Derivative Securities — Fall 2007— Section 5
Notes by Robert V. Kohn, extended and improved by Steve Allen.
Courant Institute of Mathematical Sciences.

The Black-Scholes formula and its applications. This Section deduces the Black-
Scholes formula for a European call or put, as a consequence of risk-neutral valuation in
the continuous time limit. Then we discuss the delta, gamma, vega, theta, and rho of a
portfolio, and their significance for hedging. Hedging is a very important topic, and these
notes don’t do justice to it; see Chapter 15 of Hull’s 6th edition for further discussion.

We’ll do two passes, as usual. First we consider options on a non-dividend-paying underlying
with lognormal dynamics. Then we consider options on a forward price with lognormal
dynamics. As we’ll see, the latter case is actually simpler and more general, because the
forward price is a martingale under the risk-neutral measure no matter what the value
of the risk-free rate (and regardless of whether the underlying pays a dividend). Thus
we could alternatively have started with options on a forward price, then deduced the
results for options on a non-dividend-paying stock price (and options on a dividend-paying
underlying, like a foreign currency rate) from that. Steve Allen’s version of these notes
follows this alternative route.

All the mathematics in this section uses probability and calculus to derive conclusions from
the results obtained in Section 4. We won’t be introducing any new financial assumptions
or arbitrage arguments (but remember that the results in Section 4 were based on such
arguments). Later in the semester we’ll derive results similar to those of Section 4 in
other settings. The analysis in this section won’t have to be redone — it will permit us to
immediately deduce the prices and hedges of puts and calls in those settings too.
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The Black-Scholes formula for a European call or put. The upshot of Section 4 is
this: the value at time t of a European option with payoff f(sr) is

V(f) =e T Epn(f(s7)]-

Here Ern[f(s7)] is the expected value of the price at maturity with respect to a special
probability distribution — the risk-neutral one. For a non-dividend-paying stock with log-
normal dynamics, this distribution is determined by the property that

ST = S exp {(r — LT —t)+oVT - tZ}

where s; is the spot price at time ¢ and Z is Gaussian with mean 0 and variance 1. Equiv-
alently: log[sr/s;] is Gaussian with mean (r — $02)(T — t) and variance o(T — t).

The value of the option can be evaluated for any payoff f by numerical integration. But for
puts and calls we can do better, by obtaining explicit expressions in terms of the “cumulative
distribution function”
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(N(x) is the probability that a Gaussian random variable with mean 0 and variance 1 has
value < z.) The explicit formulas have enormous advantages over numerical integration:
besides being easy to evaluate, they permit us to see quite directly how the value and the
hedge portfolio depend on strike price, spot price, risk-free rate, and volatility.

It’s sufficient, of course, to consider t = 0. Let

c[so,T; K] = value at time 0 of a European call with strike K
and maturity 7', if the spot price is sg;

plso, T; K] = value at time 0 of a European put with strike K
and maturity 7T, if the spot price is sg.

The explicit formulas are:

clso, T; K] = soN(di) — Ke "' N(dy)
plso, T; K] = Ke "TN(—dy) — soN(—di)
in which
dy = a\l/T [log(so/K) +(r+ %UQ)T}
dy = a\l/f [log(so/K) + (r — %02)T} =d; —oVT.

To derive these formulas we use the following result. (The Lemma toward the end of Section
4 was a special case.)

Lemma: Suppose X is Gaussian with mean p and variance o2. Then for any real numbers

a and k,
2

1
E [eaX restricted to X > k‘] = eoHtaae N(d)

with d = (—k + pu + ac?)/o.
Proof: The left hand side is defined by
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If we set u = [z — (u+ ac?)]/o and k = [k — (p + ac?)] /o this becomes
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where d = —k = (=k + p + ao?)/o.

We note in passing the following corollary: if X is Gaussian with mean x and variance o2,

then the probability that X > k is N(d) with d = (u— k)/o. This is precisely the assertion
of the Lemma when a = 0. This result permits us, for example, to calculate the probability
that an option will be “in the money” at maturity. (Note that the answer depends on p.
So you'll get different answers using the “subjective” versus “risk-neutral” probabilities.)

