
MECHANICS – Problem Set 2, distributed 2/8/22, due 2/22/2022

(1) Consider a one-dimensional inextensible rod in the plane with no body load, and
assume the constitutive law M(s) = Aθs. If the rod has length L, then our reference
interval can be (0, L).

(a) Suppose θ(0) = θ0 and θ(L) = −θ0 for some θ0 ∈ (0, π/2), and assume no forces
are applied at the ends of the rod. Show that the rod forms a piece of a circle,
and that its two ends lie at the same height. What is the radius of the circle?

(b) Now suppose the rod sits on a table (so the two ends lie at the same height), but
rather than specifying θ at the ends the rod has equal and opposite horizontal
forces holding it in place (force (−λ, 0) at the right end and force (λ, 0) at the left
end), with no applied bending moment (θ′(0) = θ′(L) = 0). What differential
equation and boundary condition does θ(s) solve? Show (using the differential
equation, but without actually solving it) that the ends do indeed lie at the same
height. Does this rod form a piece of a circle? (Why or why not?)

(2) The bending stiffness of xerox paper. Recall our discussion of “the xerox paper
problem” from Lecture 2: consider a standard 8.5 × 11 sheet of paper, held at one
edge so the tangent there is vertical. We showed that if r(s) = (cos θ(s), sin θ(s), 0)
describes its profile then

Aθ′′ + f0s cos θ(s) = 0

on 0 < s < L, with boundary conditions

θ′(0) = 0, θ(L) = −π/2,

where s = 0 corresponds to the free edge and s = L corresponds to the edge being held.
Here L has dimensions of length (for standard xerox paper it is 11 inches) and A/f0 has
dimensions of (length)3 (this is clear from the equation, since θ is dimensionless and
s has dimensions of length). Evidently, α = A

f0L3 is dimensionless. Estimate the value

of α for a standard sheet of xerox paper. [Comment : I expect a ballpark estimate,
not an exact answer. I know at least two methods: one is to nondimensionalize the
differential equation and solve it numerically for different choices of α = A

f0L3 , then
compare the result to what a sheet of paper does; the other uses Problem 4.17 of
Howell-Kozyreff-Ockendon. You are, of course, only expected to offer one solution.]

(3) A variational perspective on bifurcation of the elastica. Recall from the
Lecture 2-3 notes that equilibrium configurations of the elastica (with length 1 and
the physical constant A set to 1) are critical points of the functional

E[θ] =

∫ 1

0

1

2
θ2s + λ cos θ ds,

and that (to leading order) the bifurcation diagram is described by θ(s) = gφ(s) with

λ− λ1 =
π2
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where φ(s) = sin
(
π
2 s
)

and λ1 = π2/4. Give another “derivation” of (1) by (i) assum-
ing that θ(s) = gφ(s) for some g, (ii) estimating E[θ] as a function of g, using the
approximation cos θ ≈ 1 − 1

2θ
2 + 1

24θ
4, then (iii) considering the condition that g be

a critical point of the resulting expression. (I put “derivation” in quotes, because a
proper explanation why it’s sufficient to consider θ = gφ requires the analysis that’s
behind Liapunov-Schmidt reduction.)

(4) Bifurcation of an imperfect elastica. Consider an imperfect elastica, with (con-
stant) intrinsic curvature δ. This means the constitutive law is m3 = A(θ′ − δ). We
take the length to be 1, and the boundary conditions to be the same as considered
in Lecture 2: the left side (s = 0) is clamped in a horizontal position, while the right
side (s = 1) is loaded horizontally. For simplicity we set A = 1.

(a) Show that the associated boundary value problem is

θ′′ + λ sin θ = 0, θ(0) = 0, θ′(1) = δ.

(b) Show that solutions of this boundary-value problem are critical points of

E =

∫ 1

0

1
2(θ′ − δ)2 + λ cos θ ds

subject to boundary condition θ(0) = 0. (Note that I have not imposed θ′(1) = δ;
you must explain why a critical point satisfies this ”natural boundary condition.”)

(c) Consider the associated linear problem

u′′ + λ0u = f, u(0) = 0, u′(1) = g

with λ0 = π2/4. Show that for a solution to exist, the data must satisfy∫ 1
0 f(s)φ(s) ds = g with φ(s) = sin(π2 s). [More is true: when this condition

holds a solution exists, and is unique up to an additive multiple of φ(s). You’ll
need this in part (d); I’m not asking you to prove it, but if you’ve taken PDE
then you should know how to give a proof.]

(d) Seek a formal solution for the configuration of the buckled structure by means
of a perturbation expansion

θ = 0 + εθ(1) + ε2θ(2) + . . .

δ = 0 + εδ(1) + ε2δ(2) + . . .

λ = π2/4 + ελ(1) + ε2λ(2) + . . .

Reconcile your answer with your physical intuition about which way the elastica
should buckle (depending on the sign of δ).

(e) Liapunov-Schmidt reduction says that the equilibrium equation can be expressed
in the form

f(x, µ; δ) = 0
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with the notation

θ = xφ+ θ̃, θ̃⊥φ
µ = λ− π2/4.

Show that your answer to (d) is consistent with f having a Taylor expansion
near 0 of the form

f(x, µ; δ) ≈ x3 + c1µx+ c2δ

for suitable choices of the constants c1 and c2.

(f) Give a variational perspective on this problem, analogous to the one requested
in Problem 2 for the case δ = 0.
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