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Binomial and trinomial one-period models. This section explores the implications of
arbitrage for the pricing of contingent claims in a one-period setting. It has three distinct
parts:

(1) A fairly standard discussion of the one-period binomial setting (similar for example
to Hull’s Sections 12.1 and 12.2). The focus here is on hedging using a risk-free bond
and the underlying.

(2) A less-standard discussion of the one-period trinomial setting. I include this because
it provides the simplest example of a market that’s not complete. Moreover it permits
me to introduce (ever so briefly) the connection between risk-neutral pricing and the
duality theory of linear programming. This material is not in Hull or Baxter /Rennie
(though it is well-known to experts).

(3) Returning to the one-period binomial setting, we then discuss what changes if the
hedging is done using forwards or futures instead of the underlying. Most books
postpone this topic until later (Hull addresses it in Chapter 17). But there are both
theoretical and practical advantages to hedging by forwards or futures, as we’ll explain
when we start this discussion.

Don’t be misled by the order. A proper understanding of topics (1) and (3) will be crucial
for what we’ll do later on. Topic (2) is in some sense a digression. It too has value — for
understanding the difference between complete and incomplete markets, and for gaining
some perspective on the risk-neutral measure. But the HW and exam will go light on topic
(2) (for example, they will not involve linear programming or duality).

We do not claim, of course, that any real-world market can realistically be modelled using a
one-period binomial or trinomial framework. But we will argue soon that many markets can
be modelled using multiperiod trees, in much the same way that diffusion can be modelled
by random walk on a lattice. A good understanding of the single-period setting will lead,
with just a little extra work, to an understanding of the multiperiod models.
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Topic (1): The binomial model. We consider a one-period market which has

e just two securities: a stock (paying no dividend, initial unit price per share s; dollars)
and a bond (interest rate r, one bond pays one dollar at maturity).

e just one maturity date T'

e just two possible states for the stock price at time T": so and s3, with sy < s3



Figure 1: Prices in the one-period binomial market model.

(see the figure). We could suppose we know the probability p that the stock will be worth
s3 at time T'. This would allow us to calculate the expected value of any contingent claim.
However we will make no use of such knowledge. Pricing by arbitrage considerations makes
no use of information about probabilities — it uses just the list of possible events.

The reasonable values of sy, s9, s3 are not arbitrary: the economy should permit no arbitrage.
This requires that
59 < 51”7 < s3.

It’s easy to see that if this condition is violated then an arbitrage is possible. The converse
is extremely plausible; a simple proof will be easy to give a little later.

In this simple setting a contingent claim can be specified by giving its payoff when St = s
and when Sp = s3. For example, a long call with strike price K has payoff fo = (so — K)4
in the first case and f3 = (s3 — K )4 in the second case. The most general contingent claim
is specified by a vector f = (fo, f3) giving its payoffs in the two cases.

Claim 1: In this model every contingent claim has a replicating portfolio. Thus arbitrage
considerations determine the value of every contingent claim. (A market with this property
is said to be “complete”.)

In fact, consider the portfolio consisting of ¢ shares of stock and v bonds. Its initial value
is

¢s1 + e
Its value at maturity replicates the contingent claim f = (fo, f3) if
Ps2+¢ = fo
ps3+v = fs.
This is a system of two linear equations for the two unknowns ¢, . The solution is
b= f3— [ _ s3fo—safs
53— 82 53— 5y
The initial value of the contingent claim f is necessarily the initial value of the replicating
portfolio:
— s3fa—s
83 — 52 83 — 82
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Claim 2: The value can conveniently be expressed as

s1e"l — g9

V(f)=e"T[(1—q)fa+qfs] where ¢=
83 — 82
Moreover, the condition that the market admit no arbitrage is 0 < ¢ < 1, which is equivalent
to s9 < s1e’! < s3.

The formula for V(f) in terms of ¢ is a matter of algebraic rearrangement. This simplifica-
tion seems mysterious right now, but we’ll see a natural reason for it a bit later.