We now apply the Lemma to price a European call. Our task is to evaluate

> —(z —[r —o? 2
e—rT LM(SOew_K)+U ;WT expl ( [20_2T /2]T) ‘| der.

The integrand is nonzero when spe® > K, i.e. when = > log(K/sg). Applying the Lemma
with a = 1 and k = log(K/sg) we get

T N T
k oV 27T 202T

dx = soN(d1);

applying the Lemma again with a = 0 we get

1 —(z = [r — 0?/2|T)?
o [k oxp [ 2@l = 2/2T)
k oV 2nT 20T

1 dr = Ke "N (dy);

combining these results gives the formula for ¢[sg, T; K].

The formula for the value of a European put can be obtained similarly. Or — easier — we
can derive it from the formula for a call, using put-call parity:

plso, T; K] = ¢[so, T; K]+ Ke ™ — s
= Ke "T[1 — N(do)] — so[l — N(dy)]
Ke "I N(—dy) — soN(—dy).

For options with maturity 7" and strike price K, the value at any time ¢ is naturally c[s;, T —
t; K] for a call, p[s;, T — t; K| for a put.

>k 3Kk sk ok ok skok sk sk ok skok sk sk ok kokoskok >k

Hedging. We know how to hedge in the discrete-time, multiperiod binomial tree setting:
the payoff is replicated by a portfolio consisting of A = A(0, sg) units of stock and a (long
or short) bond, chosen to have the same value as the derivative claim. At time 6t the stock
price changes to ss; and the value of the hedge portfolio changes by A(ss — sg). The new
value of the hedge portfolio is also the new value of the option, so

change in value of option from time 0 to Jt

A0 = .
(0,50) change in value of stock from time 0 to &t
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The replication strategy requires a self-financing trade at every time step, adjusting the
amount of stock in the portfolio to match the new value of A.

In the real world prices are not confined to a binomial tree, and there are no well-defined
time steps. We cannot trade continuously. So while we can pass to the continuous time limit
for the value of the option, we must still trade at discrete times in our attempts to replicate
it. Suppose, for simplicity, we trade at equally spaced times with interval §t. What to use
for the initial hedge ratio A? Not being clairvoyant we don’t know the value of the stock at
time Jt, so we can’t use the formula given above. Instead we should use its continuous-time
limit:

d(value of option)

A(0, s0) = d(value of stock)

There’s a subtle point here: if the stock price changes continuously in time, but we only
rebalance at discretely chosen times jdot, then we cannot expect to replicate the option
perfectly using self-financing trades. Put differently: if we maintain the principle that
the value of the hedge portfolio is equal to that of the option at each time jdét, then our
trades will no longer be self-financing. We will address this point soon, after developing
the continuous-time Black-Scholes theory. We’ll show then that (if transaction costs are
ignored) the expected cost of replication tends to 0 as dt — 0. (In practice transaction
costs are not negligible; deciding when, really, to rebalance, taking into account transaction
costs, is an important and interesting problem — but one beyond the scope of this course.)

For the European put and call we can easily get formulas for A by differentiating our
expressions for ¢ and p: at time T from maturity the hedge ratio should be

Ai

= 8780C[80,T; K] = N(dl)

for the call, and

0
A= 878029[307T; K] = —N(—d)

for the put. The “hard way” to see this is an application of chain rule: for example, in the
case of the call,

