
Derivative Securities – Fall 2007 – Section 8
Notes by Robert V. Kohn, extended and improved by Steve Allen.
Courant Institute of Mathematical Sciences.

American and exotic options. We have thus far focused on European options. This
week’s topic is the valuation and hedging of American and exotic options.

This short document (4 pages) discusses only American options. Please also read Steve
Allen’s Section 8 notes (posted on Blackboard); they focus mainly on (a) the numerical
valuation of path-dependent options, and (b) creation of a binomial tree that’s consistent
with an observed volatility skew/smile.

************************

American options. American options are different in that they permit early exercise: the
holder of an American option can exercise it at any time up to the maturity T . Of the
options actually traded in the market, the majority are American rather than European.

Clearly an American option is at least as valuable as the analogous European option, since
the holder has the option to keep it to maturity.

Fact: An American call written on a stock that earns no dividend has the same value as
a European call; early exercise is never optimal. To see why, suppose the strike price is K
and consider the value of the American option “now,” at some time t < T . Exercising the
option now achieves a value at time t of st −K. Holding the option to maturity achieves a
value at time t equal to that of a European call, c[st,K, T − t]. Without using the Black-
Scholes formula (thus without assuming lognormal stock dynamics) we know the value of a
European call is at least that of a forward with the same strike and maturity. Thus holding
the option to maturity achieves a value at time t of at least st − e−r(T−t)K. If r > 0 this is
larger than st − K. So early exercise is suboptimal, as asserted.

The preceding is in some sense a fluke. When the underlying asset pays a dividend early
exercise of a call can be optimal. But the simplest example where early exercise occurs is
that of a put on a non-dividend-paying stock:

Fact: An American put written on a stock that earns no dividend can have a value greater
than that of the associated European put; early exercise can be optimal. To see why,
consider once again the value of the American option “now,” at some time t < T . Exercising
the option now achieves value K − st. Holding it to maturity achieves a value at time t
equal to that of a European put, p[st,K, T − t]. Assuming lognormal stock price dynamics,
p is given by the Black-Scholes formula, and its graph as a function of spot price st is shown
in the figure.

The important point is that p[st,K, T − t] is strictly less than K − st when st � K. This
is immediate from the Black-Scholes formula, since p = Ke−r(T−t)N(−d2) − stN(−d1) ≈
Ke−r(T−t) − st when st � K, since d1 → −∞ and d2 → −∞ as st/K → 0. Briefly: if
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Figure 1: The value of a European put lies below the payoff when s � K.

st � K then the put is deep in the money, and the (risk-neutral) probability of it being out
of the money at time T is vanishingly small; therefore the value of the put is almost the
same as the value of a short forward. In such a situation we are better off exercising the
option at time t than holding it to maturity. (This does not show that exercise at time t is
optimal, but it does show holding the option to maturity is not optimal.)

For European options we have three different (but related) valuation techniques: (a) working
backward through the binomial tree; (b) evaluating the discounted expected payoff (using
the risk-neutral version of the price process); and (c) solving the Black-Scholes PDE. Each
of the three viewpoints can be extended to American options. We assume for simplicity
that the underlying asset pays no dividends.

Valuation using a binomial tree. This is perhaps the simplest approach, conceptually
and numerically. We can use the same recombinant binomial tree as for a European op-
tion. (Remember: pricing is done using the risk-neutral process. If the underlying asset is
lognormal with volatility σ then a convenient choice of the parameters defining the tree is
u = exp[(r − 1

2σ2)δt + σ
√

δt], d = exp[(r − 1
2σ2)δt − σ

√
δt], where r is the risk-free rate).

But since early exercise is permitted, we must ask at each node: is the option worth more
“alive” or “dead”? If the option is worth more dead, then it should be exercised (by its
holder) whenever the price arrives at that node. For example, consider the pricing of an
American option with payoff f(s) using a two-period recombinant tree:

S0u
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S0d
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Value=f(S0d2)

Value=f(S0u2)

Value=V+

Value=V−
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Figure 2: Valuation of an American option using a binomial tree.

When the stock price is s0u the option is worth

f(s0u) dead, and e−rδt[qf(s0u
2) + (1 − q)f(s0ud)] alive.
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Allowing for both possibilities the value of the option at s0u is

V+ = max{f(s0u), e−rδt[qf(s0u
2) + (1 − q)f(s0ud)]}.

