Derivative Securities — Fall 2012 — Section 8
Notes by Robert V. Kohn, extended and improved by Steve Allen.
Courant Institute of Mathematical Sciences.

This section begins a segment on interest-based instruments. In Hull, the corresponding
material is in Chapters 4 and 7. (Chapter 6, on interest-based futures, is also worth reading,
but we won’t do much on futures here.)

As in Section 1, we begin by discussing some basic instruments (bonds, forward rate agree-
ments, swaps, caps, floors, swaptions). We’ll price the simplest ones (just as we were already
able to price forward contracts in Section 1). Those that behave like options will be priced
next week using Black’s formula. (We’ll also briefly discuss the use of trees and continuous
time models before we’re done.)

The following discussion ignores credit risk. That isn’t because credit risk is negligible — far
from it. But credit risk (the risk that your counterparty may default) is entirely different
from interest rate risk (uncertainty about future interest rates). The methods for dealing
with it are also quite different (e.g. credit default swaps). Therefore it is natural to focus
on credit risk separately; we’ll get to it in the last two lectures.

Our discussion focuses on LIBOR as the risk-free rate. For many years this was the industry
standard. Recently this standard seems somewhat flawed, since (a) during the 2007-2008
financial crisis LIBOR rates were far above US Treasury rates, presumably on account of
credit risk; (b) banks don’t do much lending to each other overnight these days (instead,
they deal with central banks); and (c) evidence is emerging that banks have reported false
data to the process that determines LIBOR, either for the purposes of manipulation or to
hide their counterparties’ concerns about their credit-worthiness. (For a discussion of some
of these issues, see the article “The rotten heart of finance” in the July 7, 2012 issue of
The Economist magazine.) The direction things are moving is captured by the abstract of
a presentation by Fabio Mercurio on Nov 19, 2012 at NYU’s Kimmel Center: “The recent
financial crisis has had a strong impact on fixed income markets. Various market rates that
used to track each other closely, such as LIBOR and OIS rates, suddenly diverged during
the 2007 liquidity crisis, introducing significant “basis spreads” which cannot be neglected
in models. Market practice has thereafter forsaken the traditional concept of a single zero-
coupon curve, and moved to a multi-curve set up by constructing and using different forward
and discount curves. In this talk, we review the new modeling issues which arise from the
use of multiple yield curves for pricing interest rate derivatives for a given currency.”

Such issues can only be addressed in a more advanced setting (such as the course Interest
Rate and FX Models). Our goal is to master the basics, so we will suppose there is a single
risk-free rate (which we usually think of as the LIBOR rate).
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Bond prices and term structure. The time-value of money is expressed by the discount
factor
B(t,T) = value at time ¢ of a dollar received at time 7.



This is, by its very definition, the price at time ¢ of a zero-coupon bond which pays one
dollar at time 7. If interest rates are stochastic then B(t,7") will not be known until
time t. Prior to time ¢ it is random — just as in our discussion of equities, a stock price
s(t) or a forward price F(t) was random. Note however that B(¢,T') is a function of two
variables, the initiation time ¢ and the maturity time 7. Its dependence on T reflects the
term structure of interest rates. (The forward prices in our prior discussions also had a term
structure — the forward price depends on the settlement date — but the settlement date was
usually held fixed. With interest rates, by contrast, we’ll be considering many maturities
simultaneously.) We usually take the convention that the present time is ¢ = 0; thus what
is observable now is B(0,7") for all T > 0.

A central principle for dealing with the term structure of interest rates is to use the same
discount factor B(t,T') for any cash flow that occurs at time 7', regardless of what other
cash flows it might be packaged with. For example, a cash flow occurring on June 15, 2012
will the discounted by the same factor whether it is a principal payment on a zero-coupon
bond, a coupon payment on a 10 year bond, or a coupon payment on a 20 year bond. This
principle follows from the law of one price; if it didn’t hold we would be able to design
arbitrage strategies, making money without taking any risk.