0 odq _ Ods
—c¢=N(d N'(dy)== — Ke "' N'(dy)—==.
B (d1) + soN'(d1) s e (d2) R
But do = dy — oV/T, so ddy/0s = ddy/0s; also N'(z) = V%—Wexp[—a?/ﬂ. It follows with
some calculation that 5d 5d
/ ver —rT pr/ g2
SoN (dl) 88 Ke N (dg) 85 0,

so finally dc/dsyg = N(dy) as asserted. There is however an easier way: differentiate the
original formula expressing the value as a discounted risk-neutral expectation. Passing the
derivative under the integral, for a call with strike K:

a _ o0 1 —(z — [r— 0?/2|T)?
A = — rT/ T _ K
8306 _Oo(soe )+ o7 exp 5507 dx
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Notice that since 0 < N(d;) < 1 and —1 < —N(—d;) < 0, the delta of a call lies between 0
and 1 while the delta of a put lies between 0 and —1.
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Since we have explicit formulas for the value of a put or call, we can differentiate them to
learn the dependence on the underlying parameters. Some of these derivatives have names:

Definition Call Put

delta = 2= N(d1) >0 ~N(—dy) <0

gamma = 8%23 SOU\}W exp(—d3/2) > 0 soa\}m exp(—d3/2) >0

theta = g%y — 58Tz exp(—df/2) —rKe TN (d2) <0 — A% exp(—d}/2) + rKe " N(~ds) 20
vega = 6% Sf/g exp(—d3/2) > 0 5\0/\%? exp(—d?/2) > 0

rho = 2 TKe ™" N(dy) > 0 ~TKe "TN(—dy) < 0.

These formulas apply at time ¢ = 0; the formulas applicable at any time ¢ are similar, with T’
replaced by T —t. These are obviously useful for understanding how the value of the option
changes with time, volatility, etc. But more: they are useful for designing improved hedges.
For example, suppose a bank sells two types of options on the same underlying asset, with
different strike prices and maturities. As usual the bank wants to limit its exposure to
changes in the stock price; but suppose in addition it wants to limit its exposure to changes
(or errors in specification of) volatility. Let ¢ = 1,2 refer to the two types of options, and
let n1,no be the quantities held of each. (These are negative if the bank sold the options.)
The bank naturally also invests in the underlying stock and in risk-free bonds; let ny and
np be the quantities held of each. Then the value of the bank’s initial portfolio is

Viotal = n1 Vi + naVa + ngsg + ny,.

We already know how the stock and bond holdings should be chosen if the bank plans to
replicate (dynamically) the options: they should satisfy

V;;otal =0

and
A1 +noAg +ng = 0.



Notice that the latter relation says 0Viota1/0so = 0: the value of the bank’s holdings are
insensitive (to first order) to changes in the stock price.

If we were dealing in just one option there would be no further freedom: we would have
two homogeneous equations in three variables ni,ns, ngy, restricting their values to a line
— so that n; determines ng and np. That’s the situation we’re familiar with. But if we're
dealing in two (independent) options then we have the freedom to impose one additional
linear equation. For example we can ask that the portfolio be insensitive (to first order) to
changes in ¢ by imposing the additional condition

n1Vega; + naVega, = 0.

Thus: by selling the two types of assets in the proper proportions the bank can reduce its
exposure to change or misspecification of volatility.

If the bank sells three types of options then we have room for yet another condition —e.g. we
could impose first-order insensitivity to changes in the risk-free rate . And so on. It is not
actually necessary that the bank use the underlying stock as one of its assets. Each option
is equivalent to a portfolio consisting of stock and risk-free bond; so a portfolio consisting
entirely of options and a bond position will function as a hedge portfolio so long as its total
A is equal to 0.

Replication requires dynamic rebalancing. The bank must change its holdings at each time
increment to set the new A to 0. In the familiar, one-option setting this was done by
adjusting the stock and bond holdings, keeping the option holding fixed. In the present,
two-option setting, maintaining the additional condition Vega,,; = 0 will require the ratio
between n; and ns to be dynamically updated as well, i.e. the bank will have to sell or buy
additional options as time proceeds.
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Options on a forward rate. Recall from Section 4: for a European option on a forward
price with payoff f(Fr), the value at time ¢t is

V(f) = e "I Epn[f(Fr));

Moreover under the risk-neutral probability distribution
Fr = Fexp [—%UQ(T —t)+ U\/]TtZ}

where JF; is the forward price at time ¢ and Z is Gaussian with mean 0 and variance 1.
Equivalently:
Fr = Foe*

where X is Gaussian with mean —302(T — t) and variance o?(T — t).



