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Multiperiod Binomial Trees. We turn to the valuation of derivative securities in a
time-dependent setting. We focus for now on multi-period binomial models, i.e. binomial
trees. This setting is simple enough to let us do everything explicitly, yet rich enough to
approximate many realistic problems. The section has three main segments:

(a) A discussion of European options, in which the replicating portfolio is assembled using
the underlying and a risk-free bond.

(b) A discussion of European options, in which the replicating portfolio is assembled using
futures and a risk-free bond.

(c) A “formula” for the price of a European option, based on the the discussion in (a).

(c) A brief discussion of American options.

The material covered in this section is very standard (and very important). The treatment
here tracks closely with Baxter and Rennie (Chapter 2). Hull addresses this topic in Chapter
12. For a nice discussion of alternative numerical implementations, see the article “Nine
ways to implement the binomial method for option valuation in Matlab,” by D.J. Higham,
SIAM Review 44 (2002) 661-677.

This section does not yet discuss how the parameters of the tree should be chosen in a prac-
tical (market) setting. That’s coming soon, in Section 4, when we’ll discuss the lognormal
hypothesis and we’ll pass to the continuous-time limit.

The practical question is not how to price or replicate an option but rather how to hedge it.
However replication and hedging are intimately connected. Simple example: when you sell a
call with strike K and maturity T you receive cash for it now, but you owe (sT −K)+ to the
holder when the option matures. We’ll explain (in the binomial setting) how the apparent
uncertainty in your final-time obligation can be entirely eliminated (hedged) by pursuing
a suitable trading strategy. It is, of course, the strategy that replicates your final-time
obligation (sT − K)+.

*******************************

First pass: trading the underlying. A multi-period binomial model generalizes the
single-period binomial model we considered in Section 2. It has

• just two securities: a risky asset (a “stock,” paying no dividend) and a riskless asset
(“bond”);

• a series of times 0, δt, 2δt, . . . ,Nδt = T at which trades can occur;

• interest rate ri during time interval i for the bond;

• a binomial tree of possible states for the stock prices.
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Figure 1: States of a non-recombining binomial tree.

The last statement means that for each stock price at time jδt, there are two possible values
it can take at time (j + 1)δt (see Figure 1).

The interest rate environment is described by specifying the interest rates ri. We restrict
our attention for now to the case of a constant interest rate: ri = r for all i.

The stock price dynamics is described by assigning a price sj to each state in the tree.
Strictly speaking we should also assign (subjective) probabilities pj to the branches (the
two branches emerging from a given node should have probabilities summing to 1): see
Figure 2.

sj

pj

1 − pj

s2j+1

s2j

Figure 2: One branch of a binomial tree.

Actually, we will make no use of the subjective probabilities pj; our arguments are based
on arbitrage, so they depend only on the list of possible states not on their probabilities.
However our pricing formula will make use of risk-neutral probabilities qj. These “look like”
subjective probabilities, except that they are determined by the stock prices and the interest
rate.

Our stock prices must be “reasonable” in the sense that the market support no arbitrage.
Motivated by the one-period model, we (correctly) expect this condition to take the form:
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• starting from any node, the stock price may do better than or worse than the risk-free
rate during the next period.

In other words, s2j < erδtsj < s2j+1 for each j.

The tree in Figure 1 is the most general possible. At the nth time step it has 2n possible
states. That’s a lot of states, especially when n is large. It’s often convenient to let selected
states have the same prices in such a way that the list of distinct prices forms a recombinant

tree. Figure 3 gives an example of a 4-stage recombinant tree, with stock prices marked for
each state: (A recombinant tree has just n + 1 possible states at time step n.)
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Figure 3: A simple recombinant binomial tree.

A special class of recombinant trees is obtained by assuming the stock price goes up or
down by fixed multipliers u or d at each stage: see Figure 4. This last class may seem
terribly special relative to the general binomial tree. But we shall see it is general enough
for many practical purposes – just as a random walk (consisting of many steps, each of fixed
magnitude but different in direction) can approximate Brownian motion. And it has the
advantage of being easy to specify – one has only to give the values of u and d.

It may seem odd that we consider a market with just one stock, when real markets have
many stocks. But our goal is to price contingent claims based on considerations of arbitrage.
If we succeed using just these two instruments (the stock and the riskless bond) then our
conclusions necessarily apply to any larger market containing both instruments.

*************************
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Figure 4: A multiplicative recombinant binomial tree.