There are several equivalent ways to represent the time-value of money. The yield y(t,T)
iS deﬁned by
B(t,T) = e v&D(T-1),

it is the unique constant interest rate that would have the same effect as B(¢,T) under
continuous compounding. The term rate R(t,T) is defined by

1
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B(t,T) =

it is the unique interest rate that would have the same effect as B(t,T") with no compounding.
One can also define a term rate based on a specified compounding. For example, with annual
compounding R(t,T) will be the rate such that

1
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B(t,T) =

The instantaneous forward rate f(t,T) is defined by
B(t.T) = o I Fer)ar,

it is the unique deterministic time-varying interest rate that describes all the discount
factors with initial time ¢ and various maturities.! We can easily solve for y(¢,T), R(t,T),
or f(t,T) in terms of B(t,T). Therefore each contains the same information as B(t,T)
as t and T vary. (Let us also mention one more: the discount rate I(¢,7T), defined by
B(t,T)=1—1(t,T)(T —t). It has little conceptual importance; however interest rates for
US Treasury bills are usually presented by tabulating these discount rates.)

Do not confuse this with the forward term rate, introduced below and called fo(t, T).



Most long-term bonds have coupon payments as well as a final payment. The value of the
bond at time 0 is the sum of the present values of all future payments. For a fixed-rate bond
the coupon payments (amount ¢; at time ¢;) are fixed in advance, as is the final payment
(amount F' at time 7"). The value of the bond at time ¢ is thus

cash price = Z ¢;B(t,t;) + FB(t,T).

This is known as the cash price; it is a consequence of the principle of no arbitrage. Notice
that the cash price is a discontinuous function of time: it rises gradually between coupon
payments, then falls abruptly at each coupon date ¢; because the holder of the bond collects
the coupon payment. The cash price is not the value you’ll see quoted in the newspaper.
What you find there is the difference between the cash price and the interest accrued since
the last coupon date:

quoted price = Z ¢;jB(t,t;) + FB(t,T) — accrued interest.

Notice that the quoted price is a continuous function of time, since the accrued interest is
discontinuous (it resets to zero at each coupon payment) and the two discontinuities cancel.
Another name for the cash price is the dirty price; another name for the quoted price is the
clean price.

A floating-rate bond is one whose interest rate (coupon rate) is reset at each coupon date. By
definition, after each coupon payment its value returns to its face value. A typical example
is a one-year floating-rate note with semiannual payments and face value one dollar, pegged
to the LIBOR (London Interbank Offer) rate. Suppose at date 0 the LIBOR term interest
rate for six-month-maturity is 5.25 percent per annum, but at the six-month reset the
LIBOR six-month-maturity rate has changed to 5.6 percent per annum. Then the coupon
payment due at six months is .0525/2 = .02625, and the coupon payment due at one year
is .056/2 = .028; in addition the face value (one dollar) is repaid since the bond matures.
Note the convention: interest is paid at the end of each period, using the interest rate set
at the beginning of the period.

The value of the fixed-rate bond was the discounted value of its future income stream. The
same is true of the floating-rate bond, provided that we discount using the LIBOR rate. In
other words for this purpose B(t,T') should be the value at time t of a LIBOR contract
worth one dollar at time 7. In fact, the value of the floating-rate bond at six months (just
after the first coupon payment) is the value at that time of the payments to be made at
one year. If ¢ is six months and 7" is 1 year then this is

B(t,T)(.028 +1) = (028 +1) = 1.

1+.028

The bond could be sold for this value — so holding it at six months is exactly the same as
having one dollar of income at six months. The value of the bond at time 0 is similarly

1
B(0,t)(first coupon + value at six months) = m(.ozw&s +1)=1

Our calculation is clearly not special to the example; it resides in the fact that B(¢,T) =
1/(1 4+ R(t, T)(T —1)).



> 3Kk sk ok ok sk ok sk sk ok skok sk ok ok kokoskoskokokosk sk

Duration. A useful tool for capturing the dependence of a bond price on interest rates is
the duration of the bond.