For a call (payoft (Fr — K)4) or a put (payoff (K — Fr)4) we can derive explicit valuation
formulas using the same approach as we used for options on a non-dividend-paying stock.
Focusing on time 0 as usual, the result is:

c[Fo,T; K] = e " [FyN(dy) — KN(d)]

plFo, T; K] = e " [KN(—ds) — FoN(—dy)]
where

4 = — [log(Fo/K) + 50°T|

o

i

dy = ——=|log(Fo/K)— 30T|=dy —aVT.
For variety, instead of writing everything out in terms of integrals as we did earlier, let’s
derive the value of the call using the notation of the Lemma proved near the beginning of
this section:

olFo, T; K] = e { FoB[e¥ restricted to X > k] — K E[I restricted to X > k]}

where k = In(K/Fo) and X is Gaussian with mean —3o?T and variance o?T. By the
Lemma,

E[eX restricted to X > k] = N(d;) and E[lrestricted to X > k] = N(dy).

Our assertion about the value of the call is an immediate consequence. The argument for
the put is similar (or one can use put-call parity).

As noted already in Section 4, the valuation of options on a forward price has the pleasant
feature that the risk-free rate is almost irrelevant — it enters only through the discount factor
e~ out front. This is true even if the underlying pays a dividend at constant rate d. (A
forward price is always a martingale under the risk-neutral measure. Indeed, the proof in
Section 2 that Fnow = ¢Fup + (1 — ¢)Faown applies regardless whether the underlying pays
a dividend or not. To use the results from Section 4 we must assume the forward price is
lognormal. This will be true, from Section 1, if the underlying is lognormal and dividends
are paid at a constant rate, since then F, = ("= (T~1) S¢.)

Our previous formulas for calls and puts on a non-dividend-paying stock can be deduced
from the ones just obtained for options on a forward price, by simply substituting Fy =
e"T'syg. (Exercise: check this.) Similarly, the value of an option on an underlying with

constant dividend yield d is obtained by substituting Fo = e("=9Ts.

The calculation of “the Greeks” for options on a forward price is no more difficult than for
options on a non-dividend-paying stock. (Indeed, one set of formulas can be obtained from



the other via chain rule.) For the record:

Definition Call Put
delta = ai]_-o e "'N(dy) >0 —e "N (—dy) <0
2 —rT —rT
gamma = aa—fg m exp(—d3?/2) > 0 m exp(—d?/2) >0
e—'rT o e—TT o
theta = 8(?T) — 2\/% exp(—d3/2) - 2\/% exp(—d3/2)
+7’€7TT[.7:0N(d1) — KN(dg)] —|—7"€7TT[KN(—CZ2> — foN(—dl)]
vega = % % exp(—d3/2) >0 % exp(—d3/2) > 0
rho = 2 ~Te "T[FoN(dy) — KN(d2)] <0 —Te "T[KN(—dy) — FoN(—dy) < 0.

Our previous comments on hedging using the Greeks applies equally to options on forwards.
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Further discussion of “the Greeks”. Most of the following applies equally to options
on a forward price or options on a stock. (Where it’s important to choose, we focus on
options on a forward price.)

e All our formulas for the Greeks are from the viewpoint of the option buyer. The
option seller’s Greeks have the same magnitudes but the opposite sign. Greeks for
portfolios of options can be computed as sums of the Greeks for each individual option
position in the portfolio.

e Gamma, being the derivative of delta with respect to price, is a measure of how much
the delta hedge will change with changes in the price. But more important, it is also a
measure of how much the price of a delta hedged option will change with jumps in the
forward price. (Here a jump is defined as a price move that takes place too quickly to
allow rehedging). As you can see from Hull’s figure 15.7 and the associated text, the
larger the change in the delta, the greater the impact of a sudden move that is not
hedged.

