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ABSTRACT. We consider a disk-shaped thin elastic sheet bonded to a compliant sphere.
(Our sheet can slip along the sphere; the bonding controls only its normal displacement.)
If the bonding is stiff (but not too stiff), the geometry of the sphere makes the sheet wrin-
kle to avoid azimuthal compression. The total energy of this system is the elastic energy
of the sheet plus a (Winkler-type) substrate energy. Treating the thickness of the sheet h
as a small parameter, we determine the leading-order behavior of the energy as h tends to
zero, and give (almost matching) upper and lower bounds for the next-order correction.
Our analysis of the leading-order behavior determines the macroscopic deformation of
the sheet; in particular it determines the extent of the wrinkled region, and predicts the
(nontrivial) radial strain of the sheet. The leading-order behavior also provides insight
about the length scale of the wrinkling, showing that it must be approximately indepen-
dent of the distance r from the center of the sheet (so that the number of wrinkles must
increase with 7). Our results on the next-order correction provide insight about how the
wrinkling pattern should vary with r. Roughly speaking, they suggest that the length
scale of wrinkling should not be exactly constant — rather, it should vary a bit, so that the
number of wrinkles at radius r can be approximately piecewise constant in its dependence
on r, taking values that are integer multiples of h™% with a ~ 1/2.

1. INTRODUCTION

We model the wrinkling of a disk-shaped elastic sheet bonded to a compliant sphere, as
shown schematically in Figure 1. The source of the wrinkling is easy to understand: if we
assume for a moment that the sheet is inextensible in the radial direction and that the center
of the disk is attached to the north pole, then each circle |z| = r is approximately mapped
to the circle S, on the sphere at distance r from the north pole. Since the arclength of S,
is less than 277, circles |z| = r must wrinkle to avoid (large) compression. Roughly: the
typical slope of the wrinkling is determined by the geometry of the sphere (the contrast
between 27r and |S,|), while the wavelength is determined by competition between the
bending energy (which prefers coarse, large-amplitude wrinkling) and the substrate energy
(which prefers small deformations, hence fine, low-amplitude wrinkling).

The preceding account is oversimplified. Our sheet is not inextensible, and we permit it
to slip along the sphere. By stretching a bit in the radial direction the sheet can reduce
the energetic cost of wrinkling, since the circle || = r is then approximately mapped
to a circle on the sphere slightly longer than S,. As we’ll explain in due course, the
macroscopic deformation of our sheet is determined by the competition between membrane
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effects (which prefer less stretching) and the energetic cost of wrinkling (which prefers more
stretching).

The behavior of thin elastic sheets experiencing
compression due to geometric effects has recently re-
ceived a lot of attention. Without attempting a com-
prehensive review, let us mention studies concerning
a sheet on a deformable sphere [11, 16, 17]; indenta-
tion of a pressurized ball [20]; indentation of a float-
ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long
wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local A-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

FI1GURE 1. Circular sheet on a ball
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leading order term in the energy, minimization of the effective energy determines (at least
approximately) the length scale of wrinkling at radius 7. Our problem has this character
because we consider a stiff elastic substrate, quite different in character from the liquid
substrate considered in [21] and stiffer than the relatively compliant Winkler foundations
considered in [11, 16, 20, 10] (see Section 2 for more about this).

As already mentioned, the minimum of our effective functional determines the macro-
scopic deformation and the limiting energy as the thickness h — 0. But more: it gives
a lower bound for the energy FEj when h is positive. (For the precise definition of E},
see (1) below.) The amount by which Ej, exceeds the minimum of the effective functional
is informative; therefore the estimation of this excess energy is a major focus of our work.
Our main mathematical result, Theorem 1, provides upper and lower bounds on the excess
energy, showing (very roughly speaking) that it is approximately linear in h.

Our estimate of the excess energy has implications for the fine-scale structure of the
wrinkling. This is because Fj includes the cost of changing the wrinkling pattern as a
function of the distance r from the center of the sheet, whereas the effective functional
ignores this cost. Indeed, the effective functional estimates the length scale of wrinkling by
balancing the azimuthal bending against the substrate term; this leads to the conclusion
(found also in [11]) that the scale of the wrinkling should be approximately proportional
to h (independent of 7). It follows that the number of wrinkles at |z| = r should increase
approximately linearly with 7. Our analysis of the upper bound on the excess energy shows
that the length scale of wrinkling should not be exactly constant — rather, it should vary
a bit, so that the number of wrinkles at radius r can be approximately piecewise constant
in its dependence on r, taking values that are integer multiples of A= with a ~ 1/2.

The picture that emerges has a lot of symmetry: the macroscopic deformation (de-
termined by minimizing the effective energy) involves radial tension, and the number of
wrinkles at radius r is an approximately (but not exactly) linear function of . This sym-
metry is a conclusion, not a hypothesis, of our analysis. It is of course crucial that our sheet
is disk-shaped, and that the sphere is a body of revolution around the axis determined by
the center of the sheet.

It is not a new idea that energy scaling laws can be used to identify the wrinkled region
and to explain the local length scale of wrinkling. The best-understood examples are
problems where the geometry is simple (typically flat) and the direction of wrinkling is
fixed by some source of uniaxial tension (e.g. a stretched annular sheet [4, 2] or a hanging
drape [3]). Problems involving biaxial compression are less well-understood, though there
has been progress in special cases (e.g. the shape of a blister in a compressed thin film [5,
13, 7], and the herringbone pattern seen in a compressed thin film bonded to compliant
substrate [14]). The problem considered here involves compression, but its geometry is
rather controlled due to the presence of the substrate and the use of von Karman theory.

The paper is organized as follows. Section 2 presents our model, states our main math-
ematical results (Theorem 1), and provides further discussion about their implications.
Sections 3 and 4 prove the lower-bound half of Theorem 1. The argument relies on certain
properties of the minimizers of some one-dimensional calculus of variations problems closely
related to our effective functional. Section 3 states the required properties in Proposition 3.1



4 PETER BELLA AND ROBERT V. KOHN

then uses them to prove the bound, while Section 4 provides the proof of Proposition 3.1.
Finally, Section 5 proves the upper-bound half of Theorem 1. This is done by identifying
an explicit wrinkling pattern (varying appropriately with r) with relatively small excess
energy. While the pattern given there is not the energy minimizer (we do not solve an
Euler-Lagrange equation), it provides an indication about how a wrinkling pattern should
look in order to achieve the minimum energy scaling law.