The condition that the market supports no arbitrage has two parts:
(i) a portfolio with nonnegative payoff must have a nonnegative value; and
(ii) a portfolio with nonnegative and sometimes positive payoff must have positive value.

In the binomial setting every payoff (fa, f3) is replicated by a portfolio, so we may replace
“portfolio” by “contingent claim” in the preceding statement without changing its impact.
Part (i) says fo, f3 > 0= (1 — q)f2 + qfs > 0. This is true precisely if 0 < ¢ < 1. Part (ii)
forces the sharper inequalities ¢ > 0 and ¢ < 1.

Notice the form of Claim 2. It says the present value of a contingent claim is obtained by
taking its “expected final value” (1 — q)f2 + ¢f3 then discounting (multiplying by e~"7).
However the “expected final value” has nothing to do with the probability of the stock
going up or down. Instead it must be taken with respect to a special probability measure,
assigning weight 1 — ¢ to state ss and ¢ to state s3, where ¢ is determined by s1, s2, s3
and r as above. This special probability measure is known as the “risk-neutral probability”
associated with the market. When (as in the present setting) the risk-neutral probability is
unique, the pricing formula is commonly written

option value = V(f) = e "7 Egn[f] = discounted risk-neutral expected payoff.

How to remember the formula for ¢? It’s easy. The pricing formula must hold for all
contingent claims. In particular, it must price the stock correctly. Therefore we must have

s1=e "T[(1—q)ss + gss).

Rearranging this equation gives once again the formula for ¢q. (Note that the formula
automatically prices a bond correctly, since e = e~ "T[q + (1 — ¢)] regardless of the value

of q.)

I like to view ¢ as nothing more than a convenient way of representing V(f). However the
term “risk-neutral probability” can be understood as follows. In the literature on financial
economics (see e.g. John Cochrane’s book Asset Pricing), a common viewpoint is that the
present value of an uncertain future income stream is determined by its discounted expected
utility. The utility should be concave; however, one can consider as an extreme case the



linear utility U(f) = f. This is called the “risk neutral” utility, because in this case the
expected utility of future income is identical to the expected value of future income (whereas
for a strictly convex U, the expected utility E[U(f)] would depend on the probability
distribution of f as well as on its mean). Our formula V(f) = e™"7[(1 — q) fa + qf3] gives
the value of the option as the discounted expected utility of the payoff, using the linear (i.e.
risk-neutral) utility, and the (“risk-neutral”) probability distribution determined by g.
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Topic (2): The trinomial model. This is the simplest example of an incomplete market.
It resembles the binomial model in having

e just two securities: a stock (paying no dividend, initial unit price per share s; dollars)
and a bond (interest rate r, one bond pays one dollar at maturity).

e just one maturity date T'.
However it differs by having three final states rather than two:

e the stock price at time T can take values so, s3, or s4, with so < s3 < s4

(see the figure). The reasonable values of sq,...,s4 are not arbitrary: the economy should
S 4
S 1 S3
S 2

Figure 2: Prices in the one-period trinomial market model.

permit no arbitrage. This requires that

T

sy < s1e”l and  s1e’l < sy.

In other words, the stock must be able to do better than or worse than the risk-free return
on an initial investment of s1 dollars. It’s easy to see that if this condition is violated then
an arbitrage is possible.

In this case a contingent claim is specified by a 3-vector f = (fa, f3, f1); here f; is the payoff
at maturity if the stock price is s;. Question: which contingent claims are replicatable?
Answer: those for which the system

¢psa+Y = fo
sz +Y = f3
Psa+Y = fa



has a solution. This specifies a two-dimensional space of f’s. So the market is not complete,
and “most” contingent claims are not replicatable.

If a contingent claim f is not replicatable then arbitrage does not specify its price V(f).
However arbitrage considerations still restrict its price:

V(f) < the value of any portfolio whose payoff dominates f;
V(f) > the value of any portfolio whose payoff is dominated by f.