e Notice that the sign of a call delta is opposite from the sign of a put delta. The buyer
of a call has a position that will benefit from a rise in the forward price, while the
buyer of a put has a position that will benefit from a fall in the forward price.

e By contrast, notice that the sign of a call gamma is the same as the sign of a put
gamma, the sign of a call vega is the same as the sign of a put vega, and the first
(generally dominant) of the two terms in a call theta is the same as the sign of the
first of the two terms in a put theta. Purchasers of options, whether calls or puts,
benefit from greater price movement and longer time to option expiry, while sellers of



options, whether calls or puts, are hurt by greater price movement and longer time to
option expiry. An equivalent way of seeing this is that a call can be transformed into
a put (and vice versa) by a forward (through put-call parity) and that the forward,
not being an option, is not sensitive to volatility and has relatively weak dependence
on the time to option expiry.

In fact, the term exp(—d?/2) appears in all three of these derivatives - but multiplied
by different constants. Time to option expiry appears in the numerator of the constant
multiplier for vega and in the denominator of the constant multiplier for gamma and
theta. This means that a longer-term option will tend to have a higher vega and lower
gamma and theta than a shorter-term option. So a change in volatility will have a
greater impact on longer-term options than shorter-term ones, but a jump in prices
will have a greater impact on shorter-term options than on longer-term ones. This
allows you to answer the popular options ”brain teaser”: How do you construct a
portfolio that is positive vega and negative gamma? Just buy long-term options and
sell short-term options in the right proportions.

When an option is at-the-money (strike = forward), its delta is roughly 50% and its
vega and gamma reach their maxima (see Hull figures 15.3, 15.9, and 15.11).

Theta is defined as the derivative with respect to a decrease in time to option expiry.
This is the standard market convention, since the primary concern is with a “decay”
in option value as time passes. (The market convention is often to show the theta as
the derivative with respect to a decrease of one business day, in which case the value
returned by the formula needs to be divided by the number of business days in a year,
about 252). The first (generally dominant) term of the theta represents the impact
of shorter time on the impact of the option’s volatility (this is the part of the theta
due to the derivative with respect to T inside the N(d;) and N(d2) terms). Since
T always appears with a factor involving o, the first term of theta closely resembles
the vega, which is the derivative with respect to . Shorter time to option expiry has
the same impact as a decrease in volatility and so is always negative to the option
purchaser. The second term represents the impact of a shorter time until the option
payout is received. This is the part of the theta due to the derivative of T in the e™""
term and so is closely related to the rho, which is the derivative with respect to r. It
is always positive, reflecting the fact that a shorter time to option payout results in a
less deeply discounted present value.

The rho is negative, reflecting the fact that a higher risk-free rate will result in a more
deeply discounted present value of the option payout.

A classic interview question: A trading desk sells a 1 year option at an implied
volatility of 16% (that is, the price is equal to the Black-Scholes formula price with 16%
as the input for volatility). The desk delta-hedges the option until maturity. Realized
volatility over the year turns out to be 15%. Has the desk made money? Your first
instinct should be to say that the desk did make money, since the negative vega of
a sold option indicates that positive profits will result from a decline in volatility.
And, if volatility is constant during the year in question, your answer will be correct.



But if volatility varies from one part of the year to another, we must be concerned
with sensitivity to volatility over a short time period, not just the entire period, and
sensitivity to increased volatility over a short period is the gamma, the sensitivity of
the option price to price jumps in the forward (in some sense, the vega represents
an “integral” of all the different gamma exposures over shorter time periods). If the
periods during the year in which volatility is higher than the average coincide with
periods when gamma is higher (due to the forward price being close to the strike),
and periods in which the volatility is lower than the average coincide with periods in
which gamma is lower (due to the forward price being significantly higher or lower
than the strike), the desk could lose money even though the volatility averaged 15%.
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How is this used in practice? We've discussed hedging based on the Black-Scholes
pricing formula and its sensitivities to the various parameters (“the Greeks”). Now let’s
step back a bit and ask how plausible this strategy is in practice.