2. THE MODEL AND THE MAIN RESULTS

We consider a thin elastic sheet of circular shape with thickness A > 0 and radius rg > 0,
which sits on an elastic ball of radius R > rg. The energy of the system has three terms:
the membrane energy of the sheet, which measures deviation from the deformation being
an isometry; the bending energy of the sheet, which penalizes curvature; and a substrate
energy, which prefers the sheet to be sphere-shaped. For the membrane term we use a
Féppl-von Karmén model (taking Poisson’s ratio equal to zero for simplicity); for the
substrate term we use a Winkler foundation. Focusing on the energy per unit thickness
and normalizing by the Young’s modulus of the sheet, our elastic energy functional is

2 2
Ep(u,§) = / e(u) + lvg @ VE| + h?|VVEP dx + ozsh_Q/ ’5 + i
Q 2 Q 2R

dz. (1)
Here €2 denotes the disk of radius 7o, centered at the origin; u and £ are the in-plane and
out-of-plane displacements of the sheet, and e(u) = (Vu + (Vu)?)/2 denotes the linear
strain associated with u. The nondimensional constant «s (which we assume is strictly
positive) determines the relative stiffness of the substrate compared to that of the film.
Since the substrate term involves only £ and not u, our model requires that the sheet
conform to the sphere, but permits it to slide along the sphere. (The standard Foppl-von
Karméan bending term would be %2|VV§ |2; we have dropped the factor 1/12 for notational
simplicity. This simplification does not change the problem significantly, though it affects
the precise form of the effective functional.)

Our energy (1) is very similar to the one considered by Hohlfeld and Davidovitch in [11].
There are, however, two significant differences: (1) their energy has an additional term,
representing surface tension, which induces a state of (small) radial tension; (2) they focus
on the limit of “asymptotic isometry”, which is achieved when both the surface tension and
our a; tend to 0. Our situation is different, because we take o to be nonzero (and fixed) as
h — 0. As a result, our sheet does not achieve asymptotic isometry (despite the absence of
surface tension); rather, it is in a state of radial tension. To make the comparison with [11]

z|?

|z
2R

coefficient is ﬁ instead of a;h™2. (Here Ej is the elastic modulus of the sheet and K

more explicit: their substrate term is ﬁ fQ }5 + ‘2 dx — the same as ours except that

is a constant determinicng the stiffness of their substrate.) Thus, their analysis (sending
h — 0 while holding K fixed) corresponds, in our notation, to considering oy = Eﬁfh. This
is not the regime we consider; rather, our «; is fixed and positive as h — 0.

We choose to work in dimensional variables: since u, &, and h have the dimensions
of length, our energy (1) has dimension length?. However the problem would not be
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significantly different if we worked in nondimensional variables, replacing = by x/R, etc.
The nondimensional version of the energy looks the same as (1) except that the domain
is a ball of radius ro/R, the factor in front of |[VV¢|? is (h/R)?, and the substrate term is
as(h/R)~2 [|¢ + 227 da.

This model can be criticized on the ground that the Winkler substrate term is somewhat
idealized. A more realistic model of a film bonded to a uniform elastic ball would replace
our Winkler term with a nonlocal expression involving the H*/2 norm of the surface dis-
placement (see for example [14] or Section 3 of [1]). This suggests replacing our Winkler

term by

-2

_1 1
ash 2R

)+ (2)

H1/2 (Q)

(which scales once again like length?). In fact our analysis of the lower bound would
also work for this nonlocal substrate term. However our analysis of the upper bound
requires estimating the energy of an explicitly-given deformation, which would be much
more difficult for a nonlocal model. Moreover the use of (2) would not eliminate another
key idealization, namely that the sheet is free to slip along the substrate. In addition, our
goal is to consider a thought-experiment not a physical experiment: how does geometry
induce wrinkling, when a thin elastic sheet is required to conform to a sphere? With these
considerations in mind, we take the view that the Winkler model used in (1) is appropriate
for our purposes.

In fact, Winkler-type substrate terms have been used to
model many experiments. In [11, 16, 20, 10] (see also [21])
such a term arises from the gravitational potential of the
fluid below the sheet. There is, however, an important dif-
ference: in that work the prefactor scales like h~!, whereas
in (1) it scales like h~2. By considering one-dimensional
examples, one sees that in our setting the cost of wrinkling
(determined by optimizing the length scale, based on com-
petition between the bending and substrate terms) is O(1)
FIGURE 2. The graph of (half way between h? and h~2); this is why it contributes
Wiei(n), superimposed on the {4 the leading-order energy. In [11, 16, 20, 10], by contrast,

parabola 7. In the re- the different scaling makes the cost of wrinkling o(1) (so it
gion corresponding to wrin- g subdominant).

kling Wie(n) is linear; for val- We turn now to a discussion of our results. They involve
ues of 7 corresponding to an (1) identification of an effective functional Fy, whose mini-
u;lwrinkled state, Wrel() = mum determines the radial strain in the sheet, the approx-
n. imate length scale of wrinkling, and the limiting behavior

of the minimum elastic energy (min Ej) as h — 0; and (2)

upper and lower bounds for the excess energy, defined as the difference between min E},
and min Fjp.

To describe the effective functional we must first discuss the energetic cost of wrinkling.

As explained in the introduction, wrinkling is a way for a circle |x| = 7 to fit into less
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space. We shall show that the elastic cost of such a circle “shrinking by amount —n” is
well-approximated by Wiy (n), where

n? ifn > —204;/2,
Wrel(n) := 11 1/2 (3)
—daZ(ad +1n) ifn < —2a5".

More precisely, Wyei(n) estimates (with very small error) the cost of fitting a circle of length
1 — 7 into a unit interval. If n > 0 (or slightly negative), it is optimal to deform the curve
uniformly in plane; in this regime the cost is entirely membrane energy and W,q(n) = n?.
However if 7 is negative enough, it is better to deform the curve out-of-plane (to waste
arclength by wrinkling so to speak); in this regime the cost is obtained by optimizing the
length scale of the wrinkling, and the resulting formula is linear in 7. The function Wie(n)
is continuously differentiable, though its second derivative is discontinuous at the boundary
between the two regimes (see Figure 2).

As noted early in the Introduction, we expect the sheet to be in a state of radial tension,
since stretching a bit in the radial direction reduces the energetic cost of wrinkling. The
effective functional Fy captures this effect, by keeping (only) the energy due to radial
stretching and our estimate for the cost of wrinkling:

Fo(o) :== /OTO [(@’ + ;};)2 + Wrel(l_}/’l“):| rdr. (4)

Here o is a real-valued function of one variable (r = |z|), constrained by the boundary
condition 9(0) = 0. We shall show that minimization of this one-dimensional variational
problem provides a good estimate for the radial deformation of the sheet. In addition, it
provides a lot of information about the length scale of the wrinkling at radius r (via the
analysis that led to Wiq).

Assuming that the sheet actually wrinkles (i.e. assuming that the excess length of the
outer circles is large enough to induce wrinkling rather than compression), the cost of
changing the length scale of wrinkling from circle to circle does not enter the leading-order
energy; rather, it contributes to the principal correction (the excess energy). Since we are
interested in how the wrinkling pattern changes with r, it is crucial to understand the
principal correction. In fact it seems to be of order h (more precisely: we have a lower
bound that is linear in h, and an upper bound that is almost linear in h).

Our main mathematical result is the following characterization of the leading-order en-
ergy and the principal correction:

Theorem 1. Assume a5 € (0,27%(%3)*), and let € be the excess energy, defined by
= inf F, — min Fy(v).
¢ := inf Ey(u,§) min 0(v)

Then there exist constants hg > 0, cg > 0, and ¢1 < 00, all depending on as,rg, and R,
such that for any h € (0, hg) the excess energy € satisfies

1
cohgegn(h>h,
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where the correction k(t) := exp <01 (log t)1/2 log (log t)) grows slower than t* for any
a > 0.

