂rwosc| . h1/2−δ/2. Therefore

we immediately see that |∂r(ur − ūr)| ≤ 1
R |wosc| + r

R |∂rwosc| . h1/2−δ/2. Using ξ(r, θ) =

wosc(r, θ)+w̄h(r)− r2

2R we get (∂rξ)
2−

ffl 2π
0 (∂rξ)

2 = (∂rwosc)
2−

ffl 2π
0 (∂rwosc)

2+2∂rwosc∂rw̄h−
2 r
R∂rwosc, which by previous estimates on wosc and ∂rwosc combined with estimate on

∂rw̄h (see (15)) implies |T1| . h1−δ. Using definition of uθ we see that ∂θuθ + [(∂θw)2 −ffl 2π
0 (∂θw)2]/2r = 0, which together with the fact (ur − ūr)/r = wosc/R and estimate

|wosc| . h1−δ/2 implies |T2| . h2−δ.
To estimate |T3| we first focus on |∂r(uθ/r)|, by dealing with the + and − part separately.

For the + part we have

∂r(uθ,+/r
2) =

hδ
(
∂r(A

2(r))
∑
k,l

m[. . .]m[. . .]
sin((k + l)Nθ)

(k + l)N
+A2(r)

∑
k,l

∂r(m[. . .]m[. . .])
sin((k + l)Nθ)

(k + l)N

)
,

where here and below we use an abbreviationm[. . .]m[. . .] = m[hδk−rh−1/2]m[hδl−rh−1/2].
Since the summation is performed over h−2δ pairs of k, l, |∂r(A2)| . 1, and (k+ l)N & h−1,
the first half . hδh−2δh ≤ h1−δ. The second half is different since the derivative falls on
m, which introduces additional factor h−1/2, leading to the estimate . h1/2−δ. Altogether
we see that |∂r(uθ,+/r2)| . h1/2−δ. For the − part we have

∂r(uθ,−/r
2) =

hδ
(
∂r(A

2(r))
∑
k 6=l

m[. . .]m[. . .]
sin((k − l)Nθ)

(k − l)N
+A2(r)

∑
k 6=l

∂r(m[. . .]m[. . .])
sin((k − l)Nθ)

(k − l)N

)
.

Using arguments as above and N = h−(1/2−δ) the first half . hδh−2δN−1 = h1/2−2δ. This
idea would not be enough for the second half, since the additional factor h−1/2 would ruin
the estimate. Instead, for fixed θ let us consider f(r) := h3δ

∑
k 6=lm[hδk− rh−1/2]m[hδl−

rh−1/2] sin((k−l)Nθ)
(k−l)N and observe that by a change of variables f(r) is h1/2+δ-periodic. More-

over, we see that for any n ∈ N we have |f (n)| ≤ (Cmn)(C′mn)h(1−n)/2, where we used

estimates on m(n) and the fact that each derivative introduces a factor h−1/2. Let us now
fix n ≥ 1, and observe that f (n) has to have mean zero (due to periodicity of f (n−1)),

in particular there exists t ∈ (0, h1/2+δ) such that f (n)(t) = 0. Using the bound on
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f (n+1) and first-order Taylor expansion, we get for any s ∈ (0, h1/2+δ) that |f (n)(s)| ≤
‖f (n+1)‖∞h1/2+δ ≤ (Cmn)(C′mn)h(−n)/2h1/2+δ ≤ (Cmn)(C′mn)hδ+(1−n)/2. We can now iter-
ate such an estimate, and since in each step we improve the exponent by δ, after 1/(2δ)

steps we get that |f ′| ≤ (Cmn)(C′mn)h1/2 with n ∼ 1/δ, which then leads to an estimate

|∂r(uθ,−/r2)| ≤ (Cm/δ)
(C′m/δ)h1/2−2δ. The estimate |∂r(uθ/r)| ≤ (Cm/δ)

(C′m/δ)h1/2−2δ fol-
lows immediately.

Using that ξ(r, θ) = wosc(r, θ) + w̄h(r)− r2/2R and the definition of ur, we see that

∂θur + ∂rξ∂θξ = (∂rwosc + ∂rw̄h)∂θwosc.

Since |∂θwosc| . h−δ/2, which we get by direct computation, this in combination with the

estimate on ∂rwosc and ∂rw̄h yields |∂θur + ∂rξ∂θξ| . h1/2−δ, and so |T3| . h1−4δ.
To deal with T4, we observe that ∂rr(w − w̄) = ∂rrwosc, which then using bounds on A′

and A′′ can be estimated by Ch−(1+δ)/2, which together with the additional h2 factor gives
|T4| . h1−δ.

Finally, we see that |∂rθwosc| . h−1/2−δ/2, and |T5| . h1−δ immediately follows. Al-

together we have shown that the excess energy is bounded by (Cm/δ)
(C′m/δ)h1−4δ. By

choosing δ := (− log h)−1/2 we obtain an estimate ε ≤ exp
(
C(log(1/h))1/2 log(log(1/h))

)
h,

and the proof of the upper bound is complete.
With this choice of δ, we also observe that a simple estimate |∂θwosc| ≤ Ch−δ/2 turns

into |∂θwosc| ≤ C exp((log 1/h)1/2). Hence, though the slopes are not uniformly bounded
in h, they explode with a rate slower than any power of h.
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