Derivative Securities — Fall 2007 — Section 10
Notes by Robert V. Kohn, extended and improved by Steve Allen.
Courant Institute of Mathematical Sciences.

Options on interest-based instruments: pricing of bond options, caps, floors,
and swaptions. This section provides an introduction to valuation of options on interest
rate products. We focus on two approaches: (i) Black’s model, and (ii) trees. Briefly: we're
taking the same methods developed earlier this semester for options on a stock or forward
price, and applying them to interest-based instruments.

The material discussed here can be found in chapters 26, 27, and 28 of Hull; I'll also take
some examples from the book Implementing Derivatives Models by Clewlow and Strickland,
Wiley, 1998. (Steve Allen’s version of these notes includes a few pages about how a Monte
Carlo scheme based on the Heath-Jarrow-Morton theory works. I don’t attempt that here.)
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Black’s model. Recall the formulas derived in Section 5 for the value of a put or call on
a forward price:

c[Fo,T: K] = e "™ [FyN(dy) — KN(d)]

plFo. T; K] = e " [KN(—da) — FoN(—dy)]
where

d = ULT[log(}"o/K)—i-%ﬁT}
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dy = ——= |log(Fo/K)— 30*T|=dy —aVT.
~ 77 [l08(Fo/ K) = 3o°T |
Black’s model values interest-based instruments using almost the same formulas, suitably
interpreted. One important difference: since the interest rate is no longer constant, we
replace the discount factor e~ by B(0,T).

The essence of Black’s model is this: consider an option with maturity 7', whose payoff
¢(Vr) is determined by the value Vp of some interest-related instrument (a discount rate,
a term rate, etc). For example, in the case of a call ¢(Vr) = (Vr — K)4. Black’s model
stipulates that

(a) the value of the option today is its discounted expected payoff.

No surprise there — it’s the same principle we’ve been using all this time for valuing options
on stocks. If the payoff occurs at time T then the discount factor is B(0,7T") so statement
(a) means

option value = B(0,T)E.[¢(Vr)].

We write E, rather than ERryn because in the stochastic interest rate setting this is not the
risk-neutral expectation; we’ll explain why FE, is different from the risk-neutral expectation
later on. For the moment however, we concentrate on making Black’s model computable.
For this purpose we simply specify that (under the distribution associated with E.)



(b) the value of the underlying instrument at maturity, Vi, is lognormal; in other words,
Vi has the form eX where X is Gaussian.

(c) the mean E,[Vr] is the forward price of V (for contracts written at time 0, with
delivery date T).

We have not specified the variance of X = log Vp; it must be given as data. It is customary
to specify the “volatility of the forward price” o, with the convention that

log V1 has standard deviation ovVT.

Notice that the Gaussian random variable X = log V7 is fully specified by knowledge of its
standard deviation ov/T and the mean of its exponential E,[eX], since if X has mean m
then F[eX] = exp(m + 102T).

Most of the practical examples involve calls or puts. For a call, with payoff (Vp — K)4,
hypothesis (b) gives
E[(Vr — K)+] = E.[VIN(d1) — KN(d2)

where

_ log(ELVr]/K) +30°T | log(E:[Vr]/K) — 50
N VT CT VT

This is a direct consequence of the lemma we used long ago (in Section 5) to evaluate the
Black-Scholes formula. Using hypotheses (a) and (c) we get

T
d1 :dl—O'\/T.

value of a call = B(0,T)[FyN(d1) — KN (d2)]

where Fy is the forward price of V' today, for delivery at time 7', and

B log(Fy/K) + %O’zT
oVT ’

A parallel discussion applies for a put.

_ log(Fo/K) — $oT

=d; — oVT.
o T 1=

d1 d2

It is by not obvious (at least not to me) that Black’s formula is correct in a stochastic
interest rate setting. We’ll justify it a little later, for options on bonds. But here is a rough,
heuristic justification. Since the value of the underlying security is stochastic, we may think
of it as having its own lognormal dynamics. If we treat the risk-free rate as being constant
then Black’s formula can certainly be used. Since the payoff takes place at time T, the only
reasonable constant interest rate to use is the one for which e="" = B(0,T), and this leads
to the version of Black’s formula given above.