Since the minimum of the effective functional gives the leading-order elastic energy as
h — 0, it is important to note that its minimizer can be made entirely explicit. In fact,
assuming as in Theorem 1 that ag < 2*8(%9)4 and using the Euler-Lagrange equation for
Fy, it is straightforward to compute that

1

3,3 1 2
. - Tg%+ 2a§(r0/rw—1)+1—16%’5 r r € (0,ry)
arg min Fy = vy(r) := . . . (5)
o(0)=0 2071 — § (T }}fw) +2a3rglog (ﬁ) r € (rw, o),

1
with 7y, = (160(27‘0]%2)%. The first interval (0,ry) in (5) corresponds to the unwrinkled
region, while the second interval (7, r9) corresponds to the wrinkled region. The condition
o < 2_8(%9)4 is equivalent to r,, < rg, i.e. it ensures that the wrinkled region is nontrivial.
To explain the relationship between our effective functional Fjy and the elastic energy
E},, we note that Fj is closely related to the functional F},, defined for (v,w) : (0,r79) = R
by

70 1 2
Fi(0,w) := / [(T)’ + —(1 — u‘/)2> + ash™2|w|? + h?
0 2'R

Indeed, the term ash~2|w|? prefers w = 0, and F},(7,0) differs from Fy(v) by a term that’s
O(h?). This rather formal calculation will be justified by Proposition 3.1, which shows
(among other things) that |min Fy — min F,| < Ch%. Thus (by the triangle inequality)
we can replace min Fy by min F} in the definition of the excess energy. The functional
Fj, in turn, is a lower bound for the elastic energy. This will be explained in Section 3;
briefly, it follows from Plancherel’s formula (v represents the azimuthal average of the radial
displacement, while @ represents the azimuthal average of £ 4 |z|2/2R). Incidentally, when
wrinkling is not expected (i.e. if the minimizer (vp,wp) of F}, satisfies v, > —2a/2y for
r € (0,79)), the arguments in Section 3 show that the radial extension of (v, w;,) minimizes
Ey, so that min Ej, = min F},.

To explain how the minimizer of the effective functional provides information about
the length scale of wrinkling we must say more about our analysis of energetic cost of
wrinkling (the calculation behind Wi, defined by (3)). Its starting point is an expression
for

2
—1
w' = —

R

+ Wrel(@/r)} rdr. (6)

W, = azimuthal strain + substrate energy + azimuthal bending energy

integrated over the circle |z| = r (for the precise definition see (12)). It depends not only
on 7 (the argument of W) but also on the normal displacement of the sheet (at radius r),
viewed as a function of 6. The formula (3) is obtained by optimizing the displacement. But
this calculation gives more than just the optimum; in particular, it reveals the extra energy
W, — Wi associated with a non-optimal choice of the wrinkling. The exact expression
s (20), but the main point is this: if ax(r) is the kth Fourier coefficient of &(r,-) then
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Sz ( NS
r r |k|h

]#0
This suggests wrinkling with frequency k such that % = aiﬂﬁ, ie. |k| = Oé;/47“/h,

a choice that makes the length scale of wrinkling independent of r and proportional to
h. (Essentially the same calculation can be found in [11].) Our conclusions about the
length scale of wrinkling are not a surprise. Indeed, since this length scale is set by the
competition between the bending and substrate terms, it should not depend on r. Since
the wrinkles are arranged radially, it follows that the number per circle (the wavenumber
|k|) should increase linearly with 7.

The preceding calculation considers each circle separately. But we have already men-
tioned that Ej is strictly above the minimum of F{y, because the radial variation of the
wrinkling pattern costs additional (“excess”) energy, whose magnitude is at least of order
h. So our identification of an “optimal” %k should not be taken literally. Rather, we expect

a wrinkling pattern such that W, — Wy is of order h. Thus: we expect that % — ai/ 2#

W, — Wq is at least

should be at most of order /2 on the support of ag.
In Section 5 we provide an explicit wrinkling pattern whose excess energy is approxi-
mately linear in h. The observation in the last paragraph — that the active k at radius r can

be a certain distance from a;/ Ay /h — turns out to be crucial. Since changing the wrinkling
pattern costs elastic energy, the successful construction avoids changing it too often. Very
roughly speaking, the active k is a function of r which approximates the linear function
allty /h but takes only values that are integer multiples of A% with a ~ 1/2. An account
of why such a construction seems necessary is provided at the beginning of Section 5.

One feature of our story is a little bit surprising. A wrinkled surface resists curvature in
the direction parallel to the wrinkles. In some recent studies of wrinkling this effect plays
a crucial role in determining the local length scale [16, 18]. Our problem is different from
the ones in those studies; the key differences (as noted earlier) are that (1) the coefficient
of our substrate term scales like agh™2 with o, fixed and positive as h — 0, and therefore
(2) the leading-order behavior in our setting is not obtained from tension-field theory or
a relaxed problem, but rather by our effective functional. It is nevertheless natural to
wonder at what order the effect of curvature is felt as h — 0. Since our upper and lower
bounds on the leading-order correction (the scaling of min Ej, — min Fy with respect to h)
do not match, our results are consistent with the possibility that curvature effects might
play a role at this order. As for the length scale of wrinkling: while our results show that
it is approximately constant (this is required to get the correct leading-order behavior),
its small deviations from constancy might be influenced by effects that do not enter our
analysis, such as the extra cost of wrinkling in a curved environment.

3. THE LOWER BOUND

In the rest of the paper < will stand for < C, where C > 0 is a generic constant

~

depending on «g, 79, R. (The implicit constant is often dimensional.)
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The radial symmetry of the domain €2 and of the substrate allows for convenient repre-
sentation of the energy (1) in the radial coordinates (r,0):

70 2m 2 012
Ep(u,§) = /0 </0 (0-€) Opuo | ur  (9€)
"y Iaee£|2 + 20,2 +

: ur
0 27 1 1 1 1

N / ( / 2’89ur+ L ote — Lup + 2 0,€05¢
0 0 or 2 2r

2
Oruy + +

2

2 d9> rdr (7)

r r 22
2
2r

2h?
+=5-100r€]* d >rdr.
.

