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Notes by Robert V. Kohn, extended and improved by Steve Allen.
Courant Institute of Mathematical Sciences.

Lognormal price dynamics and passage to the continuum limit. After a brief
recap of our recent achievements, this section introduces the lognormal model of stock price
dynamics, and explains how it can be approximated using binomial trees. Then we use
these binomial trees to price contingent claims. The Black-Scholes analysis is obtained
in the limit δt → 0. As usual, Baxter–Rennie captures the central ideas concisely yet
completely (Section 2.4). In Hull, the lognormal model is discussed in Sections 14.1-14.4
(short, but well worth reading) and the continuum limit of the binomial tree is discussed
in an Appendix to Chapter 12. Hull mixes these topics with a discussion of diffusions and
Ito’s lemma; we’ll get to those a little later (in Section 6).

As usual, we’ll focus initially on options on a (non-dividend-paying) stock. Then, at the
end of these notes, we ask what’s different for options on a forward price.

**********************

Recap of no-arbitrage-based option pricing in the multiperiod binomial tree
setting. Recall that a European option is described by its payoff f(sT ). Its value V (f)
is uniquely determined by the payoff f and the choice of the tree. This is because you
can “replicate” the option by a suitable trading strategy, starting with wealth V (f) at the
initial time. Put differently: there is a trading strategy that starts with initial wealth 0
and achieves, at the final time, wealth f(sT ) − erTV (f), for every evolution permitted by
the tree. (Here the initial time is 0, and the interest rate r is assumed to be constant, it is
crucial of course that the trading strategy is self-financing.)

Recap of the multiperiod option pricing formula. We also obtained a “formula” for
V (f). If the risky asset price evolution is described by a multiplicative binomial tree with
sup = usnow and sdown = dsnow then the value at time 0 of a contingent claim with maturity
T = Nδt and payoff f(sT ) is

V (f) = e−rT · ERN[f(sT )]

where ERN[f(sT )] is the expected final payoff, computed with respect to the risk-neutral
probability:

ERN[f(sT )] =
N∑
j=0

(
N

j

)
qj(1− q)N−jf(s0ujdN−j),

with q = (erδt−d)/(u−d). Let’s check this assertion for consistency and gain some intuition
by making a few observations:

What if the contingent claim pays the stock price itself? This is the case f(sT ) = sT .
It is replicated by the portfolio consisting of one unit of stock (no bond, no trading). So
the present value should be s0, the price of the stock now. Let’s verify that this is the
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same result we get by “working backward through the tree.” It’s enough to show that if
f(s) = s for every possible price s at a given time then the same relation holds at the time
just before. To see this, let “now” refer to any possible stock price at the time just before.
We are assuming f(sup) = sup and f(sdown) = sdown and we want to show f(snow) = snow.
By definition,

f(snow) = e−rδt[qsup + (1− q)sdown]

with q = erδtsnow−sdown
sup−sdown

. Simple algebra confirms the expected result f(snow) = snow. (As
we noted in Section 2, this is no accident; it can be viewed as the defining property of q.)

There is of course an equivalent calculation involving risk-neutral expectation. The formula
for q in a multiplicative tree gives

qu+ (1− q)d = erδt

and taking the Nth power gives

N∑
j=0

(
N

j

)
qj(1− q)N−jujdN−j = erNδt = erT .

Multiplying both sides by s0 gives

e−rTERN[sT ] = s0

as desired.

What if the contingent claim is a forward contract with strike price K? Under our
standing constant-interest-rate hypothesis we know the present value should be s0− e−rTK
if the maturity is T = Nδt. Let’s verify that any binomial tree gives the same result. The
payoff is f(sT ) = sT −K. Our formula

e−rTERN[f(sT )]

is linear in the payoff. Also ERN[K] = K, i.e. the total risk-neutral probability is 1; this
can be seen from the fact that (q + [1 − q])N = 1. Thus our formula for the value of a
forward is

e−rTERN[sT −K] = e−rTERN[sT ]− e−rTERN[K] = s0 − e−rTK

as expected.

What if the contingent claim is a European call with strike price K � s0? We
expect such a call to be worthless, or nearly so. This is captured by the model, since only
a few exceptional paths (involving an exceptional number of “ups”) will result in a postive
payoff.

What if the contingent claim is a European call with strike price K � s0? We
expect such a call to be worth about the same as a forward with strike price K. This too is
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captured by the model, since only a few exceptional paths (involving an exceptional number
of “downs”) will result in a payoff different from that of the forward.

Analogous observations hold for European puts.