Our goal is to determine the value (at time 0) of a contingent claim. We will consider Amer-
ican options later; for the moment we consider only European ones, i.e. early redemption is
prohibited. The most basic examples are European calls and puts (payoffs: (ST −K)+ and
(K − ST )+ respectively). However our method is much more general. What really matters
is that the payoff of the claim depends entirely on the state of stock process at time T .

Let’s review what we found in the one-period binomial model. Our multiperiod model
consists of many one-period models, so it is convenient to introduce a flexible labeling
scheme. Writing “now” for what used to be the initial state, and “up, down” for what used
to be the two final states, our risk-neutral valuation formula was

fnow = e−rδt[qfup + (1 − q)fdown]

where

q =
erδtsnow − sdown

sup − sdown
.

Here we’re writing fnow for what we used to call V (f), the (present) value of the contingent
claim worth fup or fdown at the next time step if the stock price goes up or down respectively.
This formula was obtained by replicating the payoff with a combination of stock and bond;
the replicating portfolio used

φ =
fup − fdown

sup − sdown

units of stock, and a bond worth fnow − φsnow.

The valuation of a contingent claim in the multiperiod setting is an easy consequence of
this formula. We need only “work backward through the tree,” applying the formula again
and again.

Consider, for example, the four-period recombinant tree shown in Figure 3. (This example,
taken straight from Baxter and Rennie, has the nice feature of very simple arithmetic.)
Suppose the interest rate is r = 0, for simplicity. Then q = 1/2 at each node (we chose the
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prices to keep this calculation simple). Let’s find the value of a European call with strike
price 100 and maturity T = 3δt. Working backward through the tree:

• The values at maturity are (ST − 100)+ = 60, 20, 0, 0 respectively.

• The values one time step earlier are 40, 10, and 0 respectively, each value being
obtained by an application of the one-period formula.

• The values one time step earlier are 25 and 5.

• The value at the initial time is 15.
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15 10
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5

0

Figure 5: Value of the option as a function of stock price state.

Easy. But is it right? Yes, because these values can be replicated. However the replication
strategies are more complicated than in the one-period case: the replicating portfolio must
be adjusted at each trading time, taking into account the new stock price.

Let’s show this in the example. Using our one-period rule, the replicating portfolio starts
with φ = (25 − 5)/(120 − 80) = .5 units of stock, worth .5 × 100 = 50 dollars, and a bond
worth 15−50 = −35. (Viewed differently: the investment bank that sells the option collects
15 dollars; it should borrow another 35 dollars, and use these 15+35=50 dollars to buy 1/2
unit of stock.) The claim is that by trading intelligently at each time-step we can adjust
this portfolio so it replicates the payoff of the option no matter what the stock price does.
Here is an example of a possible history, and how we would handle it:

Stock goes up to 120. The new φ is (40− 10)/(140− 100) = .75, so we need another .25
units of stock. We must buy this at the present price, 120 dollars per unit, and we do
it by borrowing 30 dollars. Thus our debt becomes 65 dollars.
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Stock goes up again to 140. The new φ is (60−20)/(160−120) = 1, so we buy another
.25 unit at 140 dollars per unit. This costs another 35 dollars, bringing our debt to
100 dollars.

Stock goes down to 120. At maturity we hold one share of stock and a debt of 100. So
our portfolio is worth 120-100 = 20, replicating the option. (Put differently: if the
investment bank that sold the option followed our instructions, it could deliver the
unit of stock, collect the 100, pay off its loan, and have neither a loss nor a gain.)

That wasn’t a miracle. It had to work, because when we priced the option by working
backward in the tree, we used, for each one-period subtree, the no-arbitrage-based argument
of Section 2. Here’s a second example – a different possible history – to help you understand:

Stock goes down to 80. The revised φ is (10 − 0)/(100 − 60) = .25. So we should sell
1/4 unit stock, receiving 80/4=20. Our debt is reduced to 15.

Stock goes up to 100. The new φ is (20 − 0)/(120 − 80) = .5. So we must buy 1/4 unit
stock, spending 100/4=25. Our debt goes up to 40.

Stock goes down again to 80. We hold 40 dollars worth of stock and we owe 40. Our
position is worth 40-40=0, replicating the option, which is worthless since it’s out
of the money. (Different viewpoint: the investment bank that sold the option can
liquidate its position, selling the stock at market and using the proceeds to pay off
the loan. This results in neither a loss nor a gain.)