Motivated by the fact that in thin sheets (i.e. h < 1 and so ash™2 > 1) the quantity
§+ 5 m should be very small, instead of £ we consider w defined by

w(r, ) =&(r,0) + i

2R’
Since for any f € L?(0,27) we have
2 ) - 27 -
Frue=imeeof 15— g2 Q
0 0
where f = f027r f, we see that for u,(r) := OZW up(r,0)df we have
2 212 = 2m 2
][ Opuo  ur (3912) W@ +][ Gpw)” L0
0 r r 2r r 0 2r2
2 2 = 27 2 2
+][ Opug | ur \ (Opw)”  Er —][ (Orw) de' do.
0 r r 2r r 0 2r2
(9)
Defining w(r fo (r,0)df, we use definition of w and (8) twice to write
2m 0, 2 1 2 2 2
7[ R ) C0— Oyt + = (1 - arw) +][ 10, (@ — w)|? 9
f 2 2 \R 0 10)
27 B (&ﬂ )2 27 (8r€)2 2
+F 0wy —a) + — 9 qg) ae.
0 2 0 2
Plugging (9) and (10) into (7) we get that
Eh(uvg)
0 B 1 /7r B 2 2 Uy 2 2 1 2
= /0 ( Optiy + 3 (E — 8r’w> + B(r)| +W, (7,11)(7' )) h2| w|* 4+ h*|Oppw — 7 >7’dr
+ Rh(u7 5)7
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where B(r) := 27 |8, (@ — w)[* db,

1
;(%ur—i-r@r(ue )+-0,£00

r

27 1 2 27 27 2w |2
Wy (n, &) == ’n —i—][ ﬁ(aeg)Q de +h27“4][ |0po€|? A6 + ashz][ ¢ _][ &l do,
0 r 0 0 0
(12)
and
0 2 2 2 212
Rp(u,§) = / ][ O (uyp — uy) + (087 _ ][ (9-€) dé rdr
o Jo 2 0 2
0 2 8 , a 2 77“ 2 a 212
A G g e
0o Jo 0
+/r0(f2ﬂ1 1
o \Jo 2

2 2h?
+h2|0pr (w0 — w)]2+r—2\697«§\2 d0> rdr.
(13)

To show that € > coh, we need to gather some properties of the functionals Fj,:

Proposition 3.1. Under the condition as < 278(ro/R)*, the functional Fy,, defined in (6),
1/r

admits a unique minimizer (Un, wy). Moreover, denoting op(r) == v}, + 5(% — @))%, there
exists C' = C(as, 10, R) such that
’FU(TJ()) — Fh(@hnwh)‘ < Ch2, (14)
70 0 To
/ wirdr < Ch?, / wpr dr < Ch?, / |5y, — To|*r dr < Ch?,
0 0 0 (15)
on(r) =40 ?(ro/r —1) for r € ((2ry +10)/3,70),
1
where ry, = (160437“0]%2)% and Vg is defined in (5). Finally, for any non-negative B €
L'(0,79) and any (v,w) such that

" L/ 2 2 2,12, 2
e::/ [(z‘/—{— (— —w’) +B> +ash™%|w|*+h
0 2\R

we have

2
+Wrel(@/r):| r dr—Fh (@ha wh) < 17

1
L
YR

/Om (204 (r)B(r) + (6 — 04)2) rdr < Ce. (16)

The proof of Proposition 3.1 will be given in Section 4. Since Ry > 0, relation (11) and
the fact Wy(n,§) > Wia(n), together with (16) applied with o := @, imply a lower bound

Uy

inf ’ 204 (r)B(r) + W — T — W — | + — rdr
1, h( ) ( ) r ( 7w( >)> rel( ) (Ur Uh)+
5 illgf Eh(uvé) lh(vhawh)v

which using (14) can be postprocessed into

inf /0 v (2ah(7")B(7")+WT (“7 w(r, ) = Wea (22 ) + (i - w)i)rdr < C(e+h?%), (17)
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where we recall that e = inf, ¢ Fj(u,§) — Fo(?o) and B(r) = 02” |0, (w0 —w)|?df. To obtain
the desired lower bound for the left-hand side in (17), for r € (0,79) let {ar(r)}rez be the

Fourier coefficients of w(r, -). To simplify notation, we will drop the r-dependence in ay(r).
Then

B(r) =Y (0a1),
k=0

1 21.2
kEZ

W, w(r, ) = oy ae () e (1)),

kezZ\{0}

The lower bound € > cph will be a consequence of the following lemma:

Lemma 3.1. Let 6 > 0, and let o9, 01 € (0,79) be such that oy < 01 < V200 and
tr(0;)

Oi
Then we have a lower bound of the form

ZZI;<WT <ﬂré()i9i)’w> — Wiel (%é()fz‘))) +][g§’1 B(r)dr
>m1n<542 g<l> N <Oj?2 (%)2+8a;/2 (2)2>1>’ (19)

Condition (18) expresses the fact that the sheet is expected to wrinkle at circles r =
Qi,i = 0, 1.

1
< =202 -6, i=0,1. (18)

where | := o1 — 09.

Proof of Lemma 3.1. Recall that [ = 01 — g9 and let k; : 1/4QZ/h As explained in

Section 2, k; is the optimal wrinkling wavenumber at posmon 0i, i.e. the one which
minimizes the energetic cost of wrinkling. By reorganizing the definition of W, we get

2 1 hlk| 1o \?
2
2050 Z <r> < r \k:|h> ’

1
Wr(nvw(T7 )) ‘TI‘F 20

k#0
where o(r) = 0 2|89§|2d0 = D k20 ak(k)2 > 0 represents the arclength wasted by
wrinkling. Since in all the quantities only the modulus of k appears, to simplify the notation

1/2

we assume that ap = 0 for £ < 0. From the definition of Wy we get for n < —2a3’” the

following identity:
1 3 hk Lo \?
- 2 202 o (2
s g () ()

Wi(n,w(r,-)) = Wra(n) = 1
k>0

If either o(0p) < § or o(p1) < 4§, then the conclusion of the lemma follows easily. Indeed,

1/2

in this case we can write (18) as n + 2a’" < —§ with n = @,(p;)/p; for i =0 or i = 1; it
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1
follows that 1o + 2(n + 2a2)|? > 162, which implies the conclusion of the lemma. So we
may assume for the rest of the proof that o(gg) > § and o(p1) > 9.

1/4 .
Let K := @ = éo‘; . We consider two cases. If the energy at gg is not concentrated

near the optimal wavenumber kg, meaning

> @(5) s ot o)

\k—ko|> K o

then by (20)

©0

v
]
oo
A~

| =

k—ko|>K o
21) o (00) <l> Oés%
8 20
In the other case we have
U(.Qo) 2 k 2
2 < 3 (o) (=
2 00
|k—ko|<K
9 k 2 01 9 k 2
<2 > alo) () +2z/ > (Drar(r)) <> dr,
h—kol <K €0 Q0 |kl <K e

where we used an elementary inequality f2(1) < 2f2(0) + 21 fol f?. To estimate the first

term on the right-hand side, we observe that (k/gg)? < 2(k/01)? and that for |k — k| < K
1

we have |hk/o1 — a2 01/(hk)| > £|/€ — k1| > a;/‘l%gl' Hence

EN?_ 16 o1y EN? (hk 1o1\?
2 >, aile) () SN (*) o aile)|—) (——ai ) -
|k—ko| <K o Ols/ ! lk—ko| <K 01 01 hk
1
For the second term we observe that for |k — ko| < K we have |k/oo|?> < 4a2 /h?, and so
12 01

o1 k2 1
21 g (Orap(r))? | — ) dr <8aZ— B(r)dr.
00 h?
©0 |k—ko| <K Q0

Summing these two and using that o} < 2gp yields

5 _o(oo) 32 00\2 12 (! 2
S <2 §<a;/2<z> +8al2 () )-(LHS of (19))),

which concludes the proof of the lemma. O
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Proof of the lower-bound half of Theorem 1, i.e. the estimate € > coh. Let I be any inter-
val of length as /ry/?hl/2 such that I ¢ (274 +70)/3, (1w + 270) /3] (such intervals exist,
provided that the constant hg in the statement of Theorem 1 is chosen sufficiently small).
The condition I C [(2ry +70)/3, (1w +219)/3] assures that I stays away from the inner and
outer boundaries of the wrinkled region (which are at r,, and 7 respectively). One verifies

using (5) the existence of a constant Cy > 0 such that EOT(T) + 2()4;/2 < —-2Cy for all r € I

