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Courant Institute of Mathematical Sciences.

This is the third of 3 sections on the pricing of options on interest-based instruments — i.e.
pricing of bond options, caps, floors, and swaptions. We start with a brief discussion linking
options on a zero-coupon bond to caplets (this is elementary and could logically have been
in Section 9). Then we discuss the simplest continuous-time short-rate model, known as
Vasicek’s model. Finally, we discuss the relationship between forward and futures prices
when interest rates are not deterministic. Except for the first segment, this section is more
mathematical than most of the course — consider it a hint of what lies ahead, when (for
example in the class Continuous Time Finance) the full arsenal of Stochastic Calculus is
available for use.

I have not discussed convexity and timing adjustments, but those topics are also important.
You can read something about them in Hull’s Chapter 29.
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An option on a zero-coupon bond is essentially a caplet or floorlet. In Section
9 we discussed options on zero-coupon-bonds, caplets, and floorlets separately. However
they are closely related. Let me explain why, focusing on the case of a put option on a
zero-coupon bond. Recall that such an option gives its holder the right to sell (at time T,
the maturity date of the option) a zero-coupon bond (with maturity 77 > T, worth one
dollar at maturity) for price K (the strike price). The option’s payoff (at time 7T') is thus
(K — B(T,T"));.

Let’s related this to a caplet on the term lending rate from T' to 7", with notional principal
one dollar and strike Ry. It pays (R — Rp)+At at time 7", using the notation R = R(T,T")
for the term rate and At = T" — T. Therefore the caplet’s value at time T is B(T,T")(R —
Ry)+At, or equivalently (remembering the relationship between B(T,T") and R(T,T"))

1

m maX{(R — RO)At, 0}

Since
14+ RoAt (R — Ry)At
1+ RAt 1+ RAt
the value of the caplet at time 7" has the alternative expression
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1+ RoAt — 0
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which we recognize as

(1+ RoAt)(K — B(T,T")), with K = 71%1,0&.

Thus, the caplet is equivalent to (1 + RgAt) puts on a zero-coupon bond, with strike
(14 RoAt)~L.



A similar argument connects a floorlet with calls on a zero-coupon bond. Since a cap is a
collection of caplets, it is equivalent to a portfolio of puts on zero-coupon bonds. Similarly,
a floor is equivalent to a portfolio of calls on zero-coupon bonds.
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The simplest continuous-time interest rate model. We discussed in Section 9 how
interest-based instruments can be modeled using an interest rate tree. The continuous-
time analogue of that discussion is the use of a short-rate model. Such a model specifies a
stochastic differential equation for the short term interest rate r(t) under the risk-neutral
probability, say dr = «(r,t) dt + B(r,t) dw. The solution determines the value of a money-
market account: it solves dA/dt = r(t)A with A(0) = 1, or in other words

A(t) = exp </0t7“(s) ds> .

The value V(t) of any tradeable is then determined, as discussed in Section 7, by the con-
dition that V(¢)/A(t) must be a martingale (under the risk-neutral probability). Applying
this to the value B(t,T) of a zero-coupon bond with maturity 7" and principal one dollar,
we get

B(t,T) = Ern

T
eift r(s) ds given info at time t} ) (1)

The simplest example is the Vasicek model, which assumes that under the risk-neutral
probability the short rate solves

dr = (0 —ar)dt + o dw (2)

with 6, a, and ¢ constant and a > 0. We have seen something very similar before: if r solves
(2) then y = r — 0 /a solves dy = —ay dt 4+ o dw; this is the Ornstein-Uhlenbeck process we
discussed in Section 6.

Do we have the right to assume (2)? Yes and no. Yes, in the sense that there the short
rate could in principle solve any SDE; there is no structural condition, because r(¢) is not
itself the price of any tradeable. No, in the sense that (2) has only three parameters, so
it cannot possibly be calibrated to match the current yield curve. Moreover in this model
r(t) can be negative, which shouldn’t really happen for an interest rate. So this model is a
toy — a cartoon version of a continuous-time short-rate model, which permits us to see the
main ideas. (The Hull-White model assumes that dr = (6(t) — ar) dt + o dw, where 0(t) is
a deterministic function of ¢ that must be specified. This model can be analyzed using the
same ideas we’ll apply here to Vasicek. By choosing 6(t) properly, the Hull-White model
can be calibrated to any yield curve at a given time.)

A key feature of (2) is mean reversion: if r > 6/a then the drift term is negative, while if
r < 0/a then the drift term is positive. So r(¢) has a tendency to return to 6/a, though
noise (the dw term) keeps pushing it away. This feature is reasonable for a short-rate model,
since interest rates rarely stay very high or very low for a long time.



Hull-White shares with Vasicek the flaw that r(¢) can be negative. There are variants (for
example, the Cox-Ingersoll-Ross short-rate model) that avoid this problem. However, Hull-
White and its variants have a more serious shortcoming: while they can be calibrated to
today’s yield curve, there is little freedom to insert information about how the yield curve
is expected to evolve. To include such information, one must take an entirely different
approach, such as that of Heath-Jarrow-Morton.