Notice that the portfolio changes from one time to the next but the changes are self-

financing – i.e. the total value of the portfolio before and after each trade are the same.
(The investment bank neither receives or spends money except at the initial time, when it
sells the option.)

Our example shows the importance of tracking φ, the number of units of stock to be held
as you leave a given node. It characterizes the replicating portfolio (the “hedge”). Its value
is known as the Delta of the claim. Thus:

∆now = our φ =
fup − fdown

sup − sdown
.

To understand the meaning ∆, observe that as you leave node j,

value of claim at a node j = ∆jsj + bj

by definition of the replicating portfolio (here bj is the value of the bond holding at that
moment). If the value of the stock changes by an amount ds while the bond holding stays
fixed, then the value of the replicating portfolio changes by ∆ds. Thus ∆ is a sort of
derivative:

∆ = rate of change of replicating portfolio value, with respect to change of stock price.

6



*********************

Second pass: trading futures. An option on the underlying s with maturity T (for
example a call, which pays (sT −K)+ at time T ) can equally be viewed as an option on the
forward price for delivery at time T , since the forward price agrees with the spot price at
time T . But when we replicate using forwards (or futures), it’s a bad idea to think in terms
of the underlying. Instead, we should model the forward price by a multiperiod binomial
tree, and consider options on the forward price (for example a call, which pays (FT − K)+
at time T ). Here F is the forward price for delivery at time T . We focus as usual on a
constant-interest-rate environment; therefore the forward price is equal to the futures price,
and an option on the forward price is the same as an option on the futures price.

A key advantage of working with the forward price is that the interest rate doesn’t appear

in the formula for the risk-neutral probability q. Indeed, recall from Section 2 that if fup

and fdown are the values of an option at the final states of a one-period binomial tree, then
the value of the option at the intial state is

fnow = e−rδt[qfup + (1 − q)fdown]

where

q =
Fnow −Fdown

Fup −Fdown
.

Don’t be confused: this is the same q we used when hedging with the underlying. (The
interest rate isn’t irrelevant: it influences the forward prices, which in turn determine q.)

To value an option on the forward price, we use the same procedure as earlier in this section:
work backwards one timestep at a time, using the single-period binomial valuation formula
again and again. To identify the replicating portfolio (or to hedge the option) we use the
results obtained the end of Section 2. When using futures, the replicating portfolio holds

α =
fup − fdown

Fup −Fdown

futures contracts during a timestep when the futures price goes from Fnow to Fup or Fdown

and the option value goes from fnow to fup or fdown.

To see how this works, let’s revisit the example done a couple of pages ago: a call with
strike 100 on an underlying described by the 3-period binomial tree in Figure 3. As before,
we take the interest rate to be r = 0; therefore Figure 3 is also the binomial tree of forward
prices. The value of the option doesn’t change – it is still given by Figure 5. In particular,
its initial value is 15.

To replicate the option using futures, we start by going long on α = (25−5)/(120−80) = 1/2
futures. Our initial portfolio thus consists of this futures position (which has no value) and
the 15 we received for the option. Focusing on the first scenario we considered earlier:

Suppose the forward price goes up to 120. We receive (1/2)(120 − 100) = 10 due to
the change in the futures price; this increases our cash position to 25. The new α is
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(40 − 10)/(140 − 100) = 3/4, so we must acquire another 1/4 futures contract. Our
portfolio consists of 3/4 futures (no value) and 25 cash – matching, as it should, the
value of the option.

Suppose the forward price then goes to 140. We receive another (3/4)(140 − 120) =
15 due to the change in the futures price; this brings our cash position to 40. The
new α is (60 − 20)/(160 − 120) = 1, so we acquire 1/4 futures contract. Our revised
portfolio consists of 1 futures contract and 40 cash – matching, again, the value of the
option.

Suppose the forward price then decreases to 120. At the final time we must pay the
exchange 20 due to the change in the futures price; this brings our cash position to
20. This is, as expected, the payoff of the option.

The same argument works for any scenario: if at each timestep we assume the proper futures
position (which depends on which node we occupy at that timestep) then our cash position
at maturity exactly matches the payoff of the option. This is because the cash flow on the
futures position at each timestep matches the change in the value of the option.