Consider the derivative of the value of a single coupon payment with respect to the yield
implicit in the associated discount rate. The present value of the coupon payment is
¢;jB(0,t;) = c;e Vb0 its derivative with respect to a change in the rate y(0,t;) is
—tjcje YOt = —t.c;B(0,t;). The derivative of the bond price with respect to a change
in each yield will be just the sum of these individual derivatives:

> —tj¢;B(0,t;) + (=T)FB(0,T).

The duration of a set of cash flows is defined as the weighted average of the time to maturity
of the cash flows, using weights proportional to the present values. For a bond, the duration
is:

Z tjCjB(O, tj) + TFB(O, T)
> ¢;B(0,t;) + FB(0,T)
Evidently, the duration of a bond is equal to minus the derivative of the bond price (with
respect to yield) divided by the bond price.

The duration of a bond increases with longer time to maturity and with lower coupon
payments (the lower the coupon payment, the greater is the proportion of the present value
of the cash flows that is attributable to the final return of principal).

There are other measures of sensitivity of bond price to changes in yield. For example,
the wvalue of a basis point tells you how much the price of a bond (quoted as the price per
$100 in principal) will change given a one basis point change in yield (e.g., a change from a
5.52% yield to a 5.53% yield). Since the derivative of the bond price is relative to a change
in the yield of 1 unit (= 100%), the value of a basis point is equal to the derivative divided
by 10,000. For a bond with price close to 100, the value of a basis point will be very close
to duration divided by 100. For example, a 5% coupon bond with 10 years to maturity
selling at par will have a duration of about 8 years and a value of a basis point of about .08,
meaning that a one basis point decrease in yield will raise the price from 100.00 to about
100.08. But, a zero coupon bond with 10 years to maturity with a yield of 5.00% will have
a duration of 10 years but a value of a basis point of about .06; the difference is that the
duration, the weighted average time to maturity, gives the derivative of the price divided
by the bond price and the bond price in this case is about $60 per $100 of principal.

More detail on duration can be found in Hull, section 4.8.
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Forward rates and forward rate agreements. When interest rates are deterministic
B(0,t)B(t,T) = B(0,T) (this was on Homework 1). When they are random this is clearly
not the case, since B(0,t) and B(0,7T) are known at time 0 while B(¢,T) is not. However
the ratio

Fy(t,T) = B(0,7)/B(0,1)



still has an important interpretation: it is the discount factor (for time-t borrowing, with
maturity 7') that can be locked in now, at no cost, by a combination of market positions.
In fact, consider the following portfolio:

(a) long a zero-coupon bond worth one dollar at time 7" (present value B(0,7")), and
(b) short a zero-coupon bond worth B(0,7)/B(0,t) at time ¢ (present value —B(0,7)).

Its present value is 0, and its holder pays B(0,7')/B(0,t) at time ¢ and receives one dollar
at time 7. Thus the holder of this portfolio has “locked in” Fy(t,T') as his discount rate for
borrowing from time t to time 7.

This discussion makes reference to just three times: 0, ¢ and 7. So it is natural and
conventional to work with term rates rather discount rates. Defining fy(¢,T") by

1
B T) =17 folt, T)(T — 1)

we have shown that fo(¢,T) is the forward term rate for borrowing from time ¢ to time 7.2
In other words, an agreement now to borrow or lend later (at time ¢, with maturity 7") has
present value zero, if it stipulates that the term rate is fo(¢, 7).

What about a contract to borrow or lend at a rate Ry other than fo(t,7')? This is known
as a forward rate agreement. We can value it by an easy modification of the argument used
above. Suppose the principal (the amount to be borrowed at time ¢) is L. Then the contract
provides a payment at time T of

(1 + RKAT)L = (1 + foAT)L + (RK — f())ATL

where fo = fo(t,T) and AT = T — t. So the contract is equivalent to a forward rate
agreement at rate fo(¢,7) on principal L plus an additional payment of (Rx — fo)AT - L
at time 7T'. The forward agreement at rate fy has present value 0, so the contract’s present
value (to the lender) is

B(0,T)(Rx — fo)AT - L.