First, let’s review why this matters. As we stated in the opening lecture, the vast majority
of derivatives users are not interested in performing an arbitrage trade — they just want to
buy or sell an option because they want to achieve the payoff profile it offers. The very
last thing most option buyers would want to do is perform a dynamic hedge of the option
they just bought — this would cancel out the very payoff profits they were looking for. But
all options users should care about the plausibility of arbitraging options through dynamic
hedging, because it is only the possibility of a few arbitrage traders actually successfully
engaging in such activity that allows all users to find reasonable prices by utilizing Black-
Scholes theory. And having reasonable price parameters is valuable for all options buyers
and sellers — it lets them know whether they are being offered a fair price; it lets them
estimate the price at which they could liquidate an existing position (very important for
financial reporting purposes); and it lets them estimate the riskiness of their positions by
calculating sensitivity to changes in underlying variables.

Ever since Black and Scholes (and Merton) first proposed the theory we’ve been studying,
there has been controversy — in both the academic and business worlds — about the adequacy
of this no-arbitrage-based theory. Some of the objections raised should not be taken too
seriously:

e The assumption of a lognormal distribution of forward prices has been questioned. In
fact, as already noted, almost no market practitioners believe the lognormal distribu-
tion is the right one, but there are relatively easy fixes for this, which we’ll discuss
shortly.

e The original Black-Scholes argument was stated in terms of a cash instrument under-
lying, rather than a forward price, and utilized an assumption of constant risk-free
rates. But as we’ve seen, we can price options on a forward rate; then only the dis-
count rate for lending with maturity T enters the formula. So the assumption of
constant risk-free rates is not important.
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e We started with binomial trees. But this was just a matter of convenience. We’ll soon
develop a more robust, continuous-time version of the theory (corresponding to the
framework originally used by Black, Scholes, and Merton).

There are, however, two more serious objections:

1. The dynamic hedging argument assumes that hedging can be performed continuously.
This is, of course, not achievable in practice and, in fact, cannot even be closely
approximated — even if you could rehedge once every minute, the resulting transaction
costs (in the real world, where bid-asked spreads do exist) would make the dynamic
hedging strategy prohibitively expensive.

2. Our theory assumes that we know the volatility. In fact we don’t; moreover, any
study of historical price data will show that lognormal statistics are an imperfect
approximation, and volatility is difficult to estimate with any accuracy. The very fact
that options traders calculate their sensitivity to changes in volatility (vega) shows
that no one takes this assumption seriously.

Price = 49, Interest rate = 5%, Dividend rate = 0, Forward ptice = 50
Strike = 50

Volatility = 20%

Time to maturity = 20 weeks (.3846 vears)

Drift rate = 13%

Option price = $240,000 for 100,000 shares

Performance Measure (ratio of Standard Deviation to Cost of

Option)
Stop-Loss Delta Hedge
Frequency of Rehedging No Vol of Vol 10% Vol of 33% Vol of
Vol Vol
5 weeks 102% 43% 44% 57%
4 weeks 93% 39% 41% 52%
2 weeks 82% 26% 29% 45%
1 week 7% 19% 22% 47%
1/2 week 76% 14% 18% 43%
1/4 week 76% 9% 14% 38%
Limit as frequency goes to 0 76% 0% 11% 40%

With no hedging, performance measure is 130%

Table 1: Performance of dynamic hedging strategies (courtesy of Steve Allen)

And yet, many trading desks engage daily in what certainly looks like dynamic hedging of
options positions, furiously changing their hedges based on deltas calculated using the Black-
Scholes framework. How can we explain the practical utility of this apparently defective
theory? Here are some suggestions:

1. Arbitrage does not have to be perfect to be effective. A trading strategy that reduces
the uncertainty of the outcome to a relatively small window will still attract traders
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who are seeking a low-risk return. We can’t expect that such arbitrage will result in
a single definite price for the option, but it will constrain the option price to within
a narrow range. Column 3 of Table 1, which extends the results from tables 15.1 and
15.4 in Hull, shows that even relatively infrequent rehedging can still reduce a very
large portion of the uncertainty of profit and loss.

