MECHANICS – Problem Set 3, distributed 3/1/19, due 3/27/19. I'm giving you several weeks, since this problem set is long and 3/20 is spring break.

These problems provide practice with basic concepts of 3D nonlinear elasticity, and explore various reductions including balloons, elastic membranes, and compressible flow. Problem 1 is perhaps the richest (so don't leave it to the last minute). Problems 1-4 use only material we have already covered in class; problem 5 concerns *incompressible* hyperelastic materials, a topic we'll cover on 3/6 (it is discussed at the end of the Lecture 5 notes).

(1) Consider a spherical rubber balloon (such as you might buy in a toy store). To a reasonable approximation we may:

- consider the reference domain to be a thin spherical annulus $\Omega = \{x : r_0 \epsilon < |X| < r_0 + \epsilon\};$
- consider the air pressure in the balloon to be a constant *p*;
- ignore the atmospheric pressure outside the balloon;
- consider experiments that are volume-controlled (fixing the volume of the interior of the balloon) or pressure-controlled (fixing the air pressure in the balloon).

From common experience, it is difficult to start blowing up a balloon, but then it gets easier, though eventually as the balloon gets large the blowing gets hard again (unless it bursts). This suggests a pressure-volume relation of the type shown in figure 1 below.

- (a) Assume the rubber is hyperelastic. Show that variational principle associated with a pressurecontrolled experiment involves the energy $E = \int_{\Omega} W(F) \, dX - p(\text{volume inside balloon})$. (In other words, check that this gives the correct equilibrium and boundary conditions.) What variational principle is associated with a volume-controlled experiment?
- (b) Consider the limit $\epsilon \to 0$ and assume the deformation is uniform expansion (i.e. the sphere $X = r_0$ is mapped by $x(X) = \lambda X$ to a sphere of radius λr_0). Suppose the rubber is isotropic and incompressible, so W has the form $\Phi(\lambda_1, \lambda_2, \lambda_3)$ where λ_1, λ_2 , and λ_3 are the principal stretches (eigenvalues of $(F^T F)^{1/2}$), which must satisfy $\lambda_1 \lambda_2 \lambda_3 = 1$. Show that when restricted to the case of "uniform expansion" the pressure-controlled variational principle takes the form $E(\lambda) = c_1 F(\lambda) c_2 p \lambda^3$ with

$$F(\lambda) = \Phi(\lambda, \lambda, \lambda^{-2}).$$

What are the constants c_1 and c_2 ?

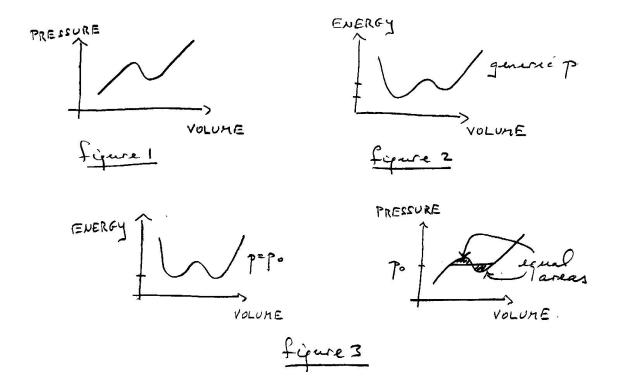
(c) Two commonly-used constitutive laws for rubber are the *neo-Hookean* energy

$$\Phi(\lambda_1, \lambda_2, \lambda_3) = a(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3)$$

with a > 0, and the *Mooney-Rivlin* energy

$$\Phi(\lambda_1, \lambda_2, \lambda_3) = a(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3) + (a/K)(\lambda_1^{-2} + \lambda_2^{-2} + \lambda_3^{-2} - 3)$$

with a > 0 and K > 0 (typically 4 < K < 8). Are these laws consistent with the nonmonotone pressure-volume relation shown in figure 1?



- (d) Let's think about the 1D energy $E(\lambda)$, using the non-monotonicity of the pressure-volume relation (as shown in Figure 1) but not using any special formula for F (such as those in part c). Evidently, certain values of the pressure p are consistent with 3 different volumes rather than just one. For such p, E must have "double-well" structure, as shown in Figure 2. Show that the two wells have exactly the same depth precisely when $p = p_0$ satisfies the "equal area rule" sketched in Figure 3.
- (e) In real pressure-controlled experiments, as p crosses the value p_0 , the balloon size changes (relatively suddenly) so that the volume occupies the deeper well (the energetically preferred state). How can this be reconciled with our 1D model?