In other words,

Psa+U > fo
pss+¥ > f3 = V(f) <osi+e Ty
Psa+v > fa
psa+1 < fa
oss+v < fs :>V(f)2¢31+e_rT1/1.
Psa+1 < fy

We obtain the strongest possible consequences for V(f) by solving a pair of linear program-
ming problems:

max ¢si+e Y <V(f)<  min  ¢s ey
osj+Y<f; Psj+Y>f
Jj=2,3,4 j=2,3.4

These bounds capture all the information available from arbitrage concerning the price of
the contingent claim f. (The actual price of an option in an incomplete market must be
determined by additional considerations besides arbitrage. As mentioned earlier, a standard
approach involves discounted expected utility, see e.g. John Cochrane’s book Asset Pricing.)

Every linear program has a dual linear program. If you don’t already know something about
duality, I suggest skipping the following, proceeding directly to the discussion of hedging
by forwards. (If you'd like to read about duality for linear programming, Peter Lax’s book
Linear Algebra has a concise treatment. My favorite textbook on linear programing is V.
Chvatal’s Linear Programming; a more modern, more advanced choice is R. Vanderbei’s
Linear Programming: Foundations and Extensions.)

Recall that our upper bound for V(f) was the optimal value of a linear programming
problem. Let’s find the form of the dual linear programming problem, by expressing the
original problem as a min-max then interchanging the min and the max. The upper bound

1S:

4
min  ¢s; +e "y = minmax ¢s; +e LY+ E wi(f; — ¢sj — )
. . ¢y w20
¢s;+Y>f;

§=2,3,4

J=2

= maxmiwn ps1+e Ty +Z7Tj(fj — ¢sj — )

Uy 20 (b’



= maxmin ¢(s; — ZW]S] + (e - ZWJ +Z7TJfJ

720 G0

= max Zﬂjf]’.

The first line holds because
)= { 0 if¢s;+o>f;

max m; S i
S (f — ¢s; +00 otherwise.

>
The second line holds by the duality theorem of linear programming, which says in this
setting that min max = maxmin. The third line is obtained by rearrangement, and the
fourth line by an argument similar to the first.

The preceding argument is correct, but if you’'re not well-versed in duality theory then the
assertion “min max = max min” may seem rather mysterious. To demystify it, let’s explain
by an entirely elementary argument why

. —rT
min _ ¢s;+e Y > max ;i fi.
¢8j+’lﬁ2fj Zﬂjsjzsl Z s

Z 5 =T

;>0

(The opposite inequality is more subtle; the main point of linear programming duality is
to prove it.) Indeed, consider any ¢ and ¢ such that ¢s; + 1 > f; for each j = 2,3,4; and
consider any {m;}j_, such that 7; > 0, 2322 mjs; = s1, and 2?22 m; = e~ "7, Multiply each
inequality ¢s; + 1 > f; by m;, then add and use the hypotheses on 7; to see that ¢s; +
e Ty > >_m; fj. Minimizing the left hand side (over all admissible ¢,v) and maximizing
the right hand side (over all admissible 7;) gives the desired inequality.

Making the minor change of variables 7; = e’"TWj, our duality argument has shown that

V(f) < max{e " [rofo + 73 fs + ftafa] : sy + 383+ Tuss =€ s

o + 73+ 74 =1, frij}.

The lower bound is handled similarly. The only difference is that we are maximizing in ¢, ¢
and minimizing in 7;. An argument parallel to the one given above shows

V(f) > min{e " [fofo + 3 fs + ftafa] : Fosg + T3Sz + fasy =€ L s
g + 73 + 74 = 1, ﬁ'jZO}.

Thus the upper and lower bounds on V(f) are obtained by maximizing and minimizing the
“discounted expected return” e~ [fy fy + 73 f3 + 74 fs] over an appropriate class of “risk-
neutral probabilities” (7a, 73, 74). The incompleteness of the market is reflected in the fact
that there is more than one risk-neutral probability: in the present trinomial setting the 3-
vector (g, 73, 74) is constrained by two inequalities, so the class of risk-neutral probabilities



is one-dimensional (a line segment in the three-dimensional space of triplets (7o, 73, 74)).
The conditions determining this line segment are nonnegativity, plus the conditions that
the risk-neutral probabilities price both the bond and the stock correctly.