(and all such intervals I). It follows that ETT(T) + 204;/ 2 < —2C9 + w. Hence at
each r € I we have either ETT(T) + 204;/2 < —Cy or M > (Cy. Writing I = (a,b),
let us define My C (a,(2a +b)/3), My C ((a + 2b)/3,b) to be maximal sets such that for
r e MyU M;
U (r) < —20%r — Cyr. (22)
We distinguish two cases. If |[My| < |I]/6 or |Mi| < |I|/6, the complement I \ (My U
M) has measure at least |I|/6 and inside this complement (22) is false, and so by above
considerations M > (9. Using the triangle inequality, this gives (u, —op,)++ |0 —
Uo| > (Ur—0p)++ (0 —00)+ > (U, —o)4 > Cor, which then implies (@, — )2 +|0p, — 9| 2
1, which in turn after integration yields [,((@, — o4)% + |0 — 00|?) 2 |1].
In the other case, i.e. if both |My| > |I]/6 and |M;y| > |I|/6, for i = 0,1 we can choose

pi = arg min,ey, WT(ETT@,w(pi, ) — Wrel(ﬁrép)), and apply Lemma 3.1 to get

S (2 w) = W () 4 By a2

r
IN% 1 /32 /00\2 ARE
Ilmin(1, ([ — 2,—(—) 8al/2 (= :
| |m1n< (Qo) o2 <a§/2 i + 8ay N
where the fact that [ = p; — pg ~ a;1/47“110/2h1/2 implies that the right-hand side in the
previous estimate is at least of order h. Combining the two cases we get
u(r u(r
/(ur — T)h)i + ’T)h - 170|2 + W, <§),w(r, )) — Wral <5”)> + B(T) dr 2 |I|h.

1

Finally, we use estimate (17) together with the fact that o, 2 1 and r ~ 1 inside [2r,, +
70)/3, (rw + 279)/3], and the estimate on the difference v;, — vg, and cover at least half of
[2rw +170)/3, (1w + 279) /3] with disjoint intervals like the interval I considered above to get
the desired lower bound € 2 h. O

4. PROOF OF PROPOSITION 3.1

Proof of Proposition 3.1. We begin by showing that Fj} achieves its minimum. Indeed,
replacing the membrane term in (6) by its positive part — that is, replacing the first term
under the integral by (v + (% — @’ )Q)i — makes the problem convex. This modified
problem achieves its minimum by the direct method of the calculus of variations. We
claim that its minimizer (vp,wy) also minimizes the original functional Fj. This follows
from the fact that for (o, wy) the expression v}, + %(% —w},)? must be non-negative almost
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everywhere (since otherwise one can easily modify (vp,wp) to obtain a competitor with
strictly smaller energy). Heuristically this is clear, since the relation v, + (% — @},)? > 0
says simply that the sheet is in tension in the radial direction. This argument also shows
that the minimizer (v, wy,) is unique, since the modified functional is everywhere convex,
and strictly convex whenever v + (% — @')? > 0.

At risk of redundancy we sketch another proof that the minimizer exists, by applying
the direct method of the calculus of variations directly to Fj. Indeed, since h is strictly
positive the functional F} controls the second derivative of w. Therefore for a minimizing
sequence w’ would converge strongly, and this can be used to pass to the limit in the first
term.

To obtain information about the form of (vp,wp), we first set w = 0 and minimize
Fj,(v,0), which is the same as minimizing Fy. This can be done by guessing that (0,7¢)
splits into two non-trivial intervals: (0,ry,), where v(r)/r > —2qY ? meaning in this region
the sheet will not wrinkle (hence we use that Wi (n) = n? here), and (., 7o), where the
sheet wrinkles. Solving the resulting ordinary differential equation leads to the explicit
form (5) for the minimizer vy of Fy.

Using the optimality properties for (vp,wp) and vy we get that DF}y,(vp,wp) = 0 and
D, F},(v9,0) = 0. In addition, for any smooth test function ¢ we have for some function g:

T0 1 r T0
DuFi(i0,0)p = | —2 dr = dr.
1 (00,0)¢ /0 <vo+ 2R2> chr r= /0 g(r)e(r)rdr

We can use (5) to get explicit formula for g, and in particular to show that g is bounded by
some constant Cy. Here by DFj, = 0 and D,F}, = 0 we mean that the Gateaux derivative
(i.e. directional derivative) of the functional Fj, vanishes for every direction (v,w) and
(v,0), respectively.
Recall that oy,(r) = 0}, (r) + (% — wp(r)')? (see (5)) and define oo(r) = v)(r) + 3 5.
f(z,

Then using a simple identity for f(z,y) = (x + %y2)2 of the form

2
f(xvy) - f(CL, b) - Df(aab) ’ ((L’ — a4,y — b) = ((Z‘ + %yQ) - (CL + %bz)) + ((I + %b2) (y _(b)2)7
23
we get using Taylor’s theorem with the remainder in the integral form (here we use that
W/, is absolutely continuous)

F},(00,0) — Fy(0n, ws) — DF} (0, wp) - (Vo — U, —Wh) (24)

0
= / (o0 — op)? + o (0h)* + ash™2w; + h2w)? + / W (&) (vo/r — &) dE|rdr,
o L

Fy,(0p,wp) — Fip(00,0) — DFy(00,0) - (0 — Vo, W)

ro [
= / (o0 — ah)Q + Uo(w2)2 + ash_2w}2l + thZQ + / W (&) (vp/r — &) dE | rdr.
0
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We have already observed that DF}, (v, wp) = 0, Dy Fp(09,0) = 0, and also | Dy, Fp,(Tg, 0)p] <
Cy J3° le(r)|r dr. We add the previous two relations and use these facts about DFj, to ob-
tain

ﬁo/r

T0
/ [2(00 — ah)2—|— (on + 00)(1@2)2—1— 2a5h_2w;2b + 2h2w§{2+ (&) (To /T — UR/7) d&] rdr
0

/T

70
< Cg/ wpr dr.
0

(25)

First observe that both o > 0 and oy > 0 — the first relation comes from the Euler-
Lagrange equation while the second can be derived either by direct computation or also
through the Euler-Lagrange equation. Next we observe that W/ > 0 a.e., which fol-
lows from convexity of Wy, and can be also explicitly computed. Hence, using that
op > 0,00 > 0,W/, > 0 we see that all the terms on the left-hand side of (25) are
non-negative, in particular foro 2ash*2u’),2lr dr < foro wpr dr, which by Holder’s inequality
implies fOTO wirdr < o 2h*, which in turn shows that the right-hand side in (25) is at most
of order hZ.