******************

Lognormal stock price dynamics. Our simple model of a risk-free asset has a constant
interest rate. A bond worth ψ0 dollars at time 0 is worth ψ(t) = ψ0e

rt dollars at time
t. The quantity that’s constant is not the growth rate dψ

dt but rather the interest rate
r = 1

ψ
dψ
dt = d logψ

dt .

Our stock is risky, i.e. its evolution is unknown and appears to be random. We can still
describe its dynamics in terms of an equivalent interest rate for each time period. Breaking
time up into intervals of length δt, the equivalent interest rate for jδt < t < (j + 1)δt is rj
if s((j + 1)δt) = erjδts(jδt), i.e.

rj =
log s((j + 1)δt)− log s(jδt)

δt
.

Standard terminology: rj is the return of the stock over the relative time interval. Note
that to calculate the stock price change over a longer interval you just add the exponents:

s(kδt) = e(rjδt+rj+1δt+...+rk−1δt)s(jδt), for j < k.

Beware of the following linguistic fine point: some people would say that rj is the “rate of
return” over the jth period, and the actual “return” over that period is erjδt. But “rate of
return” is a mouthful, so I prefer to use the word “return” for rj itself.

Since the stock price is random so is each rj . The lognormal model of stock price dynamics
specifies their statistics:

• The random variables rjδt are independent, identically distributed, Gaussian random
variables with mean µδt and variance σ2δt, for some constants µ and σ.

The constant µ is called the expected return (though actually, the expected return over
a time interval of length δt is µδt). The constant σ is called the “volatility of return,” or
more briefly just volatility. These constants are assumed to be the same regardless of the
length of the interval δt. Thus we really mean the following slightly stronger statement:

• For any time interval (t1, t2), log s(t2)− log s(t1) is a Gaussian random variable with
mean µ(t2 − t1) and variance σ2(t2 − t1).

• The Gaussian random variables associated with disjoint time intervals are indepen-
dent.
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In particular (for those who know what this means) log s(t) executes a Brownian motion
with drift. Strictly speaking σ has units of 1/

√
time, however it is common to call σ the

“volatility per year”.

Why should we believe this hypothesis about stock prices? Perhaps it would be more
credible to suppose that the daily (or hourly or minute-by-minute) return is determined
by a random event (arrival of news, perhaps) which we can model by flipping a coin. The
lognormal model is the limit of such dynamics, as the time-frequency of the coin-flips tends
to zero. We’ll discuss this in detail presently.

The lognormal hypothesis will lead us to a formula for the present value of a derivative
security – but it’s important to remember that the formula is no better than the stock
price model it’s based on. The formula doesn’t agree perfectly with what one finds in the
marketplace; the main reason is probably that the lognormal model isn’t a perfect model
of real stock prices. Much work has been done on improving it – for example by letting the
volatility itself be random rather than constant in time.

In fact, nobody believes that the lognormal hypothesis is literally correct. It is a convenient
approximation, which (a) captures the fact that prices cannot go negative; (b) is generally
not too far from the observed statistics, and (c) leads to simple formulas for pricing and
hedging. We’ll discuss in Section 5 how market practitioners adjust its predictions for the
fact that they don’t actually believe the lognormal hypothesis.

*********************

Lognormal dynamics and the limit of multiperiod binomial trees. We claim that
lognormal dynamics can be approximated by dividing time into many intervals, and flipping
a coin to determine the return for each interval.

The coin can be fair or biased; to keep things as simple as possible let’s concentrate on the
fair case first. To simulate a lognormal process with expected return µ and volatility σ the
return should be

µδt+ σ
√
δt if heads (probability 1/2)

µδt− σ
√
δt if tails (probability 1/2).

In other words, given δt we wish to consider the recombinant binomial tree with with

sup = snowe
µδt+σ

√
δt, sdown = snowe

µδt−σ
√
δt

and with each branch assigned (subjective) probability 1/2.

Consider any time t. What is the probability distribution of stock prices at time t? Let’s
assume for simplicity that t is a multiple of δt, specifically t = nδt. If in arriving at this
time you got heads j times and tails n− j times, then the stock price is

s(0) exp
[
nµδt+ jσ

√
δt− (n− j)σ

√
δt
]

= s(0) exp
[
µt+ (2j − n)σ

√
δt
]
.
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We should be able to understand the probability distribution (asymptotically as δt → 0),
since we surely understand the results of flipping a coin many times. Briefly: if you make a
histogram of the proportion of heads, it will resemble (as n→∞) a Gaussian distribution
centered at 1/2. We’ll get the variance straight in a minute. (What we’re really using here
is the central limit theorem.)