Enough perspective. Let’s return to Vasicek model (2). Our goals are to
(i) find explicit formulas for the discount factors B(¢,T") under this model; and
(ii) show that the hypothesis underneath Black’s formula is valid for this model.

Getting started: we gave an explicit solution for the Ornstein-Uhlenbeck process in Section
6. A similar procedure leads to an explicit formula for the solution of (2):

d(e“tr’) = e dr 4 ae®r dt = e dt + o dw,
SO t t
e r(t) = r(0) + 9/ e ds + 0’/ e*dw(s).
0 0

which simplifies to

a

0 ¢
r(t) = r(0)e + 2(1— ™) + o / =9 duy(s). 3)
0
That calculation could have started at any time; thus
0 t
r(t) = r(s)e” ) 4 Z(1 — et 4 0'/ e~ ) dup (7). (4)
a S

We observe from (3) that r(¢) is Gaussian (the stochastic integral is Gaussian, because each
term of the approximating Riemann sum is Gaussian, and sums of Gaussians are Gaussian.)
Its mean is clearly

Blr(t)] = r(0) + (1 - =),

and the variance is

t 2 . )
Var [r(0)] = 0°E [( [ duo) ] o P
0 0 2a

We can use the preceding calculation to see that B(t,T") has lognormal statistics (under the
risk-neutral probability). Indeed, substitution of (4) (with ¢ and s interchanged) into (1)
gives

B(t,T) = C(t,T)e PEIIr®) (5)
with

T S alen
D(t,T) :/ e s, and C(t,T)=E |e” iRm0 ko £ e du(m) } s .
t
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Since C(t,T) and D(t,T) are deterministic and r(¢) is Gaussian, (5) shows that B(t,T') is
lognormal.

We promised an explicit formula for B(¢,7"); in the one obtained just above, C(¢,T') is
pretty explicit since integral is easily evaluated, but D(¢,T') is not so explicit. To do better,
we use the following Claim: Suppose a function V(t,r) solves the PDE

Vi+ (0 —ar)V, + 26°V,, — 1V =0 (6)

with final-time condition V(T,r) = 1 for all v att = T. Then V(t,r(t)) = B(t,T) for all
t < T. To justify the claim, observe that it is certainly true when ¢t = T', since V(T',r(T)) =
1= B(T,T). So it is sufficient to show that V(¢,r(t))/A(t) is a martingale, where A(t) is
the balance of the money market account. Making repeated use of the Ito calculus, we have
that if z(t) = V (¢, 7(t))/A(t) then

dz= A7V (t,r(t)) — A2V (t,r(t))dA = A~H(dV (¢,7(t)) — rV dt)
and

av(t,r(t)) = Vidt+ Vedr+ 3V, drdr
= Vi+(0—ar)V, + %02‘/}7«] dt + oV, dw.

Thus, if V' solves (6) then
dz = A" W,o dw

i.e. z(t) is a martingale. This proves the claim.

To get the desired explicit formula, we should obviously seek a solution of (6) of the form
Vt,r) = C(t,T)eiD(t’T)’".
Substituting this into the PDE, we see that C' and D must satisfy
C;—0CD+ 30’CD*=0 and D;—aD+1=0
for t < T, with final-time conditions
C(T,T)=1 and D(T,T)=0.

Solving for D first, then C, we get
D(t,T) = 1(1 — em(T1)
a

and
0 o2

C(t,T) = exp [(a - > (D(t,T)—-T+1)

2a2

2
g

— —D*t.T)|.
1 (t,T)

The desired explicit formula for B(¢,T') is now

B(t,T) = C(t,T)e” P&TIr®),



We turn now to the validity of Black’s formula, for options on zero-coupon bonds. Based
on the discussion in Section 9, our task is to show that! B(T,T") is lognormal under the
forward-risk-neutral measure. (Remember: this is the measure under which tradeables
normalized by B(t,T) are martingales.) We already know it is lognormal under the risk-
neutral measure, but here we’re interested in a different measure, associated with a different
numeraire.

We discussed change of numeraire in Section 9 on a tree; we now discuss how it works in
the continuous time setting. The risk-neutral measure is associated with the money-market
account A(t) as numeraire. Let N be another numeraire; our goal is to understand the
revised probability under which V(¢)/N(t) is a martingale whenever V is the value of a
tradeable. (When N(t) = B(t,T) this is the forward-risk-neutral measure.) We can only
use tradeables as numeraires, so (under the original, risk-neutral probability) the SDE for
N is
dN =rNdt +onyN dw.
By Ito we have
d(A/N)=Ad(N"Y) + N~ 1dA

(there is no dAd(N ') term since dA = rAdt). A bit of algebra gives
d(A/N) = (A/N)o3 dt — (A/N)oy dw.

When we use N as numeraire, the associated probability is characterized by the fact that
A/N is a martingale, i.e.
d(A/N) = —(A/N)on dw

where w is a Brownian motion under the new probability. Evidently,

dw = —on dt + dw.

