MECHANICS – Problem Set 2, distributed 2/8/22, due 2/22/2022

- (1) Consider a one-dimensional inextensible rod in the plane with no body load, and assume the constitutive law $M(s) = A\theta_s$. If the rod has length L, then our reference interval can be (0, L).
 - (a) Suppose $\theta(0) = \theta_0$ and $\theta(L) = -\theta_0$ for some $\theta_0 \in (0, \pi/2)$, and assume no forces are applied at the ends of the rod. Show that the rod forms a piece of a circle, and that its two ends lie at the same height. What is the radius of the circle?
 - (b) Now suppose the rod sits on a table (so the two ends lie at the same height), but rather than specifying θ at the ends the rod has equal and opposite horizontal forces holding it in place (force $(-\lambda, 0)$ at the right end and force $(\lambda, 0)$ at the left end), with no applied bending moment $(\theta'(0) = \theta'(L) = 0)$. What differential equation and boundary condition does $\theta(s)$ solve? Show (using the differential equation, but without actually solving it) that the ends do indeed lie at the same height. Does this rod form a piece of a circle? (Why or why not?)
- (2) The bending stiffness of xerox paper. Recall our discussion of "the xerox paper problem" from Lecture 2: consider a standard 8.5×11 sheet of paper, held at one edge so the tangent there is vertical. We showed that if $r(s) = (\cos \theta(s), \sin \theta(s), 0)$ describes its profile then

$$A\theta'' + f_0 s \cos \theta(s) = 0$$

on 0 < s < L, with boundary conditions

$$\theta'(0) = 0, \quad \theta(L) = -\pi/2,$$

where s = 0 corresponds to the free edge and s = L corresponds to the edge being held. Here L has dimensions of length (for standard xerox paper it is 11 inches) and A/f_0 has dimensions of (length)³ (this is clear from the equation, since θ is dimensionless and s has dimensions of length). Evidently, $\alpha = \frac{A}{f_0 L^3}$ is dimensionless. Estimate the value of α for a standard sheet of xerox paper. [Comment: I expect a ballpark estimate, not an exact answer. I know at least two methods: one is to nondimensionalize the differential equation and solve it numerically for different choices of $\alpha = \frac{A}{f_0 L^3}$, then compare the result to what a sheet of paper does; the other uses Problem 4.17 of Howell-Kozyreff-Ockendon. You are, of course, only expected to offer one solution.]

(3) A variational perspective on bifurcation of the elastica. Recall from the Lecture 2-3 notes that equilibrium configurations of the elastica (with length 1 and the physical constant A set to 1) are critical points of the functional

$$E[\theta] = \int_0^1 \frac{1}{2} \theta_s^2 + \lambda \cos \theta \, ds,$$

and that (to leading order) the bifurcation diagram is described by $\theta(s) = g\phi(s)$ with

$$\lambda - \lambda_1 = \frac{\pi^2}{32}g^2 \tag{1}$$

where $\phi(s) = \sin(\frac{\pi}{2}s)$ and $\lambda_1 = \pi^2/4$. Give another "derivation" of (1) by (i) assuming that $\theta(s) = g\phi(s)$ for some g, (ii) estimating $E[\theta]$ as a function of g, using the approximation $\cos \theta \approx 1 - \frac{1}{2}\theta^2 + \frac{1}{24}\theta^4$, then (iii) considering the condition that g be a critical point of the resulting expression. (I put "derivation" in quotes, because a proper explanation why it's sufficient to consider $\theta = g\phi$ requires the analysis that's behind Liapunov-Schmidt reduction.)

- (4) **Bifurcation of an imperfect elastica.** Consider an imperfect elastica, with (constant) intrinsic curvature δ . This means the constitutive law is $m_3 = A(\theta' \delta)$. We take the length to be 1, and the boundary conditions to be the same as considered in Lecture 2: the left side (s = 0) is clamped in a horizontal position, while the right side (s = 1) is loaded horizontally. For simplicity we set A = 1.
 - (a) Show that the associated boundary value problem is

$$\theta'' + \lambda \sin \theta = 0, \quad \theta(0) = 0, \ \theta'(1) = \delta.$$

(b) Show that solutions of this boundary-value problem are critical points of

$$E = \int_0^1 \frac{1}{2} (\theta' - \delta)^2 + \lambda \cos \theta \, ds$$

subject to boundary condition $\theta(0) = 0$. (Note that I have not imposed $\theta'(1) = \delta$; you must explain why a critical point satisfies this "natural boundary condition.")

(c) Consider the associated linear problem

$$u'' + \lambda_0 u = f$$
, $u(0) = 0$, $u'(1) = g$

with $\lambda_0 = \pi^2/4$. Show that for a solution to exist, the data must satisfy $\int_0^1 f(s)\phi(s) ds = g$ with $\phi(s) = \sin(\frac{\pi}{2}s)$. [More is true: when this condition holds a solution exists, and is unique up to an additive multiple of $\phi(s)$. You'll need this in part (d); I'm not asking you to prove it, but if you've taken PDE then you should know how to give a proof.]

(d) Seek a formal solution for the configuration of the buckled structure by means of a perturbation expansion

$$\theta = 0 + \epsilon \theta^{(1)} + \epsilon^2 \theta^{(2)} + \dots$$

$$\delta = 0 + \epsilon \delta^{(1)} + \epsilon^2 \delta^{(2)} + \dots$$

$$\lambda = \pi^2 / 4 + \epsilon \lambda^{(1)} + \epsilon^2 \lambda^{(2)} + \dots$$

Reconcile your answer with your physical intuition about which way the elastica should buckle (depending on the sign of δ).

(e) Liapunov-Schmidt reduction says that the equilibrium equation can be expressed in the form

$$f(x,\mu;\delta) = 0$$

with the notation

$$\theta = x\phi + \tilde{\theta}, \quad \tilde{\theta} \perp \phi$$
$$\mu = \lambda - \pi^2/4.$$

Show that your answer to (d) is consistent with f having a Taylor expansion near 0 of the form

$$f(x,\mu;\delta) \approx x^3 + c_1\mu x + c_2\delta$$

for suitable choices of the constants c_1 and c_2 .

(f) Give a variational perspective on this problem, analogous to the one requested in Problem 2 for the case $\delta = 0$.