To proceed more quantitatively it’s helpful to use the notation of probability. Recog-
nizing that j is a random variable, let’s change notation to make it look like one by calling
it Xn:

Xn = number of times you get heads in n flips of a fair coin.

Since Xn is the sum of n independent random variables (one for each coin-flip), each taking
values 0 and 1 with probability 1/2, one easily sees that

Expected value of Xn = n/2, Variance of Xn = n/4.

The Central Limit Theorm says that 1
nXn, tends to a Gaussian random variable with mean

1
2 and variance 1

4n . It’s easy to see from this that

2Xn − n√
n

tends to a Gaussian with mean value 0 and variance 1. Since
√
δt =

√
t/
√
n our formula

for the final stock price can be expressed as

s(t) = s(0) exp
[
µt+ σ

√
t
2Xn − n√

n

]
.

Thus asymptotically, as δt→ 0 and n→∞ with t = nδt held fixed,

s(t) = s(0) exp
[
µt+ σ

√
tZ
]

where Z is a random variable with mean 0 and variance 1. In particular log s(t)− log s(0)
is a Gaussian random variable with mean µt and variance σ2t, as expected.

Our assertion of lognormal dynamics said a little more: that log s(t2)−log s(t1) was Gaussian
with mean µ(t2 − t1) and variance σ2(t2 − t1) for all t1 < t2. The justification is the same
as what we did above – it wasn’t really important that we started at 0.

Notice that our calculation used only the mean and variance of Xn, since it was based
on the Central Limit Theorem. Our particular way of choosing the tree – with sup =
snowe

µδt+σ
√
δt, sdown = snowe

µδt−σ
√
δt, and with each choice having probability 1/2, was not

the only one possible. A more general approach would take sup = snowu with probability
p, sdown = snowd with probability 1 − p, and choose the three parameters u, d, p to satisfy
two constraints associated with the mean and variance. Evidently one degree of freedom
remains. Thus once p is fixed the other parameters are determined.

*******************
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Implication for pricing options. We attached subjective probabilities (always equal to
1/2) to our binomial tree because we wanted to recognize lognormal dynamics as the limit
of a coin-flipping process. Now let us consider one of those binomial trees – for some specific
δt near 0 – and use it to price options.

The structure of the tree remains relevant (particularly the factors u and d determining
sup = usnow and sdown = dsnow.) The subjective probabilities (1/2 for every branch) are
irrelevant because our pricing is based on arbitrage. But we know a formula for the price
of the option with payoff f(s(T )) at time maturity T :

V (f) = e−rT · ERN[f(sT )]

where ERN denotes the expected value relative to the risk-neutral probability. And using
the risk-neutral probability instead of the subjective probability just means our coin is no
longer fair. Instead it is biased, with probability of heads (stock goes up) q and probability
of tails (stock goes down) 1− q, where

q =
erδt − d
u− d

=
erδt − eµδt−σ

√
δt

eµδt+σ
√
δt − eµδt−σ

√
δt
.

One verifies (using the Taylor expansion of ex near x = 0; I’m leaving about a half-page of
calculation to the reader here, for details see the very end of this section) that this is close
to 1/2 when δt is small, and in fact

q =
1
2

(
1−
√
δt
µ− r + 1

2σ
2

σ

)
+ terms of order δt.

Also (as an easy consequence of the preceding equation) we have

q(1− q) =
1
4

+ terms of order δt.

Our task is now clear. All we have to do is find the distribution of final values s(T ) when
one uses the q-biased coin, then take the expected value of f(s(T )) with respect to this
distribution. We can use a lot of what we did above: writing Xn for the number of heads
as before, we still have

s(t) = s(0) exp
[
µt+ σ

√
t
2Xn − n√

n

]
.

But now Xn is the sum of n independent random variables with mean q and variance q(1−q),
so Xn has mean nq and variance nq(1− q). So

mean of
2Xn − n√

n
= (2q − 1)

√
n

≈ −
√
t

(
µ− r + 1

2σ
2

σ

)
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and
variance of

2Xn − n√
n

≈ 1.

The central limit theorem tells us the limiting distribution is Gaussian, and the preceding
calculation tells us its mean and variance. In summary: as δt → 0, when using the biased
coin associated with the risk-neutral probabilities,

s(t) = s(0) exp
[
µt+ σ

√
tZ ′
]

where Z ′ is a Gaussian random variable with mean
√
t

(
r−µ−1

2σ
2

σ

)
and variance 1. Equiv-

alently, writing Z ′ = Z +
√
t

(
r−µ−1

2σ
2

σ

)
,

s(t) = s(0) exp
[
(r − 1

2σ
2)t+ σ

√
tZ
]

where Z is Gaussian with mean 0 and variance 1. Notice that the statistical distribution of
s(t) depends on σ and r but not on µ (we’ll return to this point soon).