The following observations are useful in connection with swaps (which we’ll discuss shortly):

(1) A forward rate agreement is equivalent to an agreement that the lending party may
pay interest at the market rate R(t,T) but receive interest at the contract rate Ry .
Indeed, the lender pays L at time t and receives (1 + RxgAT)L at time T. We may
suppose that the payment at time ¢ is borrowed at the market rate. Then the lender
is (a) borrowing L at the market rate R at time ¢, repaying (1 + RAT)L at time T,
and (b) lending L to the counterparty at time ¢, receiving repayment (1 + RxAT)L
at time 7. Briefly: the lender is ezchanging the market rate R for the contract rate
Rp.

2Do not confuse this with the instantaneous forward rate discussed earlier.



(2) A forward rate agreement can be priced by assuming that the market rate R(t,T) will
be the forward rate fo(t,T). Indeed, the pair of loans just considered have net cash
flow 0 at time ¢, and the lender receives (Rxg — R)AT - L at time T. The value of R
is not known at time 0. But substitution of fy in place of R gives the correct value of
the contract at time 0.

Almost all forward rate agreements are cash settled, meaning that there is no actual ex-
change of principal, just a payment of (Rx — R)AT'- L at time T. Note that R is determined
at time ¢t but the payment is not made until time 7.
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Swaps. A swap is an exchange of one income or payment stream for another. The most
basic example is a (plain vanilla) interest rate swap, which exchanges the cash flow of a
floating-rate debt for that of a fixed-rate debt with the same principal. We shall restrict
our attention to this case.

A swap is, in a sense, the floating-rate bond analogue of a forward contract. It permits the
holder of a floating-rate bond to eliminate his interest-rate risk. This risk arises because
the future interest payments on a floating-rate bond are unknown. It can be eliminated by
entering into a swap contract, exchanging the income stream of the floating-rate bond for
that of a fixed-rate bond. What fixed rate to use? Any rate is possible — but in general
the associated swap contract will have some (positive or negative) value. However at any
given time there is a fixed rate that sets the present value of the swap to 0. This is rate
that would normally be used. It is called the par swap rate. We’ll use the notation Rgwap
for the par swap rate.

It is clear from the definition that a swap is equivalent to a portfolio of two bonds, one
short and the other long, one a fixed-rate bond and the other a floating-rate bond. Real
bonds would have coupon payments then would return the principal at maturity. In a swap
the coupon payments don’t match, so there is a cash flow at each coupon date; however
the principals do match, so there is no net cash flow at maturity. But the principal of the
associated bonds isn’t irrelevant — we need it to calculate the interest payments. It is called
the notional principal of the swap.

A swap can also be viewed as a collection of forward rate agreements. Indeed, we showed
above that the value of a floating-rate bond is equal to its principal just after each reset. So
being short the floating-rate bond and long the fixed-rate bond is equivalent to paying the
market interest rate and receiving the fixed interest rate. This amounts to a collection of
forward rate agreements — one for each coupon payment — all with the same principal (the
notional principal of the swap) and the same interest rate (the fixed rate of the swap).

Valuing a swap is easy: it suffices to value each associated bond then take the difference.
(An alternative, equivalent procedure is to value each associated forward rate agreement
and add them up; HW5 has a problem on this.) Suppose an institution receives fixed
payments at 7.15% per annum and floating payments determined by LIBOR. We assume
there are two payments per year, the maturity is two years, and the notional principal is



L. To value the fixed side of the swap we must find the present value of the future coupon
payments. It is natural to use the LIBOR discount rate for B(0,7). Let us assume

B(0,t1) = .9679, B(0,t) = .9362, B(0,t3) =.9052, B(0,t4) = .8749

where t; = 182 days, to = 365 days, t3 = 548 days, and t4 = 730 days are the precise
payment dates. The value of the fixed side of the swap is then

Vix = L{.9679 x .0715 x (182/365) +.9362 x .0715 x (183/365)
+.9052 x .0715 x (183/365) + .8749 x .0715 x (182/365)} = (0.1317)L

Notice that we counted only the coupon payments, with no final payment of principal.