Similarly, when the stock price is s0d the value is

V− = max{f(s0d), e−rδt[qf(s0ud) + (1 − q)f(s0d
2)]}.

The value at the initial time is obtained by repeating the process:

V0 = max{f(s0), e−rδt[qV+ + (1 − q)V−]}.
Our example has only two time periods, but a binomial tree of any size is handled similarly.

Valuation using the discounted expected payoff. For a European option, we saw that
the value assigned by the binomial tree was expressible in the form e−rT ERN[f(s(T ))]. A
similar calculation applies to the American option – however f(s(T )) must be replaced by
the value realized at exercise: the value of the option is ERN [e−rτf(s(τ))] where τ is the
exercise time. Once we’ve worked backward through the tree we know how to determine τ
– for each realization of the risk-neutral process, it’s the first time that realization reaches
a node of the tree associated with early exercise (or T , if that realization does not reach an
“early-exercise” node).

Actually, this viewpoint can also be used, at least conceptually, to determine the early-
exercise criterion, without working backward through the tree. In fact,

Value = max
exercise rules

ERN
[
e−rτf(s(τ))

]
.

In other words the exercise rule selected by backsolving the binomial tree is the one that
maximizes the discounted expected payoff. An honest proof of this fact is not trivial –
mainly because it requires formalization of what one means by an “exercise rule.” But
heuristically: any exercise rule determines a hedging strategy, i.e. a synthetic option that
is available in the marketplace. So the max over exercise rules gives a lower bound for the
value of the option. Our strategy of working backward through the tree gives an upper
bound. The two bounds agree since the value obtained by working backward through the
tree is associated with a special exercise rule.

Valuation using a PDE. (The following material is not in Hull; you can find a brief
summary in the “student guide” by Wilmott-Howison-Dewynne; it will not be on the HW
or exam.) For a European option the continuous-time limit of working backward through
the tree amounts to solving the Black-Scholes PDE for t < T , with final data f(s) at t = T .
There is an analogous statement for an American option, however the PDE is replaced by
a free boundary problem:

∂V

∂t
+ 1

2

∂2V

∂s2
σ2s2 + rs

∂V

∂s
− rV ≤ 0,

V (s, t) ≥ f(s),
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and
∂V

∂t
+ 1

2

∂2V

∂s2
σ2s2 + rs

∂V

∂s
− rV = 0 or V (s, t) = f(s).

The logic behind the first inequality is this: in our derivation of the Black-Scholes PDE, the
crucial juncture was when we saw that the choice φ = ∂V/∂s made d(V −φs) deterministic:

d(V − φs) =

(
∂V

∂t
+ 1

2

∂2V

∂s2
σ2s2

)
dt.

We concluded, by the principle of no arbitrage, that this must equal r(V − φs)dt. But that
arbitrage argument assumed that you continued to hold the option. In the present context,
where early exercise is permitted, the absence of arbitrage gives a weaker conclusion: the
deterministic portfolio (V − φs) can grow no faster than the risk-free rate. Thus

(
∂V

∂t
+ 1

2

∂2V

∂s2
σ2s2

)
≤ r

(
V − ∂V

∂s
s

)
;

this is our first inequality. The logic behind the second inequality is obvious: the value is
no smaller than can be realized by immediate exercise. The third relation simply says that
one of the first two relations always holds – because for any given (s, t) the optimal strategy
involves either holding the option a little longer (in which case the Black-Scholes equation
applies) or exercising it immediately.

We call this a free-boundary problem because the value is still governed by the Black-
Scholes PDE in some region of the (s, t) plane – the region where immediate exercise isn’t
optimal – however this region isn’t given as data but must be found as part of the problem.
Schematically:

t=Tt=0

S

K

V = (K − S)+

V = (K − S)+Black Scholes PDE

Figure 3: Schematic of the free boundary problem whose solution values an American put.

One can show that V and ∆ = ∂V/∂s are both continuous across the free boundary. Of
course, on the “exercise” side of the boundary V = f(s) and ∂V/∂s = f ′(s) are known,
giving two boundary conditions. If the domain of the PDE were known then just one bound-
ary condition would be permitted; but the domain isn’t known, and the extra boundary
condition serves to fix the free boundary.
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