The value of the option is the e−rT times the expected value of the payoff relative to this
probability distribution. Using the distribution function of the Gaussian to evaluate the
expected value, we get:

V (f) = e−rTE
[
f(s0eX)

]
where X is a Gaussian random variable with mean (r− 1

2σ
2)T and variance σ2T , or equiv-

alently

V (f) = e−rT
∫ ∞
−∞

f(s0ex)
1

σ
√

2πT
exp

[
−(x− [r − σ2/2]T )2

2σ2T

]
dx.

This (when specialized to puts and calls) is the famous Black-Scholes relation.

We’ll talk later about evaluating the integral. For now let’s be satisfied with working
backward through the binomial tree obtained with a specific (small) value of δt. Reviewing
what we found above: given a lognormal stock process with return µ and volatility σ, and
given a choice of δt, the tree should be constructed so that sup = usnow, sdown = dsnow with

u = eµδt+σ
√
δt, d = eµδt−σ

√
δt.

These determine the risk-neutral probability q by the formula given above. Working back-
ward through the tree is equivalent to finding the discounted expected value of f(s(T ))
relative to the risk-neutral probability.

Let us return to the observation, made above, that the statistics of s(t) relative to the risk-
neutral probability depend on σ (volatility of the stock) and r (risk-free return) but not on
µ. It follows that for pricing derivative securities the value of µ isn’t really needed. More
precisely: in the limit δt→ 0 the lognormal stock models with different µ’s but the same σ
all assign the same values to options. So we may choose µ any way we please – there’s no
reason to require that it match the actual expected return of the stock under consideration.
The two most common choices are
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1. choose µ to be the expected return of the stock nevertheless; or

2. choose µ so that µ− r + 1
2σ

2 = 0, i.e. µ = r − 1
2σ

2.

The latter choice has the advantage that it puts q even closer to 1/2. This selection is
favored by many authors.

It may seem strange that the value of an option doesn’t depend on µ. Heuristic argument
why this should be so: we are using arbitrage considerations, so it doesn’t matter whether
the stock tends to go up or down, which is (mainly) what µ tells us.

Here’s a more limited but less heuristic argument why the option pricing formula should
not depend on µ. We start from the observation that in the special case f(s) = s, i.e. if
the payoff is just the value-at-maturity of the stock, then the value of the option at time
0 must be s0. We discussed this at length at the beginning of this section. Of course it
should be valid also in the continuous-time limit. (The payoff f(sT ) = sT is replicated by
a very simple trading strategy – namely hold one unit of stock and never trade – whether
time is continuous or discrete.) Now consider the analysis we just completed, passing to the
continuum limit via binomial trees. It tells us that when f(s) = s, the value of the option
is

e−rTE
[
s0e

X
]

where X is Gaussian with mean rT − 1
2σ

2T and variance σ2T . The two calculations are
consistent only if for such X

e−rTE
[
eX
]

= 1.

Are the two calculations consistent? The answer is yes. Moreover, if you accept the existence
of a pricing formula V (f) = e−rTE

[
f(s0eX)

]
, with X a Gaussian random variable with

variance σ2T , then this consistency test forces the mean of X to be rT − 1
2σ

2T .

It remains to justify our assertion of consistency. This follows easily from the following fact:

Lemma: If X is a Gaussian random variable with mean m and standard deviation s then

E
[
eX
]

= em+
1
2 s

2

Proof: We start from the formula

E
[
eX
]

=
1

s
√

2π

∫ ∞
−∞

exe−
(x−m)2

2s2 dx.

Complete the square:

x− (x−m)2

2s2
= m+ 1

2s
2 − (x− [m+ s2])2

2s2
.

Therefore the expected value of eX is

em+
1
2 s

2 1
s
√

2π

∫ ∞
−∞

exp

[
−[x− (m+ s2)]2

2s2

]
dx.
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Making the change of variable u = (x− [m+ s2])/s this becomes

em+
1
2 s

2 1√
2π

∫ ∞
−∞

e−u
2/2 du = em+

1
2 s

2

as desired.

**********************

Options on the forward price. What about an option whose payoff at time T is f(FT ),
where FT is a forward price evaluated at time T?

It is natural to model the forward price process by a multiplicative tree (this means Fup =
uFnow and Fdown = dFnow). This leads, as shown above, to a lognormal process whose drift
and volatility depend on the choices of u and d.

