
MECHANICS – Problem Set 2, distributed 2/14/19, due 2/27/2019

(1) The bending stiffness of xerox paper. Recall our discussion of “the xerox paper
problem” from Lecture 2: consider a standard 8.5 × 11 sheet of paper, held at one
edge so the tangent there is vertical. We showed that if r(s) = (cos θ(s), sin θ(s), 0)
describes its profile then

Aθ′′ + f0s cos θ(s) = 0

on 0 < s < L, with boundary conditions

θ′(0) = 0, θ(L) = −π/2,

where s = 0 corresponds to the free edge and s = L corresponds to the edge being held.
Here L has dimensions of length (for standard xerox paper it is 11 inches) and A/f0

has dimensions of (length)3 (this is clear from the equation, since θ is dimensionless
and s has dimensions of length). Evidently, α = A

f0L3 is dimensionless. Estimate the
value of α for a standard sheet of xerox paper. (I expect a ballpark estimate, not an
exact answer. Be sure to explain your method.)

(2) A variational perspective on bifurcation of the elastica. Recall from the
Lecture 2-3 notes that equilibrium configurations of the elastica (with length 1 and
the physical constant A set to 1) are critical points of the functional

E[θ] =
∫ 1

0

1
2
θ2
s + λ cos θ ds,

and that (to leading order) the bifurcation diagram is described by θ(s) = gφ(s) with

λ− λ1 =
π2

32
g2 (1)

where φ(s) = sin
(
π
2 s
)

and λ1 = π2/4. Give another “derivation” of (1) by (i) assum-
ing that θ(s) = gφ(s) for some g, (ii) estimating E[θ] as a function of g, using the
approximation cos θ ≈ 1 − 1

2θ
2 + 1

24θ
4, then (iii) considering the condition that g be

a critical point of the resulting expression. (I put “derivation” in quotes, because a
proper explanation why it’s sufficient to consider θ = gφ requires the analysis that’s
behind Liapunov-Schmidt reduction.)

(3) Bifurcation of an imperfect elastica. Consider an imperfect elastica, with (con-
stant) intrinsic curvature δ. This means the constitutive law is m3 = A(θ′ − δ). We
take the length to be 1, and the boundary conditions to be the same as considered
in Lecture 2: the left side (s = 0) is clamped in a horizontal position, while the right
side (s = 1) is loaded horizontally. For simplicity we set A = 1.

(a) Show that the associated boundary value problem is

θ′′ + λ sin θ = 0, θ(0) = 0, θ′(1) = δ.
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(b) Show that solutions of this boundary-value problem are critical points of

E =
∫ 1

0

1
2(θ′ − δ)2 + λ cos θ ds

subject to boundary condition θ(0) = 0. (Note that I have not imposed θ′(1) = δ;
you must explain why a critical point satisfies this ”natural boundary condition.”)

(c) Consider the associated linear problem

u′′ + λ0u = f, u(0) = 0, u′(1) = g

with λ0 = π2/4. Show that for a solution to exist, the data must satisfy∫ 1
0 f(s)φ(s) ds = g with φ(s) = sin(π2 s). [More is true: when this condition

holds a solution exists, and is unique up to an additive multiple of φ(s). You’ll
need this in part (d); I’m not asking you to prove it, but if you’ve taken PDE
then you should know how to give a proof.]

(d) Seek a formal solution for the configuration of the buckled structure by means
of a perturbation expansion

θ = 0 + εθ(1) + ε2θ(2) + . . .

δ = 0 + εδ(1) + ε2δ(2) + . . .

λ = π2/4 + ελ(1) + ε2λ(2) + . . .

Reconcile your answer with your physical intuition about which way the elastica
should buckle (depending on the sign of δ).

(e) Liapunov-Schmidt reduction says that the equilibrium equation can be expressed
in the form

f(x, µ; δ) = 0

with the notation

θ = xφ+ θ̃, θ̃⊥φ
µ = λ− π2/4.

Show that your answer to (d) is consistent with f having a Taylor expansion
near 0 of the form

f(x, µ; δ) ≈ x3 + c1µx+ c2δ

for suitable choices of the constants c1 and c2.

(f) Give a variational perspective on this problem, analogous to the one requested
in Problem 2 for the case δ = 0.
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