Black’s model applied to options on bonds. The following examples is taken from
Clewlow and Strickland (section 6.6.1). Let us price a one-year European call option on a
5-year discount bond. Assume:

e The current term structure is flat at 5 percent per annum; in other words B(0,t) =
e~ when t is measured in years.



e The strike of the option is 0.8; in other words the payoff is (B(1,5) — 0.8)+ at time
T=1.

e The forward bond price volatility o is 10 percent.
Then the forward bond price is Fy = B(0,5)/B(0,1) = .8187 so

b log(.8187/.8000) + 2 (0.1)2(1)
b 0.1)v1

and the discount factor for income received at the maturity of the option is B(0,1) = .9512.
So the value of the call option now, at time 0, is

=0.2814, dy=dy —oVT =0.2814 — 0.1V1 = .1814

9512[.8187N(.2814) — .8N(.1814)] = .0404.

Black’s formula can also be used to value options on coupon-paying bonds; no new principles
are involved, but the calculation of the forward price of the bond must take into account
the coupons and their payment dates; see Hull’s Example 26.1.

One should avoid using the same o for options with different maturities. And one should
never use the same o for underlyings with different maturities. Here’s why: suppose the
option has maturity 7" and the underlying bond has maturity 7/ > T. Then the value
V; of the underlying is known at both ¢t = 0 (all market data is known at time 0) and at
t =T’ (all bonds tend to their par values as ¢ approaches maturity). So the variance of V;
vanishes at both ¢t = 0 and ¢t = 7". A common model (if simplified) model says the variance
of V; is odt(T" — t) with o constant, for all 0 < ¢ < T”. In this case the variance of Vi
is 02T (T' — T), in other words o = o¢/T' — T. Thus o depends on the time-to-maturity
T' — T. In practice o — or more precisely ov/T — is usually inferred from market data.

Black’s model applied to caps. A cap provides, at each coupon date of a bond, the
difference between the payment associated with a floating rate and that associated with a
specified cap rate, if this difference is positive. The ith caplet is associated with the time
interval (t;,t;41); if R; = R(t;,t;4+1) is the term rate for this interval, Rx is the cap rate,
and L is the principal, then the ith caplet pays

L-(tiy1 —t) - (Ri — Ri)+
at time ¢;51. Its value according to Black’s formula is therefore
B(0,t;4+1)LAt[fiN(d1) — RN (d2)].

Here Ajt = tix1 — ti; fi = fo(ti,tix1) is the forward term rate for time interval under
consideration, defined by
1 _ B(07 ti+1) .
1+ £t B(0,t;)

and

_ log(fi/RKk) + %Ugti dy — log(fi/RK) — %0-22752' —dy — o/

dq , da
O'i\/t_i O'i\/t_i



The volatilities o; must be specified for each i; in practice they are inferred from market
data. The value of a cap is obtained by adding the values of its caplets.
A floor is to a cap as a put is to a call: using the same notation as above, the ith floorlet
pays

LAit(RK — RZ’)+

at time t;41. Its value according to Black’s formula is therefore
B(0,t;+1) LAt [Rg N(—dg) — fiN(—d1)]

where d; and ds are as above. The value of a floor is obtained by adding the values of its
floorlets.

The market convention is to quote a single volatility for a cap or floor which is then applied
to each of the constituent caplets or floorlets — but this is just a convention to make it
easy to communicate. To actually price a cap or floor one must evaluate each individual
FRA option (caplet or floorlet) at the appropriate volatility, then sum the resulting prices
to arrive at the price of the cap or floor. Then one can solve for a single volatility that,
applied to each individual FRA option, would give the same price.

Here’s an example, taken from Section 26.3 of Hull. Consider a contract that caps the
interest on a 3-month, $10,000 loan one year from now; we suppose the interest is capped
at 8% per annum (compounded quarterly). This is a simple caplet, with t; = 1 year and ¢y
= 1.25 years. To value it, we need:

e The forward term rate for a 3-month loan starting one year from now; suppose this
is 7% per annum (compounded quarterly).

e The discount factor associated to income 15 months from now; suppose this is .9169.
e The volatility of the 3-month forward rate underlying the caplet; suppose this is 0.20.

With this data, we obtain

~ 1og(.07/.08) + £(0.2)%(1)
B 0.2v/1

so the value of the caplet is, according to Black’s formula,

dq = —0.5677, dy=dy —0.2v1=—0.7677

(.9169)(10,000)(1/4)[.0TN (—.5677) — .08 N(—.7677)] = 5.162 dollars.