What’s the point of all this? We need to write the SDE for the Vasicek process under the
forward-risk-neutral probability, i.e. when the numeraire is B(¢,7"). Recall that B(¢,T) =
C(t, T)e=PETIr®) 5o from Ito the volatility of B(t,T') is —D(t, T)o. Therefore the preceding
calculation gives

dw =oD(t,T)dt + dw.

We conclude that the SDE for the interest rate is
dr = (0 —ar)dt+odw= [0 — ar — o*>D(t,T)] dt + o dw

where w is a Brownian motion under the forward-risk-neutral probability. To show that
B(T,T’) is lognormal under the forward-risk-neutral probability, we have simply to repeat
the argument we have earlier (when we showed that B(¢,T') is lognormal under the risk-
neutral probability), but using the SDE

dr =10 — ar — o*>D(t,T)]dt + o dw

!This used to say B(t, T); corrected 11/28/2012. Similar corrections done below without further footnotes.



in place of (2). The calculation is very similar to the one we did before (the fact that the
drift depends on time doesn’t disturb the calculation at all). Briefly:? one substitutes the
ansatz B(t,T') = E(t,T")e F&T)r(®) into the analogue of (6) to get ODE’s for E(t,T")
and F(t,T"). Explicit formulas are a bit tedious to obtain — but they’re not needed. Since
E(T,T') and F(T,T") are deterministic and (7)) is Gaussian, we see (just as in the risk-
neutral setting) that B(T,T") is lognormal under the forward-risk-neutral probability.
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Forwards versus futures. We showed in Section 1 that when interest rates are deter-
ministic, the forward price of a tradeable is equal to its futures price (for the same delivery
date). In a stochastic interest rate environment this is false. We can see why, and get a
handle on the relationship between the two, by considering the following argument. (This
material is drawn from Section 12.3 of Quantitative Modeling of Derivative Securities by
M. Avellaneda and P. Laurence, Chapman & Hall, 1999.)

A typical interest rate future involves 3-month Eurodollar contracts: at the contract’s
maturity the holder must make a 3-month loan to the counterparty, at interest rate equal
to the 3-month-term LIBOR rate. We have called this rate R(¢,T); here T=t + 3 months,
and t is the maturity date of the futures contract. We know that the associated futures
price fo (t,T) — which determines the daily settlements during the course of the contract —
is a martingale under the risk-neutral probability, in other words

fo(t,T) = Egrx [R(t,T) given info at time t].

Let us seek a similar representation for the forward term rate fo(t,7), defined as usual by

1 B(0,T)

. _RtT)=
1+ fo(t, T)AT (¢, T) B(0,1)
with AT =T — t. Solving for fy(t,T") gives
1
fo(t,T) = W(O,T)(B(O’t) - B(0,T)).
Using
— [t ds
B(O,t) = ERN e fO (5) }

and the analogous expression for B(0,T), we get

_ ; —ftr(s)ds_ —fTr(s)ds:|
fo(t’T) - ATB(O,T)ERN € 0 € 0
T
— r(s)ds
SR O 6—]’&@)@.&
B(0,7) AT
_ 1 fftr(s)ds 1B(t,T):|
= B, [E AT |

“Better explanation inserted here, 11/28/2012.



making use in the last step of the fact that risk-neutral expectations are determined working
backward in time. Now, the relation B(¢t,7) = 1/[1 + R(t,T)AT] can be rewritten as

Hiéf’T) = R(t,T)B(t,T),
so we have shown that
RET) = G P [ bR T B T)]
= MERN e Jor® BR(t, T)e” LTT(S)dS} 7

using once more the fact that risk-neutral expectations are determined working backward
in time. Combining the two exponential terms, we conclude finally that

T
_ERN’}%@7136‘JB’*”d{

e fOT r(s) dsil

fO(th) -

ERrnN

Thus the forward rate fo(t,T) is not the risk-neutral expectation of the term rate R(t,T).
Rather it is the expectation of R(t,T") with respect to a different probability measure, the

one obtained by weighting each path by exp (— fOT r(s) ds).
It is clear from this calculation that forward rates and futures prices are different. We can

also see something about the relation between the two. In fact, writing R = R(¢,T) and
D = exp (— Jr(s) ds) we have

E[RD] — E[R]E|[D]

forward rate — futures price = ED|

where E represents risk-neutral expectation. If R and D were independent the right hand
side would be zero and forward rates would equal futures prices. In general however we
should expect R and D to be negatively correlated, since R is a term interest rate and D is
a discount factor. Recognizing that E[RD] — E[R|E[D] is the covariance of R and D, we
conclude that this expression should normally be negative, implying that

forward rate < futures price.

This is in fact what is observed (the difference is relatively small). A scheme for adjusting
the futures price to obtain the forward rate is sometimes called a “convexity adjustment”. It
should be clear from our analysis that different models of stochastic interest rate dynamics
should lead to different convexity adjustment rules in this context.



