The relevant parts of Hull are:

- chapter 8, on structured credit products + the recent financial crisis
- sections 23.9 - 23.10, on Gaussian copula approach to default correlations
- section 24.3 about CDS indexes
- sections 24.8 - 24.10 on CDO's

In all we focused on bonds issued by a specific corporation, or CDS on a single entity. Therefore only the prob of default by this entity was relevant.

In multiname setting, correlation between defaults is also important.

Example: Suppose you hold bonds issued by 10 companies, and each has a default prob of 1% in 1st yr. If independent, then

\[
\text{prob of exactly } k \text{ defaults in 1st yr } = \binom{10}{k} (0.01)^k (0.99)^{10-k}
\]

so, for example, prob that all default
is \((0.1)^{10} = 10^{-20}\). (Exceedingly small!)

If fully correlated, then either there’s no default or they all default; in this case

\[
\text{prob that all default in 1st year} = 0.01 \quad \text{(not so small!)}
\]

Why do we care?

1. A bank with many credit exposures must estimate its “value at risk.” This amounts to estimating the likelihood of a very large loss (due to defaults) within a specific time period.

2. An investor may seek to protect itself in a general, diversified way from deterioration of credit environment; or to profit by selling such protection. The standard tool is a basket CDS or index CDS contract. Index CDS works like this:

- There’s a specific list of companies (eg. CDX NA IG corresponds to list of 125 investment grade companies in North America)
contract behaves like an (equally-weighted) CDO on each company. For example:

1st default \rightarrow seller of protection pays $L(1-R) \cdot \frac{1}{125}$ to purchaser, and "spread payments" are reduced to $\frac{124}{125}$ of initial amount.

2nd default \rightarrow seller pays another $L(1-R) \cdot \frac{1}{125}$ to purchaser, and "spread payments" are reset to $\frac{123}{125}$ of initial amount.

To value this, we need expected number of defaults at each payment date.

Note: recent huge trading loss by J.P. Morgan Chase involved contracts of this type. (Why? The big loss? Huge trades \rightarrow they moved the market \rightarrow price paid was artificially high \rightarrow after a while they had a huge loss.)

(3) Before 2007, CDO's (collateralized debt obligations) backed by mortgages were widely
created + traded. Their purpose: to create high-quality bonds out of lower-quality loans (e.g. subprime). Also used for credit card debt, etc. Much less-used since 2008

How it works:

\[
\begin{align*}
\text{collection of} & \quad \rightarrow \quad \text{senior tranche,} \\
\text{lower-quality} & \quad \rightarrow \quad \text{principal 80%} \\
\text{loans} & \quad \rightarrow \quad \text{pays Libor + 60 basis pts} \\
\text{total prn = 100M} & \quad \rightarrow \quad \text{mezzanine tranche} \\
& \quad \rightarrow \quad \text{principal 15%} \\
& \quad \rightarrow \quad \text{pays Libor + 250 basis pts} \\
& \quad \rightarrow \quad \text{Equity tranche} \\
& \quad \rightarrow \quad \text{principal 5%} \\
& \quad \rightarrow \quad \text{pays Libor + 2000 basis pts}
\end{align*}
\]

(Hull, §8.1) - here

- equity tranche bears 1st 5% of defaults (after which it's dead);
- mezzanine tranche bears next 15% of defaults (then it too is dead);
- senior tranche starts seeing losses if defaults exceed 20%.

In practice there could be many more tranches
Typically (based on hypothesis of not too large correlation) senior tranche would be high quality even if underlying instruments aren't. So it's a way to draw capital that otherwise wouldn't have been available.

Worked badly for many reasons:
- correlations in 2007-2008 were much greater than was assumed
- creator of underlying bonds has no incentive to be honest or maintain quality

4 Also pre-2007: people also created synthetic CDS's, which were essentially tranched versions of CDS's on a portfolio.

- equity tranche earns higher spread but bears full face of initial defaults (up to 5% say)
- mezzanine tranche earns interme spread + bears face of defaults beyond 5% up to 15% (say)
- senior tranche gets smallest spread + bears face of defaults only after 20%
Why? Basically same reasons as regular CDS's in a portfolio. But much more complex to price or hedge.

Why were they popular? Mostly as a speculative tool, I think.

Stepping back: tranching instruments are no longer so popular, but correlations between defaults are still important for basket or index CDS, or estimating VAR on a debt portfolio.

Basic tool: Gaussian copula permits disentangle correlation between two unrelated, non-Gaussian RV's.

Define \(x_1(t_1) \) by
\[
N(x_1(t_1)) = \text{prob that RV #1 \leq t_1}
\]
+ similarly \(x_2(t) \) (using RV\#2). Now assume
\(x_1 + x_2 \) are bivariate normal with corr \(p \).