Black’s model applied to swaptions. A swaption is an option to enter into a swap at
some future date ¢ (the maturity of the option), with a specified fixed rate ¢ and frequency
f, which lasts until a specified later time 7. (This is evidently a T — t-year swap.) For
example, if it’s an option to pay the fixed rate, and if ¢ = 5.50%, t = 3 years and T = 8
years, then option can be exercised in 3 years to enter into a 5 year swap with a 5.50%
coupon.



To value it, recall that if the payment times are ¢; then the value of the swap at time ¢
will be

Viwap(t) = L [Z ;B(t, t:)+B(t,T) -1

and the par swap rate at time ¢ will be the value of ¢ that makes the right hand side equal
to O:

Ruap() 3 %B(t, t) =1- B(L,T).

Of course Rgwap(t) isn’t known now, because it dependes on discount rates for lending at
time ¢t. But we get the forward swap rate Fiyap by replacing B(t,t;) above by the forward
rate B(0,t;)/B(0,t): after some arithmetic,

Fiwap( Z —B(0,t;) = B(0,t) — B(0,T).

If the coupon is set to Fyyap, then the swap has no value at time 0. (We could alternatively
have reached the same conclusion from the formula at the top of page 8 in Section 9.) The
forward swap rate can be calculated at any time 0 < 7 < ¢ of course: arguing as above, it is

Fwap( Z —B(7,tj) = B(r,t) — B(1,T)

and it agrees with Rgyap at 7 = t.

The swap will be in the money if the proposed coupon rate c is better than the swap rate
Rgyap when the option matures (time t). For a swap to receive floating rate and pay fixed
rate, this occurs if Rgywap > c¢. If it is exercised, the value of the swap at exercise is

Rywap — Z Bt t)),

i.e. the exercised swap has the same value as a stream of payments of (Rgwap — c)% at each
coupon date t;. Black’s Black’s formula gives the time-0 value of the jth payment as

L
B(0, tj)? [FowapN (d1) — cN(d2)]
where Fyyap is the forward swap rate and
1
iy — log(Fswap/c) + 0’2157 dy — log(Fawap/c) — 502t —d, - oVE.

oVt

To get the value of the swap itself we sum over all i:

oVt

value of swap = A[FswapN(d1) — cN(dz)] where A = % SN U B(0,t).
Here o is the volatility of forward swap rate Fyyap (which would normally be determined
by calibrating the predictions of the model to market prices).

The option to enter into a swap that receives the floating rate and pays the fixed rate uses
the call option formula. By entirely similar reasoning, an option to enter into a swap that



pays the floating rate and receives the fixed rate uses the put option formula. There is
another type of interest rate option that consists of a swap that can be cancelled at a given
point in time. The right to cancel a swap to receive the floating rate and pay the fixed rate
is equivalent to having the option to enter into a swap paying the floating rate and receiving
the fixed rate, thereby offsetting the existing swap. Therefore, the option to cancel a swap
receiving floating and paying fixed uses the put option formula. Similarly, an option to
cancel a swap paying floating and receiving fixed uses the call option formula.

Options on swaps can be either cash-settlement or settled by delivery. Settlement by delivery
involves actually entering into the swap specified. Cash settlement means that the value of
entering into this swap at the market rate prevailing at the time of settlement is calculated
and then a cash payment is made of this value. Market convention is that caps and floors
are always cash-settled.

When we calculate the value of an option on a swap, we are only looking at the value of the
fixed rate bond portion of the swap (we have implicitly been assuming that we are always
valuing options for dates on which the swap has just made a coupon payment, so that the
floating rate bond portion is worth par). Therefore, options on fixed rate bonds can be
valued using the exact same formula as options on swaps.

Here’s an example, taken from Clewlow and Strickland section 6.6.1. Suppose the yield
curve is flat at 5 percent per annum (continuously compounded). Let us price an option that
matures in 2 years and gives its holder the right to enter a one-year swap with semiannual
payments, receiving floating rate and paying fixed term rate 5 percent per annum. We
suppose the volatility of the forward swap rate is 20% per annum.

