
MECHANICS – Problem Set 3, distributed 3/1/19, due 3/27/19. I’m giving you several
weeks, since this problem set is long and 3/20 is spring break.

These problems provide practice with basic concepts of 3D nonlinear elasticity, and explore various
reductions including balloons, elastic membranes, and compressible flow. Problem 1 is perhaps
the richest (so don’t leave it to the last minute). Problems 1-4 use only material we have already
covered in class; problem 5 concerns incompressible hyperelastic materials, a topic we’ll cover on
3/6 (it is discussed at the end of the Lecture 5 notes).

(1) Consider a spherical rubber balloon (such as you might buy in a toy store). To a reasonable
approximation we may:

• consider the reference domain to be a thin spherical annulus Ω = {x : r0− ε < |X| < r0 + ε};

• consider the air pressure in the balloon to be a constant p;

• ignore the atmospheric pressure outside the balloon;

• consider experiments that are volume-controlled (fixing the volume of the interior of the
balloon) or pressure-controlled (fixing the air pressure in the balloon).

From common experience, it is difficult to start blowing up a balloon, but then it gets easier, though
eventually as the balloon gets large the blowing gets hard again (unless it bursts). This suggests a
pressure-volume relation of the type shown in figure 1 below.

(a) Assume the rubber is hyperelastic. Show that variational principle associated with a pressure-
controlled experiment involves the energy E =

∫
ΩW (F ) dX − p(volume inside balloon). (In

other words, check that this gives the correct equilibrium and boundary conditions.) What
variational principle is associated with a volume-controlled experiment?

(b) Consider the limit ε → 0 and assume the deformation is uniform expansion (i.e. the sphere
X = r0 is mapped by x(X) = λX to a sphere of radius λr0). Suppose the rubber is isotropic
and incompressible, so W has the form Φ(λ1, λ2, λ3) where λ1, λ2, and λ3 are the principal
stretches (eigenvalues of (F TF )1/2), which must satisfy λ1λ2λ3 = 1. Show that when re-
stricted to the case of “uniform expansion” the pressure-controlled variational principle takes
the form E(λ) = c1F (λ)− c2pλ

3 with

F (λ) = Φ(λ, λ, λ−2).

What are the constants c1 and c2?

(c) Two commonly-used constitutive laws for rubber are the neo-Hookean energy

Φ(λ1, λ2, λ3) = a(λ2
1 + λ2

2 + λ2
3 − 3)

with a > 0, and the Mooney-Rivlin energy

Φ(λ1, λ2, λ3) = a(λ2
1 + λ2

2 + λ2
3 − 3) + (a/K)(λ−2

1 + λ−2
2 + λ−2

3 − 3)

with a > 0 and K > 0 (typically 4 < K < 8). Are these laws consistent with the nonmonotone
pressure-volume relation shown in figure 1?
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(d) Let’s think about the 1D energy E(λ), using the non-monotonicity of the pressure-volume
relation (as shown in Figure 1) but not using any special formula for F (such as those in part
c). Evidently, certain values of the pressure p are consistent with 3 different volumes rather
than just one. For such p, E must have “double-well” structure, as shown in Figure 2. Show
that the two wells have exactly the same depth precisely when p = p0 satisfies the “equal
area rule” sketched in Figure 3.

(e) In real pressure-controlled experiments, as p crosses the value p0, the balloon size changes
(relatively suddenly) so that the volume occupies the deeper well (the energetically preferred
state). How can this be reconciled with our 1D model?

(2) A homogeneous elastic fluid is a hyperelastic material with an energy functionW (F ) = h(detF ).
Show that the Cauchy stress is then τ = −p(ρ)I, where p(ρ) = −h′(ρR/ρ). [Here ρR is the density
in Lagrangian, assumed constant, and ρ is the density in Eulerian variables.] Show that in this case
the equations of elastodynamics are precisely the compressible Euler equations

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p(ρ) + ρf

∂ρ

∂t
+
∑ ∂

∂xi
(ρvi) = 0 .

[Note: to calculate ∂W/∂Fiα when W (F ) = h(detF ) you’ll to use Cramer’s Rule, which says that
∂(detF )
∂F = (detF )(F T )−1.]

(3) Consider a hyperelastic material, whose Piola-Kirchhoff stress tensor is given by Piα = ∂W/∂F iα.
Show that if W is frame-indifferent (i.e. if W (F ) = W (RF ) for all orientation-preserving rotations
R) then the associated Cauchy stress τ satisfies τ(RF ) = Rτ(F )RT .
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(4) Consider a homogeneous, isotropic, hyperelastic material with energy functionW (F ) = ψ(I1, I2, I3),
where I1, I2, I3 are the elementary symmetric functions of B = FF T (I1 = trB, I2 = 1

2 [(trB)2 −
tr(B2)], I3 = detB). Show that the associated Cauchy stress has the form τ = φ0I + φ1B + φ2B

2

with

φ0 = 2
∂ψ

∂I3
detF

φ1 = 2
∂ψ

∂I1
(detF )−1 + 2

∂ψ

∂I2
(trB)(detF )−1

φ3 = −2
∂ψ

∂I2
(detF )−1 .

(5) Rubber is typically modelled as a homogeneous, isotropic, incompressible hyperelastic material.
The energy function for such a material has the form W (F ) = ψ(I1, I2), since all deformations must
satisfy the constraint detF = 1. Its Cauchy stress has the form τ = −pI + φ1B + φ2B

2, where
φ1, φ2 have the form derived in Problem 4. Let’s explore how W can be determined experimentally,
using relatively simple experiments on thin membranes.

Consider a sheet (in reference coordinates) of length 2A, width 2B, and thickness 2h, with
A,B � h. Consider deformations of the form

xi = λiXi , i = 1, 2, 3,

which can be maintained by edge tractions alone (i.e. for which the the faces X3 = ±h are traction-
free). Show that

I1 = λ2
1 + λ2

2 +
1

λ2
1λ

2
2

I2 =
1

λ2
1

+
1

λ2
2

+ λ2
1λ

2
2

and that the Cauchy stress is

τ11 = 2(λ2
1 −

1

λ2
1λ

2
2

)(
∂ψ

∂I1
+ λ2

2

∂ψ

∂I2
)

τ22 = 2(λ2
2 −

1

λ2
1λ

2
2

)(
ψ

∂I1
+ λ2

1

ψ

∂I2
)

τ33 = 0

τij = 0 i 6= j .

Conclude that ∂ψ
∂I1

and ∂ψ
∂I2

satisfy

∂ψ

∂I1
=

1

2(λ2
1 − λ2

2)

(
λ2

1τ11

λ2
1 − 1/λ2

1λ
2
2

− λ2
2τ22

λ2
2 − 1/λ2

1λ
2
2

)
∂ψ

∂I2
=

−1

2(λ2
1 − λ2

2)

(
τ11

λ2
1 − 1/λ2

1λ
2
2

− τ22

λ2
2 − 1/λ2

1λ
2
2

)
.

Thus by measuring the dependence of τ11 and τ22 on λ1 and λ2 one can determine the function ψ.
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