We noted earlier the condition sy < s1e’’ < s4, which is required for the economy to
be “reasonable” — i.e. not to admit an arbitrage. This is precisely the condition that
there be at least one risk-neutral probability, i.e. a triplet (9, 73, 74) such that >~ 7; =1,
D Tis; = e"T'sy, and 7j > 0 for each j.
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Topic (3): Hedging by forwards or futures. We return now to the one-period binomial
setting. We showed at the beginning of this section that in the one-period binomial context,
any contingent claim is equivalent to (is “replicated by”) a suitable combination of a bond
and the underlying. This led us to the “risk-neutral pricing formula” for the value of a
contingent claim.

We now return to that calculation to see what happens if we hedge using a forward or futures
contract rather than the underlying. There are both practical and theoretical reasons for
doing this. Practical: Hedging might require taking a negative (“short”) position. Some
investors (e.g. mutual funds) are not permitted to take short positions; it might therefore
be more convenient to sell forwards or futures instead. Forwards have a further advantage:
if we only buy or sell forwards with delivery price equal to the forward price then no money
changes hands at the time of sale; rather, money changes hands only at the settlement time.
(However futures are more liquid than forwards; therefore real-world hedging would usually
use futures not forwards.) Theoretical: in the multiperiod setting, option pricing formulas
are simplest when expressed in terms of the forward price. The fundamental reason is again
that if hedging is done using forwards then no money changes hands until the settlement
time. (This is important when interest rates are random, because at time 0 we know the
discount rate B(0,7") but we don’t know B(t,T) for 0 <t < T.)

It is convenient to change notation slightly. We write spoy (rather than s;) for the initial
stock price, and Sqown < Sup (rather than sy < s3) for the two possible stock prices at time
T. Similarly, we write Fow, Fdown, and Fyp for the forward prices in the initial, down, and
up states.

Our one period market model has initial time 0 (“now”) and final time 7. Our forwards,
however, need not have settlement time 7'. Rather, their settlement time can be any time
T'" > T. When (in Section 3) we price an option using a multiperiod model, it will be
natural to let 7" be the final time under consideration (the maturity date of the option).
We shall consider only forwards with delivery price equal to the forward price, so the value
is zero at the time of “purchase.”

Recall that the forward price is fully determined by the price of the underlying: if the
settlement time is 7”7 and the interest rate is (constant) 7, then Fow = e"T’SHOW while



Fdown = eT(T/_T)sdown and Fup = eT(T/_T)sup. Also recall that (when the interest rate is
constant) the futures price is the same as the forward price.

We want to explain the following points:

(a) The forward price satisfies Frow = ¢Fup + (1 — ¢)Fdown, Where ¢ is the risk-neutral
probability of the up state. (Remember: ¢ is unique in the binomial setting.) Put
differently: Fnow = ErN [Fr7)-

(b) If a contingent claim has payoff fy, in the up state and payoff fyown in the down state,
then its value initially is V/(f) = e ™" [qfup + (1 — q) fdown)-

(¢) This contingent claim is replicated by a portfolio consisting of « units of the forward
and a bond worth (8 at time 7', where

= T(T/_T)M — 1—
@ € ~7:up _ fdown7 B qup + ( Q)fdown-

(d) This contingent claim is alternatively replicated by a portfolio consisting of a futures
contracts and a bond worth § at time T', where

fup - fdown

0=
fup_fdown

ﬁ = qup + (1 - Q)fdown-

Concerning (a): Notice that there is no factor of e™"7 on the right hand side! That’s
not a typographical error — the forward price is not the price of a contingent claim. One
can demonstrate (a) by simply writing all the forward prices in terms of Snow, Sup, Sdown
then doing some algebraic manipulation. However we can get more insight by applying our
pricing formula to a forward contract (with, by convention, delivery price K = Fo and
settlement time 7”). Its value at time 0 is 0. Let’s find its “payoff” at time 7. In the
up state a forward with delivery price F,, would have been valueless, so our instrument is
worth the same as a sure payment of Fy, — Fpow at time T’. Thus: its value in the up state
is e (I"=T) (Fup — Frow)- Similarly its value in the down state is e—r(T'=T) (Faown — Frnow)-
Now apply the pricing formula to conclude that