Now let’s value the floating side of the swap. Of course we cannot know its cash flows at
each time — this would require knowledge of B(t;,t;+1) for each i, which cannot be known at
time 0. However to value the swap all we really need to know is B(0,t4). Indeed, the value
of the floating bond at time 0 is just its notional principal L. But we did not count the
return of principal Vgy, so we must not count it here either. Thus the value of the floating
side of the swap is

Vioat = L — B(0,t4)L = (0.1251) L.

The value of the swap is the difference, namely
‘/swap = Viix — Viioat = (00066)L

This is, of course, the value of the swap to the party receiving the fixed rate and paying the
floating rate. The value to the other party is —(0.0066)L.

OK, that was easy. But the answer didn’t come out zero. What fixed rate could have been
used to make the answer come out zero — in other words, what is the par swap rate? That’s
easy: we must replace .0715 in the above by a variable z, set the value of the swap to 0,
and solve for . This gives

2-{.9679 x (182/365) +.9362 x (183/365) +.9052 x (183/365) +.8749 x (182/365)} = 0.1251,

which simplifies to 1.8421x = 0.1251 whence 2 = .0679. Thus the par swap rate is 6.79%
per annum.

While exact day counts are used (as above) in industry calculations, for the rest of these
lectures, we will use a simpler approximation, which is to assume that we just divide by
the frequency f of payments per year. For example, if payments are made quarterly, we
divide a 6% annual coupon payment into four 1.5% payments. With this convention, the
preceding discussion about valuing a swap can be summarized as follows:

‘/swap = Vﬁx - Vﬂoat

where c
Vik =LY ?B(O, ti)y  Vioar = L[1 — B(0,T)],



whence
c
Vvswap =L |:Z ?B(O,tj) + B(O,T) - 1:| . (1)
The par swap rate is the value of ¢ that makes Viwap equal to 0.3

Now consider two swaps with different coupon rates ¢ and ¢’. We get

c c
‘/swap,c =L |:Z ?B(07 tj):| - vﬂoata and ‘/éwap,c’ =L |:Z ?B(Oa tj):| - Vﬂoat
whence

‘/éwap,c - swap, =L Z f )

If we take ¢ = Rgwap then Viyap o« = 0, by the definition of Rgyap. This gives the following
convenient alternative formula for the value of a swap with coupon rate c:

Vwap = LY 5 SW&pBOt)

(This is not the alternative formula mentioned earlier, involving a collection of forward rate
agreements; rather, it amounts to simple algebraic manipulation of* (1).)

We have discussed only the simplest kind of swap — a “plain vanilla interest rate swap”.
But the general principle should be clear. For example a forward-starting swap that begins
at time t; can be valued by the following modification of the formulas:

=L Z B(0,t;) where the sum starts at period k + 1 and ends at T,
Vioat = L[B(Oa tk) - B(O’ T)L
Vewap = L [Z %B(O, tj)+ B(0,T) — B(0,t;)| with the same convention on the sum

= L Z SVVapB (0,t;) with the same convention on the sum.

Of course, in this formula Rgwap is the value of ¢ that makes this forward-starting swap
have value 0; it is called the forward swap rate and it will play an important role when we
get (in Section 9) to the pricing of swaptions.®

Another widely used instrument is the “plain vanilla foreign currency swap,” which ex-
changes a fixed-rate income stream (or floating-rate income stream) in a foreign currency
for a fixed-rate income stream (or floating-rate income steam) in dollars. Such an instru-
ment can be used to eliminate foreign currency risk. It can be valued using the formulas
we just developed, but each side of the swap must be valued using the discount factors
appropriate to the currency in which payments are being made. At the end the valuation
of the foreign-currency side is translated into dollars by applying the current spot FX rate.
See Hull sections 7.9 & 7.10 for a more detailed discussion.

