## MECHANICS - Problem Set 5, assigned 4/5/2022, due 4/26/2022

This (final) problem set is relatively short, since you're also working on your presentations.
(1) Consider a 1D particle with unit mass moving in a potential $U(x)$, in other words the ODE $\ddot{x}=-U^{\prime}(x)$, whose Hamiltonian is $H=T+U$ with $T=\frac{1}{2} \dot{x}^{2}$. Suppose the level set $H=E$ is a closed orbit, and let $A(E)$ be the area enclosed by this orbit in the $(x, \dot{x})$ plane. Show that the period of the orbit is then $d A / d E$.
(2) Consider a particle with unit mass in the plane, which is constrained to stay on the circle $|x|=r(t)$ where $r$ is a fixed function of time. (Aside from this constraint there are no other forces). In polar coordinates, the particle's location is fully determined by $\theta(t)$ (since its distance from the origin $r(t)$ is fixed in advance).
(a) What is the associated Lagrangian variational principle? What ODE must $\theta(t)$ solve?
(b) What is the Hamiltonian description of this mechanical system?
(c) Is the value of $H$ conserved? Why or why not?
(3) (The "principle of least travel time.") Consider an inhomogeneous medium in which the speed of travel at $x$ is $1 / f(x)$ (a positive function of location, independent of direction). Our starting point is the observation that for a parametrized path $y(s)$ from $y\left(s_{1}\right)=x_{1}$ to $y\left(s_{2}\right)=x_{2}$, the associated travel time is

$$
\int_{s_{1}}^{s_{2}} f(y(s))|\dot{y}| d s
$$

A critical point of this functional is known as a "path of least travel time" (though this terminology is sloppy, since it might be just a saddle point rather than a local minimum of the functional). Consider the mechanical system with Lagrangian $L(x, \dot{x})=\frac{1}{2} f^{2}(x)|\dot{x}|^{2}$. Show that $x(t)$ is a critical point of the associated Lagrangian variational principle

$$
\int_{t_{1}}^{t_{2}} \frac{1}{2} f^{2}(x(t))|\dot{x}|^{2} d t
$$

if and only if (i) it is a path of least travel time, and (2) the path is parametrized so that $f^{2}\left(x(t)|\dot{x}(t)|^{2}\right.$ is constant. (Note: this problem generalizes the case $f=1$, which was discussed in the Lecture 8 notes.)
(4) Consider a 3 -dimensional particle moving under the influence of a force $F=-\nabla U$. Suppose that in cylindrical coordinates $(\rho, \theta, z)$, the potential has the form $U=$ $U(\rho, k \theta+z)$ for some constant $k$. Show that then $m \dot{z}-m \rho^{2} \dot{\theta} / k$ is constant along trajectories. (This is another instance of Noether's theorem.)

