(1) The bending stiffness of xerox paper. Recall our discussion of "the xerox paper problem" from Lecture 2: consider a standard 8.5×11 sheet of paper, held at one edge so the tangent there is vertical. We showed that if $r(s)=(\cos \theta(s), \sin \theta(s), 0)$ describes its profile then

$$
A \theta^{\prime \prime}+f_{0} s \cos \theta(s)=0
$$

on $0<s<L$, with boundary conditions

$$
\theta^{\prime}(0)=0, \quad \theta(L)=-\pi / 2
$$

where $s=0$ corresponds to the free edge and $s=L$ corresponds to the edge being held. Here L has dimensions of length (for standard xerox paper it is 11 inches) and A / f_{0} has dimensions of (length) ${ }^{3}$ (this is clear from the equation, since θ is dimensionless and s has dimensions of length). Evidently, $\alpha=\frac{A}{f_{0} L^{3}}$ is dimensionless. Estimate the value of α for a standard sheet of xerox paper. (I expect a ballpark estimate, not an exact answer. Be sure to explain your method.)
(2) A variational perspective on bifurcation of the elastica. Recall from the Lecture 2-3 notes that equilibrium configurations of the elastica (with length 1 and the physical constant A set to 1) are critical points of the functional

$$
E[\theta]=\int_{0}^{1} \frac{1}{2} \theta_{s}^{2}+\lambda \cos \theta d s
$$

and that (to leading order) the bifurcation diagram is described by $\theta(s)=g \phi(s)$ with

$$
\begin{equation*}
\lambda-\lambda_{1}=\frac{\pi^{2}}{32} g^{2} \tag{1}
\end{equation*}
$$

where $\phi(s)=\sin \left(\frac{\pi}{2} s\right)$ and $\lambda_{1}=\pi^{2} / 4$. Give another "derivation" of (1) by (i) assuming that $\theta(s)=g \phi(s)$ for some g, (ii) estimating $E[\theta]$ as a function of g, using the approximation $\cos \theta \approx 1-\frac{1}{2} \theta^{2}+\frac{1}{24} \theta^{4}$, then (iii) considering the condition that g be a critical point of the resulting expression. (I put "derivation" in quotes, because a proper explanation why it's sufficient to consider $\theta=g \phi$ requires the analysis that's behind Liapunov-Schmidt reduction.)
(3) Bifurcation of an imperfect elastica. Consider an imperfect elastica, with (constant) intrinsic curvature δ. This means the constitutive law is $m_{3}=A\left(\theta^{\prime}-\delta\right)$. We take the length to be 1 , and the boundary conditions to be the same as considered in Lecture 2: the left side $(s=0)$ is clamped in a horizontal position, while the right side $(s=1)$ is loaded horizontally. For simplicity we set $A=1$.
(a) Show that the associated boundary value problem is

$$
\theta^{\prime \prime}+\lambda \sin \theta=0, \quad \theta(0)=0, \theta^{\prime}(1)=\delta
$$

(b) Show that solutions of this boundary-value problem are critical points of

$$
E=\int_{0}^{1} \frac{1}{2}\left(\theta^{\prime}-\delta\right)^{2}+\lambda \cos \theta d s
$$

subject to boundary condition $\theta(0)=0$. (Note that I have not imposed $\theta^{\prime}(1)=\delta$; you must explain why a critical point satisfies this "natural boundary condition.")
(c) Consider the associated linear problem

$$
u^{\prime \prime}+\lambda_{0} u=f, \quad u(0)=0, \quad u^{\prime}(1)=g
$$

with $\lambda_{0}=\pi^{2} / 4$. Show that for a solution to exist, the data must satisfy $\int_{0}^{1} f(s) \phi(s) d s=g$ with $\phi(s)=\sin \left(\frac{\pi}{2} s\right)$. [More is true: when this condition holds a solution exists, and is unique up to an additive multiple of $\phi(s)$. You'll need this in part (d); I'm not asking you to prove it, but if you've taken PDE then you should know how to give a proof.]
(d) Seek a formal solution for the configuration of the buckled structure by means of a perturbation expansion

$$
\begin{aligned}
\theta & =0+\epsilon \theta^{(1)}+\epsilon^{2} \theta^{(2)}+\ldots \\
\delta & =0+\epsilon \delta^{(1)}+\epsilon^{2} \delta^{(2)}+\ldots \\
\lambda & =\pi^{2} / 4+\epsilon \lambda^{(1)}+\epsilon^{2} \lambda^{(2)}+\ldots
\end{aligned}
$$

Reconcile your answer with your physical intuition about which way the elastica should buckle (depending on the sign of δ).
(e) Liapunov-Schmidt reduction says that the equilibrium equation can be expressed in the form

$$
f(x, \mu ; \delta)=0
$$

with the notation

$$
\begin{aligned}
\theta & =x \phi+\tilde{\theta}, \quad \tilde{\theta} \perp \phi \\
\mu & =\lambda-\pi^{2} / 4 .
\end{aligned}
$$

Show that your answer to (d) is consistent with f having a Taylor expansion near 0 of the form

$$
f(x, \mu ; \delta) \approx x^{3}+c_{1} \mu x+c_{2} \delta
$$

for suitable choices of the constants c_{1} and c_{2}.
(f) Give a variational perspective on this problem, analogous to the one requested in Problem 2 for the case $\delta=0$.