3This clarification was added 11,/28/2012.
“This sentence was changed 11/28/2012.
This sentence added 11/28/2012.
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Inferring discount factors from market prices. An important operation in dealing
with interest rate instruments is to infer a set of discount factors from observed market
prices. These market prices can come in many forms, but the most common are quoted
interest rates — typically, term rates for nearby dates, par swap rates for longer dates, and
forward term rates for intermediate dates. Discount factors can be inferred from these
quotes one at a time, starting with the shortest dates and working towards longer ones. In
this process, known as “bootstrapping,” discount factors already inferred for shorter dates
are utilized as part of the calculation of longer-date discounts.

The full methodology for doing this in practice is rather complicated. Issues such as overlap-
ping periods, exact day counts, accrued interest calculations, and inferring discount factors
for several dates from a single price observation all need to be handled and a method needs
to be chosen for interpolating discount factors for dates in between those for which prices
are available. Here we just give a relatively simple example that demonstrates the basic
technique.

Suppose the following data are available: term rates for 6 month and 1 year maturities,
forward term rates for the period 1 year to 1.5 years and the period 1.5 years to 2 years,
and par swap rates for semi-annual coupon swaps of 2.5 years and 3 years. Moreover suppose
the numbers are

6 month term rate 5.00%

1 year term rate 5.25%

1 year — 1.5 year forward term rate 5.50%
1.5 year — 2 year forward term rate 6.00%
2.5 year par swap rate 6.25%

3.0 year par swap rate 6.50%.

Then the first few discount rates are determined as follows:

B(0,.5) = 1/(1 + 5%/2) = .97561

B(0,1.0) = 1/(1 + 5.25%) = .95012

B(0,1.5) = B(0,1.0)/(1 + 5.5%/2) = .95012/(1 + 5.5%/2) = .92469
B(0,2.0) = B(0,1.5)/(1 + 6.0%/2) = .92469/(1 + 6.0%/2) = .89776.

Now the PV of the first 4 coupon payments of the 2.5 year swap is
6.25% x .5 x (.97561 + .95012 + .92469 + .89776) = .11713.

So
B(0,2.5) = (1 — .11713) /(1 + 6.25%/2) = .85612.

Similarly, since

6.50% * .5 * (.97561 + .95012 + .92469 + .89776 + .85612) = .14964



we have

B(0,3.0) = (1 —.14964) /(1 + 6.50%/2) = .82359.
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Caps, floors, and swaptions. Easiest first: a swaption is just an option on a swap.
When it matures, its holder has the right to enter into a specified swap contract. He’ll do
so of course only if this swap contract has positive value. Since a swap is equivalent to a
pair of bonds, a swaption can be viewed as an option on a pair of bonds. Similarly, since a
swap is equivalent to a collection of forward rate agreements, a swaption can be viewed as
an option on a collection of forward rate agreements.

Now let’s discuss caps. The borrower in a floating-rate loan does not know his future
expenses, since they depend on the floating interest rate. He could eliminate this uncertainty
entirely by entering into a swap agreement. But suppose all he wants is insurance against
the worst-case scenario of a high interest rate. The cap was invented for him: it pays the
difference between the market interest rate and a specified cap rate at each coupon date,
if this difference is positive. By purchasing a cap, the borrower insures in effect that he’ll
never have to pay an interest rate aboved the cap rate. The cap can be viewed as a collection
of caplets, one associated with each coupon payment. Each caplet amounts to an option on
a bond. It is roughly speaking a call option on the market rate at the coupon time.

A floor is like a cap, but it insures a sufficiently high interest rate rather than a sufficiently
low one. It can be viewed as a collection of floorlets, one associated with each coupon
payment. Each floorlet is again an option on a bond — roughly speaking a put option on
the market rate at the coupon time.

There is a version of put-call parity in this setting: cap-floor=swap, if the fixed rate specified
by all three instruments is the same.

Thus caps and floors are collections of options on bonds; swaptions are options on collections
of bonds. We'll discuss them in more detail in the next section, and we’ll explain how they
can be priced using a variant of the Black-Scholes formula.

10