0= G_TTI [Q(fup - fnow) + (1 - Q)(fup B fnow)] ’

Algebraic rearrangement gives Fpow = ¢Fup + (1 — ¢)Fdown, as asserted. Notice that this
formula determines the value of g:

~7:now - fdown
fup - fdown

which is of course equivalent to our previous formula g = W. (Comment to those
who know enough that the following makes sense: in the multiperiod setting this argument
shows that the forward price is a martingale. But we have used the hypothesis that the

interest rate is constant, or at least deterministic. When the interest rate is random, it is



the futures price not the forward price that’s a martingale under the risk-neutral measure.)

Concerning (b): this is of course just a restatement of our familiar pricing formula. We have
restated it because the present discussion gives an independent proof. In fact, (b) follows
from (c) or (d) since the initial value of the forward or futures contract is 0 and the discount
factor for the bond is e™"7.

Concerning (c): Consider the portfolio consisting of « units of the forward and a bond
worth (3 at time T'. It has the same value as the contingent claim at time 7' if

ae"(T'=T) (Fup — Foow) + 3= fup and e " T'=T) (Faown — Frow) + B = faown-

These are two equations in two unknowns (« and ), so we should be able to solve for «
and (3. But rather than proceed blindly, let’s be clever. Multiplying the first equation by ¢
and the second by 1 — ¢ then adding gives

ﬁ = qup + (1 - Q)fdowna

while subtracting the two equations gives

ae_T(T/_T) (fup - fdown) - fup - fdown-

Simplification yields (c).

Concerning (d): The futures contract has initial value 0, and its value at time 7" is Fyp—Fnow
in the up state, and Fgqown — Fuow 10 the down state. So « futures and a bond worth 3 at
time T replicates the contingent claim if

Oé(j:up - fnow) +ﬁ = fup and O‘(j:down - fnow) + ﬁ = fdown-

This is identical to the system considered in (¢) with 7" = T. Therefore the proper values
of @ and 3 are as given by (d).

You might be puzzled. We promised a discussion of hedging, whereas the preceding discus-
sion appears to be about replication and pricing. But it also tells us how to hedge. Indeed,
suppose you buy a contingent claim with payoff f. Suppose further that at the same time
you “sell” o units of the forward contract (receiving nothing, since the delivery price is the
forward price), with « as given by (c). Then you have entirely eliminated all risk: your
position is equivalent to holding a bond worth 8 = ¢ fup + (1 — ¢) faown at time T". The same
applies if instead you “sell” « futures contracts, with « given by (d).

The discussion can also be viewed differently, as a prescription for finding an arbitrage
if the option is mispriced. Indeed, if the market price P of the option is different from
eI 3 = V(f), our calculation identifies a risk-free portfolio (combining the option with a
position in forwards or futures) whose return is different from the risk-free rate. If the return
is larger than the risk-free rate, the associated arbitrage opportunity involves borrowing
money and buying this portfolio. If it is smaller, then it involves selling this portfolio and
lending the resulting income at the risk-free rate.

Food for thought:



. How does this specialize to a contingent claim whose payoff is the same in both states,
i.e. for which fup = fdown?

. Does it matter whether the value of the contingent claim increases or decreases when
the stock price increases (fup > fdown versus fup < fdaown)?

. Does it matter whether the payoffs of the contingent claim (f,,p, and fyown) are positive
or negative?

. Does the size of changes in the stock price or claim value matter (e.g. does anything
change if fup, — fdown OF Sup — Sdown is very large or very small)?

. What would things be different if we knew at the initial time whether the stock was
going up or down?

. Have we made any use of the actual probability that stock goes up or down?

. A one-period trinomial model reduces to a one-period binomial model if the probability
of one of the final states is set to zero. Yet the trinomial one-period market was
incomplete, while the binomial one-period market was complete. Why is this not a
contradiction?
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