Since the right-hand side in (24) is bounded by the left-hand side in (25), we see that

Fy(%0,0) — Fy(0p, wp) — DFy(Dy, @) - (To — Op, —0n) S B2

Using that DE}, (v, wy,) = 0, we get that Fy (v, 0) — Fj(0n, wp) < k2. The trivial fact that
Fy,(v9,0) > Fp(0p,wy) (which holds since F},(vp, wp,) is the minimum over a larger class of
test functions) permits us to conclude (14).

The right-hand side in (25) being < h? also implies [ wj?r dr < 1, which by an interpo-

1/4 3/4
Lo V2135, )+ 1 F 25, implies [0 apirdr <

h%. We recall the definition of o}, 09, and see that foro lon, — ool>rdr < h? implies
Jo? oy, — vpl*rdr < h2. Since Wiei(n) is uniformly convex in the regime 7 > —2a/?,

~

lation inequality ||V f{|z1(5, ) S Il

meaning in the region where vg(r)/r lies well within this regime we get control in L? on
the difference (vg(r) — v,(r))/r, by a standard embedding of W12 into L? in R?, for any
p € [1,00) we get (f,° 0o — vplPr dr)V/? < C(p)h, and (15) follows. In addition, since for
r € J := (min(ry,7r0/2),70) we have r 2> 1, we also see that |ty (r) — o(r)| < h when r € J.

To obtain the formula for o, we observe that vg(r) < —2a? for r € (rw,m0) together
with the above L® bound on v;, — U implies, assuming h is small enough, that o,(r) <
20 for r € ((2rw + 70)/3,70), which in turn gives W/ (op(r)/r) = —4al? for r €
((2rw+10)/3,70). Solving the Euler-Lagrange equation (op,(r)r) = W/ (0y(r)/r) together
with the corresponding boundary condition o(rg) = 0, we immediately obtain the formula
for oy,.
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To prove (16), using (23) again we get for any B € L'(0,r() and any (v, w)

2

o, 1 \? 2 —2| 12 ol 1 _ -
e= v+ - (— - w) + B | +ash o]+ h* 0" — | +Wiea(v/7) |7 dr—Fp,(0n, wp)

o 2 \R 2
>/TO @’+1<1—w’)2+3—a 2+0 (@' — @)+ ash™2(@ — wp)*+ B2 (@ — @) |r dr
= 5\ h h h s h h

ro ro o(r)/r Y
s [Meneserars [T W@ - g as) an
0 0 op(r)/r

where the last term is non-negative by the convexity of Wy. Using interpolation we get
that [;°(@w' —w})*r dr < e, which then implies [[°(0' —v},)4rdr < [(° |0/ — 0}, + Blrdr <
e+ e'/2 < el/2. Arguing as above we can show that oy, (r) > —2al/? for small (but not
too small) values of r. Combining this with the strict positivity of W, we deduce for
such r the smallness (in terms of ) of the L? norm of ¥ — #. This can be upgraded using
a Sobolev inequality to get fom (v — ﬁh)%ﬂ“ dr < e. The proof of Proposition 3.1 is now
complete.

0

5. THE UPPER BOUND

To prove the upper bound, it is sufficient to define for each h € (0, hg) a deformation
(up,wp) with the property Ejp(un,wp) < Fp(0p,ws) + £(1/h)h. Indeed, combining this
with (14) gives the desired upper bound Ej,(up,wp) < Fo(tg) + £(1/h)h (with a possibly
different c¢; in the definition of ). Since we do not attempt to get the optimal s, it is
enough to do this only for some discrete set of h, which has 0 as its limit point and has the
property that neighboring h differ at most by a factor of 2. In practice, we will eventually
restrict our attention to values of h such that A°~%/2 is an integer, where the value of § is
close to 0. To simplify the notation, we drop the subscript h from the deformation to be
constructed, writing (u,w) rather than (up,wp,).

Our construction is guided by the proof of the lower bound. The basic idea is to modify
the minimizer (vp,wp) of F}, by wrinkling where necessary, and estimate the increase in
the energy due to wrinkling. Using (20), the amount of arclength we need to waste at each
circle (together with the optimal length scale of wrinkling) can be read off from (oy, wp,).
Nevertheless, learning from the proof of the lower bound we anticipate that we should not
really use wrinkling with the optimal period, since it will be costly to change this period
too often — B(r) would then be too large (in fact of order O(1)). Anyway, as we explained
in Section 2, it is not necessary for the wavenumber £ to take the “optimal” value a;/ Ay /h
at radius r. Rather, what matters is that ]% — a;/2ﬁ| be at most of order h1/2. We shall
achieve this by making the wrinkling modes appear/disappear over length scales of order

h'/2. Tt takes some time to motivate the construction. We shall explain the key ideas in
two passes.
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FIRST pPASS. Our first pass is unsuccessful, but still informative. As noted above we propose
to use just choices of k that are integer multiples of h~/2, changing from one k to the next
on a length scale of order h/2. Since the amplitudes of the modes change over scale hl/2,
one finds after some calculation that B(r) is of order h (which is OK). But what does it
mean to “change from one k to the next?” The obvious (though ultimately unsuccessful)
idea is to use “building blocks,” as done for example in [8, 3, 19]. The building block
between two radii (say, 1 and r9) would have single-mode wrinkling at the two extremes
(r =71 and r = 1) and a suitable interpolation in the middle. A standard approach to this
interpolation would be to take w(r, 8) = wy,(r) + f(r)k ' sin(k10) + g(r)ky * sin(k20), where
k1, ko are the optimal choices at r1 and ry respectively, and f = 1, ¢ = 0 near r; while f =
0,9 = 1 near ro. Recall that ki, ks ~ h~!, while by our choice of 71 and 79, |k1 —ka| ~ K172,
To make the second term in the “error” Ry, (see (13)) negligible one needs to choose —dgug
to be approximately the deviation of (9pw)?/2r from its average. Computing (Gyw)? =
F2(r) sin?(k10) +g2(r) sin? (ko#) +2f (r)g(r) sin(k1 0) sin(k26), we see that the first two terms
are of order 1 with a period of order h (since ki, ko ~ h™1), and therefore their contribution
to ug (i.e. after integrating once in #) will be of order h. However the remaining term is
problematic. Indeed, it can be written as f(r)g(r)[— cos((k1 + k2)0) + cos((k1 — k2)0))].
The (k1 + k2) term is not harmful by the same argument as above, however the (k1 — k2)
term is problematic. In fact it provides a term of order h/2 in the expression for ug; this
occurs because (k1 —kg) ~ h~Y2 whereas ki, ks, and ki + ko are all of order h~1. Moreover,
since w changes with r on length scale Rt/ 2. so should ug. Thus one expects Oyug ~ 1.
This makes the third term in R}, (the cross term) of order 1 — much too large.