Let's apply this viewpoint to estimate default risk involving a pool of entities, assuming for simplicity:

- homogeneity (all entities are equivalent)
- a one-factor model (to be explained below)

(think of the common factor as the "state of the economy")

- the pool is large (permitting us to use law of large numbers)

Goal is an expression for fraction of the pool that has defaulted by time \(t \) (or just the expected number of defaults by time \(t \)), given inputs

- prob that a single entity defaults by time \(t \) is given, say \(D = D(t) \)
- correlation \(p \) (and Gaussian copula).

Let \(X_j \) be the standard Gaussian assoc to the jth entity. Then
\[x_j = \frac{1}{2} F + \sqrt{1 - \frac{1}{2}} Z_j \quad \text{(the one-factor hypothesis)} \]

where \(F + Z \) are independent standard Gaussians.

(Note that \(E\xi_j = 0, \ E\xi_j^2 = 1, \ E(\xi_j \xi_k) = p \).

So: if value of \(F \) is fixed, then

name \(j \) defaults \(\iff x_j \leq x^{-1}(D) \)

\[\iff Z_j < \frac{x^{-1}(D) - \sqrt{p} F}{\sqrt{1-p}} \]

\[\iff \text{prob of default is } N\left(\frac{x^{-1}(D) - \sqrt{p} F}{\sqrt{1-p}} \right) \]

To find prob that any indiv. credit defaults, we're thus left to do a numerical integration

\[\text{prob} = \int N\left(\frac{x^{-1}(D) - \sqrt{p} F}{\sqrt{1-p}} \right) \cdot \frac{1}{\sqrt{2\pi}} e^{-s^2/2} ds \]

If pool is large, it's a decent approxm to identify this with the fraction of the pool that has defaulted by \(x^{-1}(D) \).
Uses of this:

a) for estimating VAR:

What is the likelihood that 10% of the pool defaults by time t?

\[\left(\text{under large-pool approx.} \right) \]

What is the likelihood that

\[N \left(\frac{N^{-1}(D) - \sqrt{p} \cdot F}{\sqrt{p}} \right) > 0.1 \]

\[\uparrow \]

What is the likelihood that a Gaussian F has

\[F < \frac{N^{-1}(D) - \sqrt{p} \cdot N^{-1}(0.1)}{\sqrt{p}} \]

b) for pricing a CDS on an index:

Protection purchaser pays:

\[L \frac{d}{dt} \left[\frac{1}{2} \cdot \mathbb{E} \left[\text{fraction of names still alive at } t_i \right] \right] \text{ at } t_i \]

and receives

\[L \left(1 - R \right) \left(\mathbb{E} \left[\text{fraction alive at } t_{i-1} \right] - \mathbb{E} \left[\text{fraction alive at } t_i \right] \right) \]
due to defaults, plus "accrued interest"

$$L = \frac{\bar{\delta}}{2\delta} \left(E \left[\text{fraction alive} \right]_{\text{at } t_{j-1}} - E \left[\text{fraction alive} \right]_{\text{at } t_j} \right)$$

(at time \((t_{j-1} + t_j)/2\), by the usual formula).

Note that calcs of \(E \left[\text{fraction alive at } t_j \right]\) are all "the same" (as explained above), except for use of different values of \(D = \text{prob that any single name has defaulted by time } t\).

c) valuation of a tranched CDO is only a little different. Let

$$\theta \left(F \right) = N \left(\frac{N^{-1}(D^\text{+}) - \sqrt{p} F}{\sqrt{1-p}} \right)$$

= fraction of defaults by time \(t\),
given \(F\) (under large-pool approx).

Then eq. for mezzanine tranche in our example, protection purchaser's payment at time at \(t_j\) is

$$L = \frac{\bar{\delta}}{2\delta} g \left(\theta \right)_{t_j}$$

\[\text{10%} \quad \text{g(θ)} \quad \begin{array}{c}
\text{5%} \\
\text{15%}
\end{array}\]
which gets valued as

\[L \frac{d}{dt} \mathbb{E}[g(\theta_t)] B(0,t) \]

Gaussian expectation, since \(\theta_t \) is a r.v. of the Gaussian RV \(F \)

and protection purchaser receives (at \(t_{i-1} + \frac{t_i - t_{i-1}}{2} \))

\[L (1-\kappa) + L \frac{d}{dt} \times g(\theta_{t_{i-1}}) - g(\theta_{t_i}) \]

valued as in

\[\mathbb{E}[g(\theta_{t_{i-1}})] - \mathbb{E}[g(\theta_{t_i})] \]

(were expectations are to Gaussian \(F \)).

For all these calims, choice of \(g \) is crucial. Lesson of 1999-2000 blowup and also 2007-8 crisis; inferring \(g \) from market data is dangerous (the market could have errors, beliefs, or be skewed by supply/demand issues, for example.)