Hedging version of the same calculation: consider the investment bank that sold the option.
If it follows the procedure outlined above, then when the option matures the value of its
cash position at the end exactly offsets the value of its obligation to the option holder. Thus
by pursuing the replicating strategy, the bank can completely eliminate any risk associated
with its issuance of the option.

*********************

A formula for the option price. Our valuation algorithm is easy to implement. But in
the one-period setting we had more than an algorithm: we also had a formula for the value
of the option, as the discounted expected value using a risk-neutral probability. A similar
formula exists in the multiperiod setting. To see this, it is most convenient to work with a
general binomial tree. As usual, we focus first on an option on an underlying whose stock
price evolution st is described by a binomial tree. Consider, for example, a tree with two
time steps. The risk-neutral probabilities qj , 1 − qj are determined by the embedded one-
period models. (Remember, the risk-neutral probabilities are characteristic of the market;
they don’t depend on the contingent claim under consideration.) In this case:

q1 =
erδts1 − s2

s3 − s2
, q2 =

erδts2 − s4

s5 − s4
, q3 =

erδts3 − s6

s7 − s6
.

As we work backward through the tree, we get a formula for the value of the contingent
claim at each node, as a discounted weighted average of its values at maturity. In fact,
writing f(j) for the value of the contingent claim f at node j,

f(3) = e−rδt[q3f(7) + (1 − q3)f(6)]

and
f(2) = e−rδt[q2f(5) + (1 − q2)f(4)]
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Figure 6: General binomial tree with two time steps.

so

f(1) = e−rδt[q1f(3) + (1 − q1)f(2)]

= e−2rδt[q1q3f(7) + q1(1 − q3)f(6) + (1 − q1)q2f(5) + (1 − q1)(1 − q2)f(4)].

It should be clear now what happens, for a binomial tree with any number of time periods:

initial value of the claim = e−rNδt
∑

final states

[probability of the associated path]×[payoff of state],

where the probability of any path is the product of the probabilities of the individual risk-
neutral probabilities along it. (Thus: the different risk-neutral probabilities must be treated
as if they described independent random variables.)

A similar rule applies to recombinant trees, since they are just special binomial trees in
disguise. We must simply be careful to count the paths with proper multiplicities. For
example, consider a two-period model with a recombinant tree and sup = usnow, sdown =
dsnow. In this case the formula becomes

f(1) = e−2rδt[(1 − q)2f(4) + 2q(1 − q)f(5) + q2f(6)]

with q = (erδt − d)/(u − d), since there are two distinct paths leading to node 5.

The preceding calculation extends easily to recombinant trees with any number of time
steps. The result is one of the most famous and important results of the theory: an explicit
formula for the value of a European option. This is in a sense the binomial tree version of
the Black-Scholes formula. (To really use it, of course, we’ll need to know how to specify
the parameters u and d; we’ll come to that soon.) Consider an N -step recombinant stock
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Figure 7: Price states in a multiplicative recombinant tree.

price model with with sup = usnow, sdown = dsnow, and s0=initial spot price. Then the
present value of an option with payoff f(ST ) is

e−rNδt
N
∑

j=0

[(

N

j

)

qj(1 − q)N−jf(s0u
jdN−j)

]

.

with q = (erδt−d)/(u−d). This holds because there are
(N

j

)

different ways of accumulating

j ups and N −j downs in N time-steps (just as there are
(N

j

)

different ways of getting heads
exactly j times out of N coin flips.) Making this specific to European puts and calls: a call
with strike price K has present value

e−rNδt
N
∑

j=0

[(

N

j

)

qj(1 − q)N−j(s0u
jdN−j − K)+

]

;

a put with strike price K has present value

e−rNδt
N
∑

j=0

[(

N

j

)

qj(1 − q)N−j(K − s0u
jdN−j)+

]

.

What changes when we consider an option on the forward price Ft, if the forward price
evolution is described by a multiperiod binomial tree? Hardly anything! If the stock price
tree was multiplicative, then the forward price tree is also multiplicative. The values of u
and d for the forward price tree are slightly different (if r 6= 0) from those of the stock price
tree. But no matter: if Fup = uFnow and Fdown = dFnow at each timestep, then (by exactly
the same argument as above) an option with payoff f(FT ) at time T = nδt has value

e−rNδt
N
∑

j=0

[(

N

j

)

qj(1 − q)N−jf(F0u
jdN−j)

]

.
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at time 0, where F0 is the forward price at time 0, and

q =
Fnow −Fdown

Fup −Fdown
=

1 − d

u − d
.