In summary: we need a better answer for what it should mean to “change from one k
to the next.”

SECOND PASS. To get started we need some notation. We will consider an ansatz (u,w)
of the form u,(r,0) := Up(r) + Uesc(r,0) and w(r, ) = Wy (r) + Wosc(r, §), where for each
r € (0,79) we require f027r Uose(Ty+) = f027r Wose(r,+) = 0. Then using (11) we get that

Eh(u, w) — Fh(@h,wh) =

/Om [QUhB(r) +B%(r) + W, (”’f’),w(r, .)> W (wﬁﬂ)]rdr Ru(u.),
(26)

where recall that B(r) = 027r |0, (w —w)|?db, o, = V) + 5 (% —w},)?, and &(r, 0) = w(r,0) —

%. Using (20), we know that W, — W, completely vanishes in the tensile region (i.e.

where oy (r)/r > —202? and Wese = 0) and will be small also in the rest of the domain

i.e. in the wrinkled region) provided that both ai(r)2(k/r)? is approximately equal
k

to —2(vp(r)/r + 205?2) and (hk/r — 04;/27"/(hk))2 is small in the support of ai. The first

condition says that the wrinkling wastes the right amount of arclength, while the second

condition says the wrinkling should be near the optimal frequency k = a;/ e /h.
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The key issue is how to avoid the problematic cos((k; — k2)f) term that appeared
in ug in the first pass. To explain the idea, we pretend for the moment that the fre-
quencies k are allowed to be real-valued, not just integers. Let us define weg(r,0) =

A(r)r [ RY2m [ (k — s r/h)] cos(k@)/k dk, where m is a non-negative smooth mask
(specifically: a nonnegative function supported in (—1/2,1/2) such that [, m(t)dt = 1).
The function A(r) modulates w and should be chosen so that the wrinkled proﬁle wastes
the right amount of arclength. For such w we compute (Gpw)? = hA*(r) [ [z m m[h'/?(k
r/R)m[h/2(l — r/h)]sin(k6) sin(10) dk dl. As before we want to compute the 1ntegra1
(in ) of this quantity, which has the form 1hA%(r) [, [pm[h'/2(k — r/h)m[h1/2(l —
r/ h)](cos(l(ﬁgl)e) - Cos(lgli_ll)e)) dkdl. Focusing on the latter “troublesome” integral involv-
ing the term cos((k — 1)0)/(k — 1), we see that while its value is not small it does not
change inr (except for the dependence on A), which can be seen by the change of variables
k=k— r/h, I=1- r/h in the double integral. Therefore, the contribution to ug from this
part will be r-independent, and so 0,ug will not be too large For discrete frequencies this
problematic quantity will become h-periodic in r; the periodicity can be used to show that
it is almost constant with very small derivative.

The argument just sketched almost works. Unfortunately it doesn’t quite work, since
when the r-derivative of ug falls on the A(r)-term, one seems to need that wuy itself is small
— which is unfortunately not true. To overcome this difficulty, the argument presented
below includes a further tweak — it uses only frequencies that are multiples of R®~1/2 for
some & > 0.

In the rest of this section we use the preceding ideas to give an honest proof of the
upper bound. To get started, we fix a small § > 0 and we require from now on that all
the constants be independent of 6. For r € (0,79) and 6 € [0,27) we define w(r,0) =
Wose (T, ) + wp (1, 0) with

/4y p—1/2 V2 cos(kNY)

Wosc (7, 0) 1= A(T)Th5/2 Z m [h(;k kN )

k>0

where m should as before be a smooth non-negative mask, A will be chosen later, and
N := h9~1/2 has without loss of generality an integer value. Since in the following we will
need estimates on derivatives of m, we make a particular choice m(t) := exp(—1/(1—4[t|?))
if [t| < 1/2 and m = 0 elsewhere.

To estimate the excess energy, we now estimate term by term the right-hand side of (26).
Using definition and properties of W, and Wi (see (12) and (20)), we estimate difference
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of the third and fourth term in (26):

Wr(vhy),w(r, .)> W (vhir))

= % '0(7") + 2<vhr(r) + 2a1/?)

2

(27)

2
h1/2+6k. r
2 1 2 § 1/4,.3.—1/2 1/2
+A(T)h Zm [h k—OéS/ 'I“h /:| <T—as/ h1/2+5k‘> s (28)
k

where o(r) = A%(r)h? Y k>0 m?[hok — a;/4rh_1/2]. To estimate (28) we observe that
the function f(t) = hY/29t/r — at/*r/(h}/%+3t) vanishes for ¢t = at/*r/hY/%% and || <
h1/?2+9 /r nearby, and by the support condition for m we see that (28) is bounded from
above by A%(r)h®h=O[(h'/>10 /r)h=9)2 = A2(r)h/r2. Since in the following we will choose
A such that |A| < 1 and A will be supported away from the origin, we see that we will
have A2(r)h/r? < h. To simplify the notation, from now on we will assume that ag = 1
(in the general case all the subsequent constants might depend also on as).

In order to make (27) small, we would like to choose value of A(r) such that &(r) :=
A2(P)B8 [y m2[h0k — o *rh V2 Ak = A2(r) [y m2(k) dk = —2(2 4 201/%) if the right-
hand side is positive (wrinkled region), and A(r) = 0 if it is non-negative (non-wrinkled
region). We have introduced & as a proxy (a less oscillating approximation) for o, since
we do not want A to oscillate on scale %, which would be inevitable if we defined A using
o(r) = —2(”%(7") + 2ai/2). The advantage of using o instead of o to define value of A is
that in this case A? is as smooth as . In addition, since we will also need control on
derivatives of A (and not only A2), we cut off A on scale h near the transition between the
flat and wrinkled region (where derivatives of A would be singular):

0 re (07rw)’
o 1/2 _
n(5) (<2 (2 4 2027)) 7 (fm?) € o),

with 7 being a smooth cutoff for (2,00) in (1,00) (i.e. n(t) = 1if ¢t > 2 and n(t) = 0 if
t < 1). While without the cutoff  the derivative A’(r) would blow-up like (r —1,)"/2, due
to this cutoff we see that |A’| < h~/2, and similarly |A”| < h=3/2.

To estimate (27), we will use the following simple observation: For any smooth compactly
supported function f and any n € N there exists C, which depends on the support of f,
such that for any ¢ € (0,1) and any shift { € R we have

A(r) :=

(29)

th(thrc)—/Rf‘ <ot

kEZ

f(n)
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Indeed, for n = 0 this holds more generally for m-th derivative of f, since fR fm =0
implies

> F(tk + Q) /fm)‘—t

keZ

3 g tk+C)‘<t#{k £ (th 4 ¢) #0}Hf H

keZ
el

where ||g|/co := sup |g|. Moreover, for any m > 1 we have

>tk + Q) ‘ > Atk + ¢) t—l/ﬂm ‘ DMtk + Q) — F (th+ )
keZ keZ keZ
{3 D ek + ¢,
kEZ

and so by induction we get (29) for any derivative of f. In addition, since the previous
chain of equalities (except for the first one) holds also for m = 0, we get (29) also for f
itself, which finishes the proof of (29).