(2) A homogeneous *elastic fluid* is a hyperelastic material with an energy function $W(F) = h(\det F)$. Show that the Cauchy stress is then $\tau = -p(\rho)I$, where $p(\rho) = -h'(\rho_R/\rho)$. [Here ρ_R is the density in Lagrangian, assumed constant, and ρ is the density in Eulerian variables.] Show that in this case the equations of elastodynamics are precisely the compressible Euler equations

$$\rho\left(\frac{\partial v}{\partial t} + v \cdot \nabla v\right) = -\nabla p(\rho) + \rho f$$
$$\frac{\partial \rho}{\partial t} + \sum \frac{\partial}{\partial x_i}(\rho v_i) = 0 .$$

[Note: to calculate $\partial W/\partial F_{i\alpha}$ when $W(F) = h(\det F)$ you'll to use Cramer's Rule, which says that $\frac{\partial(\det F)}{\partial F} = (\det F)(F^T)^{-1}$.]

(3) Consider a hyperelastic material, whose Piola-Kirchhoff stress tensor is given by $P_{i\alpha} = \partial W / \partial F_{\alpha}^{i}$. Show that if W is frame-indifferent (i.e. if W(F) = W(RF) for all orientation-preserving rotations R) then the associated Cauchy stress τ satisfies $\tau(RF) = R\tau(F)R^{T}$. (4) Consider a homogeneous, isotropic, hyperelastic material with energy function $W(F) = \psi(I_1, I_2, I_3)$, where I_1, I_2, I_3 are the elementary symmetric functions of $B = FF^T$ ($I_1 = \text{tr } B, I_2 = \frac{1}{2}[(\text{tr } B)^2 - tr(B^2)]$, $I_3 = \det B$). Show that the associated Cauchy stress has the form $\tau = \phi_0 I + \phi_1 B + \phi_2 B^2$ with

$$\phi_0 = 2 \frac{\partial \psi}{\partial I_3} \det F$$

$$\phi_1 = 2 \frac{\partial \psi}{\partial I_1} (\det F)^{-1} + 2 \frac{\partial \psi}{\partial I_2} (\operatorname{tr} B) (\det F)^{-1}$$

$$\phi_3 = -2 \frac{\partial \psi}{\partial I_2} (\det F)^{-1} .$$

(5) Rubber is typically modelled as a homogeneous, isotropic, *incompressible* hyperelastic material. The energy function for such a material has the form $W(F) = \psi(I_1, I_2)$, since all deformations must satisfy the constraint det F = 1. Its Cauchy stress has the form $\tau = -pI + \phi_1 B + \phi_2 B^2$, where ϕ_1, ϕ_2 have the form derived in Problem 4. Let's explore how W can be determined experimentally, using relatively simple experiments on thin membranes.

Consider a sheet (in reference coordinates) of length 2A, width 2B, and thickness 2h, with $A, B \gg h$. Consider deformations of the form

$$x_i = \lambda_i X_i , \quad i = 1, 2, 3,$$

which can be maintained by edge tractions alone (i.e. for which the the faces $X_3 = \pm h$ are traction-free). Show that

$$I_{1} = \lambda_{1}^{2} + \lambda_{2}^{2} + \frac{1}{\lambda_{1}^{2}\lambda_{2}^{2}}$$
$$I_{2} = \frac{1}{\lambda_{1}^{2}} + \frac{1}{\lambda_{2}^{2}} + \lambda_{1}^{2}\lambda_{2}^{2}$$

and that the Cauchy stress is

$$\begin{aligned} \tau_{11} &= 2(\lambda_1^2 - \frac{1}{\lambda_1^2 \lambda_2^2}) \left(\frac{\partial \psi}{\partial I_1} + \lambda_2^2 \frac{\partial \psi}{\partial I_2}\right) \\ \tau_{22} &= 2(\lambda_2^2 - \frac{1}{\lambda_1^2 \lambda_2^2}) \left(\frac{\psi}{\partial I_1} + \lambda_1^2 \frac{\psi}{\partial I_2}\right) \\ \tau_{33} &= 0 \\ \tau_{ij} &= 0 \quad i \neq j \;. \end{aligned}$$

Conclude that $\frac{\partial \psi}{\partial I_1}$ and $\frac{\partial \psi}{\partial I_2}$ satisfy

$$\frac{\partial \psi}{\partial I_1} = \frac{1}{2(\lambda_1^2 - \lambda_2^2)} \left(\frac{\lambda_1^2 \tau_{11}}{\lambda_1^2 - 1/\lambda_1^2 \lambda_2^2} - \frac{\lambda_2^2 \tau_{22}}{\lambda_2^2 - 1/\lambda_1^2 \lambda_2^2} \right)
\frac{\partial \psi}{\partial I_2} = \frac{-1}{2(\lambda_1^2 - \lambda_2^2)} \left(\frac{\tau_{11}}{\lambda_1^2 - 1/\lambda_1^2 \lambda_2^2} - \frac{\tau_{22}}{\lambda_2^2 - 1/\lambda_1^2 \lambda_2^2} \right)$$

Thus by measuring the dependence of τ_{11} and τ_{22} on λ_1 and λ_2 one can determine the function ψ .