Notice that 0 < q < 1 exactly if the values of u and d (for the forward price tree) satisfy
d < 1 and u > 1. These conditions must hold, for the market to be arbitrage-free.

*********************

American options. American options are different in that they permit early exercise: the
holder of an American option can exercise it at any time up to the maturity T . Of the
options actually traded in the market, the majority are American rather than European.

Clearly an American option is at least as valuable as the analogous European option, since
the holder has the option to keep it to maturity.

Fact: An American call written on a stock that earns no dividend has the same value as
a European call; early exercise is never optimal. To see why, suppose the strike price is K
and consider the value of the American option “now,” at some time t < T . Exercising the
option now achieves a value at time t of st − K. Holding the option to maturity achieves
a value at time t equal to that of a European call, c[st,K, T − t]. We know (this was an
example in Section 1) that the value of a European call is at least that of a forward with
the same strike and maturity. Thus holding the option to maturity achieves a value at
time t of at least st − e−r(T−t)K. If r > 0 this is larger than st − K. So early exercise
is suboptimal, as asserted. (Intuition: exercising now now means buying the stock now,
paying K. Exercising at maturity means buying the stock then, paying K. When r > 0,
we would rather pay later than pay now. Moreover there’s a chance the option will end up
out of the money; in that case we won’t have to pay anything.)

This feature of the American call is in some sense a fluke. When the underlying asset pays
a dividend early exercise of a call can be optimal. (Intuition: early exercise involves paying
K before maturity. But besides the stock, you get to collect its dividends. This can, in
some cases, provide enough benefit to make early exercise worthwhile.)

The simplest example where early exercise occurs is that of a put on a non-dividend-paying
stock:

Fact: An American put written on a stock that earns no dividend can have a value greater
than that of the associated European put; in other words, early exercise can be optimal.
To see why, suppose the stock price “now,” st, is far below K. Then it’s very unlikely that
sT > K at maturity, and the value of the put should be nearly the same as that of a forward
with the same strike and maturity. But the value of the forward is smaller than the payoff
of the put, since

Ke−r(T−t) − st < (K − st)+ if st < K.

So if st ≪ K, it is better to exercise the put than to hold it to maturity (see the figure).
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Figure 8: The value of a European put lies below the payoff when s ≪ K.

Valuation using a binomial tree. The pricing, replicating, and hedging of American
options using binomial trees is a minor variation on what we already did for European
options. The only difference is that, as we work backward in the tree, we must consider at

each node whether the option should be exercised or not. Here is an example involving a 2-
period multiplicative tree, with initial stock price s0 = 100 and sup = usnow, sdown = dsnow

using u = 2 and d = 1/2, and with a risk-free rate such that erδt = 3/2. Notice that for
this tree, the risk-neutral probability of the up state is q = (erδt − d)/(u − d) = 2/3. We
focus on a put with strike 100, i.e. payoff (100 − st)+ if exercised at time t.

At maturity (the second timestep), the put is worthless if the stock price is 400 or 100, and
worth 75 if the stock price is 25.

At the intermediate timestep, if the stock price is 50 then the value of the put is

max{(100 − 50)+, e−rδt[q · 0 + (1 − q) · 75]} = max{50, 50/3} = 50.

We see the new wrinkle here: the option is worth 50 if exercised, but only 50/3 if not.
Evidently, if the stock price reaches this node the holder should exercise it.

At the intermediate timestep, if the stock price is 200, then a similar calculation gives value
max{0, 0} = 0: the option is worthless.

Finally, at the intial time the stock price is 100 and the option value is

max{(100 − 100)+, e−rδt[q · 0 + (1 − q) · 50]} = 100/9

and we see that the option should be held at least till the next time period.
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Suppose the stock starts at 100 then goes down to 50. The initial replicating portfolio (using
stock) consists of −1/3 shares of stock (worth −100/3) and a bond worth 100/9 + 100/3 =
400/9. When the stock goes to 50, the −1/3 share of stock is worth −50/3 and the bond is
worth 200/3, netting to 50, as expected. If an investment bank has sold the option and is
hedging it using the replicating portfolio, this 50 is used to settle the option. (If the investor
is so foolish as not to exercise it, then the bank forms a replicating portfolio for the next
period. Since this replicating portfolio has value 50/3, the investor’s mistake has given the
bank a risk-free profit of 50 − (50/3) = 100/3.)
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