This observation, applied to f = m? with n > 1/4, yields after a change of variables
the estimate

S5 = A2 ST 2k — | m2ine
otr) =300 = 47 S /R (1K) dk|

< CAR ()" H|(m*) W loo < Cll(m?) M ||och < (Cpa/8)( /P,

where in the last step we used an estimate for ||(m?)™| . Using the triangle inequality
we have |o(r) +2(220) 1 201/%)12 < [5(r) +2(221) 1 201/%)| + |0 (r) — 5(r)[2. Since the first
term on the right-hand side vanishes if » —r,, & (0,2h) and is O(1) inside this interval, the
previous estimate on o (r) — &(r) implies that (27) is bounded by (C,,/8)Cm/%)p,

Next we turn to B(r) = 027r |0rwose|>dO = KOS, (N)72[0,(A(r)rm[hok — rh=1/2)))2.
From now on we will repeatedly use the fact that due to the support condition on m, we
have m[h%k — rh~=1/2] # 0 only for at most h~% values of k, and kN > (r/h). Due to this,
and also since |A/| < h='/2, we see that |B(r)| < h®h=9(r/h)~2(h 1/2)2 < h, where the
last h='/2 comes from derivative in . Hence in the wrinkled region |B(r)| < h and B = 0
otherwise, and so [;° (04 B(r) + B(r)?)rdr < h.

We now estimate the remainder Ry, which consists of five terms:

27 2 27 22
/ f — (87’5) _ f (87‘5) d9 Td'l"
2 0 2
2 — 2m 212
+/ ][ Opuo  ur  (Gpw)” T _][ @ow)”|” 19 . 47
o Jo r r 272 r 0 272

2h2 >
69u7«+r8( )+ —0,£0p¢ +h2|8w( w)|2+ﬂ\89r§2d0>rdr::ZTi.

i=1

0 27r1 1
S
0 0 2
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To do the estimates we first define uy and u,:

ug 4 (r,0) := A2(T)T2h5 Z m [hék — rhil/Q] m [h‘SZ — rhil/z} s1n§§€k+—l—l§?];77\m)’
kil
_ _ sin((k —1)N@)
up,_(r,0) == A%(r)rh? Zm Wk —rh= Y2 m |0l — rh™1/? ,
e ] ] S
1 r _
ug(r,0) := ﬂ(ueﬂ_ —ug ), up(r,0) := Ewosc(r, 0) + u,(r).

To estimate 77, we use definition of wee., together with the support condition on m
and the fact kN > h™1, to see that |wese| < h1=9/2 and |OrWose| S h1/2-0/2  Therefore
we immediately see that |0, (uy — @r)| < F|wose| + F|Orwose| S h1/2=9/2 Using £(r,0) =
Wosc(T, 9)—1—@“7“)—% we get (9,£)%— 02ﬂ(6r5)2 = (Ortosc)® — 02ﬂ(8rwos0)2+28rwoscarwh_
2%8,110050, which by previous estimates on wes. and O,wes. combined with estimate on
Opwy, (see (15)) implies |T1| < h'°. Using definition of ug we see that dgug + [(gw)? —

027r(89w)2]/2r = 0, which together with the fact (u, — @,)/r = wesc/R and estimate
[Wose| < h19/2 implies |Ty| < h2~°.

To estimate |T3| we first focus on |0, (ug /)|, by dealing with the + and — part separately.

For the + part we have

Oy (ug 4 /1°) =
he (3T<A2(r>> %: ml.. Jml.. .]W + A2(r) ; 8, (ml. . Jml.. .])W) 7
where here and below we use an abbreviation m/[...Jm[...] = m[hfsk—rh*l/?}m[hlsl_rh*l/?].

Since the summation is performed over h=29 pairs of k, 1, |0,(A?)] <1, and (k4+1)N > h~1,
the first half < h°h=29h < h'=9. The second half is different since the derivative falls on
m, which introduces additional factor h~/2, leading to the estimate < h'/279. Altogether
we see that |9, (ug 4 /r?)| < h'/279. For the — part we have

8T(UQ7_/7"2) =
in((k —1)NO) sin((k —I)NO)

R ( 0,(A? L A? -(m[. . m[...]) ——————= .

(o) Sl ml PPEZ I 20) S0l il DTES

kL k£l

Using arguments as above and N = h~(1/279) the first half < KR PN = h1/2-20  This

idea would not be enough for the second half, since the additional factor A~1/2 would ruin

the estimate. Instead, for fixed @ let us consider f(r) := h% Dkt m[hok — rh=1/2)m[ho1 —

_ sin((k—l)N®)
rh=17?] k—DN

over, we see that for any n € N we have || < (Cp,n)@m™p1-)/2 where we used

estimates on m(™ and the fact that each derivative introduces a factor h~'/2. Let us now

fix n > 1, and observe that f(™) has to have mean zero (due to periodicity of f ("_1)),

in particular there exists ¢t € (0,h'/?*%) such that f(™(¢t) = 0. Using the bound on

and observe that by a change of variables f(r) is h/2+9_periodic. More-
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f+1) and first-order Taylor expansion, we get for any s € (0,hY?%9) that |f(™(s)| <
||f(n+l)||ooh1/2+5 < (Cmn)(C;nn)h(—n)/2hl/2+5 < (Cmn)(C,’ﬂn)h(S—&-(l—n)/Z‘ We can now iter-
ate such an estimate, and since in each step we improve the exponent by ¢, after 1/(24)
steps we get that |f/| < (Cpun)©m™hY/2 with n ~ 1/8, which then leads to an estimate
|0, (ug— /12)| < (Cp/8)Cm/Dp1/2=20 " The estimate |9, (ug/r)| < (Cp/8)Cm/Dp1/2=28 fol-
lows immediately.

Using that £(r,60) = wesc(r, ) + wp,(r) — r2/2R and the definition of u,, we see that

a@“r + 3r550§ = (arwosc + arwh)aﬁwosc-

Since |Ggwose| < h~%2, which we get by direct computation, this in combination with the
estimate on 0,wesc and O wy, yields |Opu, + 0,E0pE| < hY/2-9 and so |T5] < h1—49,

To deal with Ty, we observe that 9,,(w — @) = 9pyWesc, which then using bounds on A’
and A” can be estimated by Ch~(119)/2_ which together with the additional h? factor gives
Ty] S R0

Finally, we see that |Orgwosc| S hY/2-0/2 and IT5| < A'~9 immediately follows. Al-
together we have shown that the excess energy is bounded by (C,,/8)(Cm/9p1=40 By
choosing § := (—log h)~1/2 we obtain an estimate € < exp (C(log(1/h))'/?log(log(1/h)))h,
and the proof of the upper bound is complete.

With this choice of §, we also observe that a simple estimate |Jpwesc| < Ch™%/% turns
into |dpwose| < Cexp((log1/h)/?). Hence, though the slopes are not uniformly bounded
in h, they explode with a rate slower than any power of h.
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