2. Arbitrage traders in options, with almost no exceptions, engage in arbitrage trades on
a large number of closely related options simultaneously. Aggregating deltas across
trades, which are mixtures of option purchases and option sales, and of puts and
calls, results in a lot of netting of required delta hedges. Changes in delta hedging,
and hence transaction costs, can be kept relatively small, particularly when combined
with the less frequent hedging discussed in the preceding point.

However, the uncertainty of volatility is still a major concern. Columns 4 and 5 of Table
1 show that when we introduce uncertainty of volatility, much more frequent hedging is
required to achieve a a given reduction in uncertainty; moreover, when the volatility evolves
randomly there are certain floor levels of uncertainty that even continuous-time hedging
cannot penetrate. A reasonably accurate summary of the situation is that dynamic hedging
can almost completely eliminate uncertainty of results due to the final price of the underlying
forward but cannot do anything to eliminate uncertainty of results due to uncertainty of
volatility.

To deal with this situation, market participants must be able to quickly see the volatility
assumption that is implied by a given option price. This is known as the implied volatility
of the option price. We’ll worry about how to calculate it later, but certainly we know how
to check that it’s been calculated correctly — just plug it into the Black-Scholes formula
and see if the actual option price comes out. Implied volatility is an important concept in
working with options. Market participants rarely talk about options prices; they almost
always talk about implied volatilities and leave the actual option price as a detail to be
worried about by the “back office.”

Working with implied volatility and the dynamic delta hedging calculations of Black-Scholes
theory as their key tools, arbitrage traders typically proceed as follows:

1. If the implied volatility of an option is very high, an arbitrage trader will sell the
option and use dynamic hedging to make sure that his P&L is only dependent on
his judgment about volatility and not on the price level of the underlying forward.
Conversely, if the implied volatility of an option is very low, an arbitrage trader will
buy the option and dynamically hedge it to make sure that his P&L is only dependent
on his judgment about volatility and not on the price level of the underlying forward.
The net effect of the actions of such traders is to keep implied volatilities within
reasonable bounds.

2. If two different options based on the same underlying have different implied volatilities,
an arbitrage traders will buy the option with lower implied volatility, sell the option
with higher implied volatility, and dynamically hedge the resulting position to try to
reduce P&L sensitivity to the price level of the underlying forward. The arbitrage
trader will still have to make a judgment about the degree to which the difference in
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implied volatility reflects mispricing; it could instead have reasonable economic sources
(for example: the actual evolution being different from the Black-Scholes assumption
of lognormality, e.g. due to changes in volatility over time). But the net effect is
that actions of arbitrage traders keep implied volatilities between options on the same
underlying forward reasonably close to one another. The closer the options are in
terms of strike levels and option expiry dates, the more we can expect the actions
of arbitrage traders to keep their implied volatilities close together. This allows all
market participants to estimate the implied volatility for an option whose price they
can’t readily observe by interpolation from the implied volatilities of options with
nearby strikes and expiry dates they can observe.

Years of experience in options markets have proven to the satisfaction of most market
participants that the Black-Scholes theory, when used in the ways we’ve just outlined, is
sufficiently accurate to achieve good results. It is also possible to use Monte Carlo simulation
to get good intuition as to how this works (this is done in the class Risk Management class;
if you are interested in seeing some results along those lines, look at Chapter 9 of Steve
Allen’s book Financial Risk Management).
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The volatility skew and smile. In practice, the implied volatility depends on the strike.
It tends to be higher at strikes far above or far below the current forward price (Hull,
figure 16.1), leading to the term wolatility smile. Its graph (as a function of the strike) is
usually asymmetric: the implied volatility is typically higher at very low strikes than at
very high ones (Hull, figure 16.3), leading to the term wvolatility skew. We’ll discuss briefly
some explanations for these effects. A fuller discussion can be found in Hull’s Chapter 16
and in section 9.6.2 of Allen’s Financial Risk Management.

