MECHANICS - Problem Set 3, distributed 3/1/19, due 3/27/19. I'm giving you several
weeks, since this problem set is long and 3/20 is spring break.

These problems provide practice with basic concepts of 3D nonlinear elasticity, and explore various
reductions including balloons, elastic membranes, and compressible flow. Problem 1 is perhaps
the richest (so don’t leave it to the last minute). Problems 1-4 use only material we have already
covered in class; problem 5 concerns incompressible hyperelastic materials, a topic we’ll cover on
3/6 (it is discussed at the end of the Lecture 5 notes).

(1) Consider a spherical rubber balloon (such as you might buy in a toy store). To a reasonable
approximation we may:

e consider the reference domain to be a thin spherical annulus Q = {z : ro—e < |X| < ro+e€};
e consider the air pressure in the balloon to be a constant p;
e ignore the atmospheric pressure outside the balloon;

e consider experiments that are volume-controlled (fixing the volume of the interior of the
balloon) or pressure-controlled (fixing the air pressure in the balloon).

From common experience, it is difficult to start blowing up a balloon, but then it gets easier, though
eventually as the balloon gets large the blowing gets hard again (unless it bursts). This suggests a
pressure-volume relation of the type shown in figure 1 below.

(a) Assume the rubber is hyperelastic. Show that variational principle associated with a pressure-
controlled experiment involves the energy E = [, W(F) dX — p(volume inside balloon). (In
other words, check that this gives the correct equilibrium and boundary conditions.) What
variational principle is associated with a volume-controlled experiment?

(b) Consider the limit € — 0 and assume the deformation is uniform expansion (i.e. the sphere
X = rp is mapped by z(X) = AX to a sphere of radius Arg). Suppose the rubber is isotropic
and incompressible, so W has the form ® (A1, A2, A3) where A1, A2, and A3 are the principal
stretches (eigenvalues of (FTF)Y/2), which must satisfy AjAsA3 = 1. Show that when re-
stricted to the case of “uniform expansion” the pressure-controlled variational principle takes
the form E(\) = ¢1 F(\) — capA® with

F(A) =3\,
What are the constants ¢; and c3?
(¢) Two commonly-used constitutive laws for rubber are the neo-Hookean energy
D(A1, Az, As) = a(AT + A3 + A3 - 3)
with a > 0, and the Mooney-Rivlin energy
P(A1, A2, Ag) = a(A + A3+ A3 = 3) + (a/ K) A" + 057 + A5 = 3)

with a > 0 and K > 0 (typically 4 < K < 8). Are these laws consistent with the nonmonotone
pressure-volume relation shown in figure 17
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(d) Let’s think about the 1D energy E()), using the non-monotonicity of the pressure-volume
relation (as shown in Figure 1) but not using any special formula for F' (such as those in part
c). Evidently, certain values of the pressure p are consistent with 3 different volumes rather
than just one. For such p, E must have “double-well” structure, as shown in Figure 2. Show
that the two wells have exactly the same depth precisely when p = pg satisfies the “equal
area rule” sketched in Figure 3.

(e) In real pressure-controlled experiments, as p crosses the value pp, the balloon size changes
relatively suddenly) so that the volume occupies the deeper we e energetically preferre
latively suddenly that the vol ies the d 1l (th getically preferred
state). How can this be reconciled with our 1D model?

(2) A homogeneous elastic fluid is a hyperelastic material with an energy function W (F') = h(det F).
Show that the Cauchy stress is then 7 = —p(p)I, where p(p) = —h'(pr/p). [Here pg is the density
in Lagrangian, assumed constant, and p is the density in Eulerian variables.] Show that in this case
the equations of elastodynamics are precisely the compressible Euler equations

o (5 +0-v0) = =nl) + 01

op 0
el - N =
[Note: to calculate 8W/ O0F;o, when W (F) = h(det F') you'll to use Cramer’s Rule, which says that

QL) — (det F)(FT)~1]

(3) Consider a hyperelastic material, whose Piola-Kirchhoff stress tensor is given by P, = W /OF!.
Show that if W is frame-indifferent (i.e. if W(F') = W (RF') for all orientation-preserving rotations
R) then the associated Cauchy stress 7 satisfies 7(RF) = R7(F)RT.



(4) Consider a homogeneous, isotropic, hyperelastic material with energy function W (F') = (11, I2, I3),
where I, I3, I3 are the elementary symmetric functions of B = FFT (Iy = tr B, I = %[(tr B)? —
tr(B?)], I3 = det B). Show that the associated Cauchy stress has the form 7 = ¢oI + ¢1 B + ¢ B>
with

_ QO
QZ)O = 2671:))detF
_ o 1O =
G = 250 (det F)~! 4 25 (ir B)(det F)
0 -1
b = —2p(detF)

(5) Rubber is typically modelled as a homogeneous, isotropic, incompressible hyperelastic material.
The energy function for such a material has the form W (F') = (I3, I2), since all deformations must
satisfy the constraint det F' = 1. Its Cauchy stress has the form 7 = —pI + ¢1 B + ¢2B?, where
¢1, 2 have the form derived in Problem 4. Let’s explore how W can be determined experimentally,
using relatively simple experiments on thin membranes.

Consider a sheet (in reference coordinates) of length 24, width 2B, and thickness 2h, with
A, B > h. Consider deformations of the form

xl:)\Zle 7::]-5253’

which can be maintained by edge tractions alone (i.e. for which the the faces X3 = +h are traction-
free). Show that

L = /\f+)\§+—)\2)\2
12
12 == /\7% + )\7% + )\1)\2
and that the Cauchy stress is
1 oY oY
- 9 2 )\2
L W =) T an)
1 Y Y
— 9()\2 — 2
22 (A2 A%Ag)(ah +Mgn)
733 — 0
Tij =0 ’L#] .

Conclude that g—}ﬁ and % satisfy

o 1 AT B 3729

oL, — 2 -2 \ X122 AZ_1/A22
o _ —1 < i1 B T22 >
0L, 20220 \ W12 M1/

Thus by measuring the dependence of 711 and 19 on A1 and A one can determine the function ).