So far nothing new. What about option pricing? As we saw in Section 3, the basic formula
doesn’t change: in a single-period tree the option value satisfies

fnow = e−rδt[qfup + (1− q)fdown],

and in a multiperiod (multiplicative) tree the option value at time 0 is

e−rNδt
N∑
j=0

[(
N

j

)
qj(1− q)N−jf(F0u

jdN−j)

]
,

if T = Nδt is the maturity and F0 is the forward price at time 0. All that changes compared
to our prior analysis is the formula for q: it satisfies

q =
Fnow −Fdown

Fup −Fdown
=

1− d
u− d

where u and d are the “up” and “down” parameters of the forward price tree. In the main
part of this section, where we discussed options on a stock, we had q = erδt−d

u−d . That reduces
to 1−d

u−d when r = 0. So: we don’t have to redo the analysis. We can simply set r = 0 in
the formulas we obtained before – but we must remember that the option price still has a
factor of e−rT out front. In conclusion: if the forward price is lognormal with volatility σ,
then the value at time 0 of an option with maturity T and payoff f(FT ) is

e−rTE
[
f(F0e

X)
]

where X is a Gaussian random variable with mean −1
2σ

2T and variance σ2T , or equivalently

e−rT
∫ ∞
−∞

f(F0e
x)

1
σ
√

2πT
exp

[
−(x+ [σ2/2]T )2

2σ2T

]
dx.

When specialized to puts and calls, this becomes Black’s formula for pricing options on the
forward price (as we’ll show next week).

Convenient shorthand for the above: the option price is e−rTERN[payoff]. The expectation
is with respect to the risk-neutral process (in the continuous-time limit). Under this process,
lnFT − lnF0 is a Gaussian random variable with mean −1

2σ
2 and variance σ2T .1

1Corrected 11/7/2012.
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How to remember this? Recall that the forward price is a martingale under the risk-neutral
probability. Indeed, we showed in Section 2 that Fnow = qFup + (1− q)Fdown, and an easy
inductive argument extends this to the multiperiod statement

F0 = expected value of FT

for the discrete-time risk-neutral process (a coin-flipping process with probability q of up
and 1 − q of down at each flip). This property must be preserved in the continuous-time
limit. And indeed it is, since when X is Gaussian with mean −1

2σ
2T and variance σ2T , the

expected value of eX is one (as a consequence of the Lemma proved above.)

We now see clearly the advantage of working with the forward price rather than the option
price. The character of the forward price process under the risk-neutral measure does not
depend on the interest rate. In discrete time (for a multiplicative tree) it involves only
q = (1− d)/(u− d). In the continuous time limit the corresponding assertion is that Ft is
lognormal with volatility σ and “expected return” 0. Both assertions reflect the fact that
Ft must be a martingale under the risk-neutral probability measure. As a result, when we
price an option on the forward price, the only time we have to think about the interest
rate environment is when we calculate the discount factor e−rT that goes in front of the
risk-neutral expectation.

Does this mean the interest rate is irrelevant? Of course not. It is built into the forward
price! But by modeling the forward price tree directly, we avoid having to segregate effects
due to the interest rate environment from those due to the stock price dynamics. When the
interest rate is constant (or even deterministic but nonconstant) this is simply a matter of
simplicity and convenience. When the interest rate becomes random (later this semester),
however, it will be crucial.

**********************

Addendum: we asserted on page 6 that

q =
1
2

(
1−
√
δt
µ− r + 1

2σ
2

σ

)
+O(δt)

where the notation O(δt) means a term of order at most a constant times δt. Here is an
explanation, starting from the definition

q =
erδt − eµδt−σ

√
δt

eµδt+σ
√
δt − eµδt−σ

√
δt
.

Using the Taylor expansion of ex, the numerator of the previous fraction is

(1 + rδt)− (1 + µδt− σ
√
δt+ 1

2σ
2δt) +O(|δt|3/2)
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and the denominator is

(1 + µδt+ σ
√
δt+ 1

2σ
2δt)− (1 + µδt− σ

√
δt+ 1

2σ
2δt) +O(|δt|3/2).

After algebraic simplification, we get that

q =
(r − µ− 1

2σ
2)δt+ σ

√
δt+O(|δt|3/2)

2σ
√
δt(1 +O(δt))

.

Using that (1 +O(δt))−1 = 1−O(δt) and cancelling
√
δt from both numerator and denom-

inator we get

q =
(r − µ− 1

2σ
2)
√
δt+ σ +O(δt)

2σ
(1 +O(δt))

which simplifies to the desired formula

q =
1
2

(
1−
√
δt
µ− r + 1

2σ
2

σ

)
+O(δt).
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