One type of explanation is based on the observed statistics of forward price dynamics. Like
most financial time series, forward prices have fatter tails than one gets from a lognormal
distribution. This can be explained (or modelled) as being due to stochastic volatility or
the existence of jumps. (In a stochastic volatility model, the volatility is not constant but
is itself a random variable; in a jump-diffusion the price can change abruptly at random
times). Either effect (or a combination of the two) leads to fatter tails than a lognormal
distribution. To see why fat tails produce an implied volatility smile, consider a call with
strike far above the current price. For it to be in the money at maturity, the price must go
up a lot. In the Black-Scholes framework, this is more likely if the volatility is larger. In the
real world, fat tails make it more likely than the lognormal model predicts; thus fat tails
have the same effect on the price as increasing the volatility. The same argument applies
to deep out-of-the money puts. If the fatness of the tails is asymmetric then this argument
predicts a skew as well as a smile.

A second type of explanation involves supply and demand. There are far more investors in
stocks than short-sellers of stock. An investor with a long stock position (e.g. a mutual fund)
would commonly buy protection against large decreases in the stock price by purchasing
“protective puts” with strike well below the current price. Similarly, an investor with a short
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position would commonly purchase protective calls with strikes well above the current price.
But since most investors have long positions, there is much more demand for protective puts
than for protective calls. This can create, at least temporarily, higher implied volatilities
for low strikes than for high strikes. Now, if arbitrage traders could completely rely on
the original Black-Scholes model (which assumes constant volatility) they would always
be willing to sell the call protection demanded at low strikes and buy options at high
strikes against them, bringing the two implied volatilities back into line. But, arbitrage
traders cannot rely on the constant-volatility Black-Scholes model. As we’ve discussed, an
arbitrage trader would only take this combination of positions if he believes the implied
volatility difference is sufficiently out-of-line with likely price behavior to give reasonable
assurance of a profit. So arbitrage trading places a brake on the impact of investor demand
on volatility skew, but it does not entirely eliminate the impact of this effect.
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Computing implied volatility. There is no closed form formula for implied volatility.
Implied volatility is, however, easy to calculate numerically using Newton’s method.

Recall that in general, Newton’s method for solving an equation f(x) = c is an iterative
scheme. Starting with an initial guess zg, it produces better estimates x1, 2, etc, by the

rule )
c— f(x
Tn+l = Tn + WSE;
n
The logic is that by Taylor expansion, f(x) = f(x,) + f'(xn)(x — x,). If we set this linear
approximation equal to ¢ and solve for x, we get the formula for z,1.

To calculate implied volatility we apply this scheme with x=volatility, f(x)=option pricing
formula, and c=observed option price. Note that we have a formula for f/(z): this is the
vega of the option. Let’s do an example. Suppose the forward price now is Fy = 57.7.
Consider a call with strike K = 55 and maturity 7' = 1. Assume r = 0. If the market value
of the call is 7.6273, what is the implied volatility?

e Let’s start with a guess of 0 = .2. We use our standard formulas to get a call value of
5.9664 and vega of 18.84. So our estimate of ¢ was too low. Newton’s method gives
the revised estimate .2 + (7.6273.5.9664)/18.84 = .288158.

o If o = .288158 our valuation formula gives a call value of 7.8940 and a vega of 18.97.
Another iteration of Newton’s method gives the revised estimate .288158 4 (7.6273 —
7.894)/18.97 = .274099.

o If 0 = .274099, our valuation formula gives a call value of 7.5857 and a vega of 18.97.
Another iteration gives .274099 + (7.6273 — 7.5857)/18.97 = .276292.

o If 0 = .276292, our valuation formula gives a call value of 7.6337. We can clearly
continue iterating until the call price is matched to the desired level of accuracy.
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