The first step is to find the forward swap rate Fyyap. It satisfies

2
stap(1/2) ZB(Oatz) = (B(O7t) - B(07t2))
i=1
with ¢ = 2, t; = 2.5, and to = 3.0. Since the yield curve is flat at 5% compounded

continuously, we have B(0,t) = e~ for all . A bit of arithmetic gives gives Fiwap = 0506,
in other words 5.06%. Now

0 log(.0506/.0500) + 2(0.2)2(2)

=0.1587, dy=d; —0.2v/2 = —.0971,
1 0'2\/5 2 1

and
2

STB(0,t)(ti — tio1) = $(e7 V@) 4~ (09B)) = 8716,
=1

so the value of the swaption is
8716 L[.0506 N (.1587) — .05N(—.0971)] = .0052L

where L is the notional principal of the underlying swap.
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When can Black’s model be used? Why is it correct? Black’s model is widely-used
and appropriate for pricing European-style options on interest-based instruments. It has
two key advantages: (a) simplicity, and (b) directness. By simplicity I mean not that Black’s
model is easy to understand, but rather that it requires just one parameter (the volatility)
to be inferred from market data. By directness I mean that we model the underlying
instrument directly — the basic hypothesis of Black’s model is the lognormal character of
the underlying.

Black’s model cannot be used, however, to value American-style options, i.e. options with
whose exercise date is not fixed in advance. Many bond options permit early exercise —
sometimes American-style (permitting exercise at any time) but more commonly Bermudan
(permitting exercise at a list of specified dates, typically coupon dates). Such options are
best modelled using a tree (much as we did a few weeks ago for American options on
equities). When working with interest rates, the tree models the risk-neutral interest-rate
process, which can then be used to value bonds of all types and maturities, and American
as well as European options on these bonds. Interest-rate trees are not “simple” in the
sense used above: to get started we must calibrate the entire tree to market data (e.g.
the yield curve). And they are not “direct” in the sense used above: we are modeling the
risk-neutral interest rate process, not the underlying instrument itself; thus there are two
potential sources of modeling error: one in modeling the value of the underlying instrument,
the other in modeling how the option’s value depends on that of the underlying instrument.

The simplicity and directness of Black’s model are also responsible for its disadvantages.
Black’s model must be used separately for each class of instruments — we cannot use it,
for example, to hedge a cap using bonds of various maturities. For consistent pricing and
hedging of multiple instruments one must use a more fundamental model such as an interest
rate tree.

Now we turn to the question of why Black’s model is correct. The following explanation
involves “change of numeraire”. (The word numeraire refers to a choice of units.)

Up to now our numeraire has been cash (dollars). Its growth as a function of time is
described by the money-market account introduced in Section 7. The money-market account
has balance is A(0) = 1 initially, and its balance evolves in time by Apext = e"t AL ow. We are
accustomed to finding the value f of a tradeable instrument (such as an option) by working
backward in the tree using the risk-neutral probabilities. At each step this amounts to

fnow = 6_T5t [qup + (1 - Q)fdown]

where ¢ and 1 — ¢ are the risk-neutral probabilities of the up and down states. As we noted
in Section 7, this can be expressed as

fnow /Anow = ERN [fnext /Anoxt]a

and it can be iterated in time to give

f(t)/A(t) = Erx[f(t')/A(t)] fort <t



This is captured by the statement that “f(¢)/A(t) is a martingale relative to the risk-neutral
probabilities.”

But sometimes the money-market account is not the convenient comparison. In fact we may
use any tradeable security as the numeraire — though when we do so we must also change
the probabilities. Indeed, for any tradeable security g there is a choice of probabilities on
the tree such that

fnow o q*& + (1 . q*)fdown

Inow Gup 9down

This is an easy consequence of the two relations

fnow = e_rét [qup + (1 - Q)fdown] and Gnow — e_rét [qgup + (1 - Q)gdown]y

which hold (using the risk-neutral ¢) since both f and g are tradeable. A little algebra
shows that these relations imply the preceding formula with

G = 49up
* — .
4Gup + (1 - Q)gdown

(The value of ¢, now varies from one binomial subtree to another, even if ¢ was uniform
throughout the tree.) Writing E, for the expectation operator with weight ¢., we have
defined ¢, so that

fnow/gnow = E, [fnoxt /gnext]-

Iterating this relation gives (as in the risk-neutral case)

ft)/9(t) = EJf(t)/g(t)] for t <t/

in other words “f(t)/g(t) is a martingale relative to the probability associated with E,.”
In particular

£(0)/9(0) = EL[f(T)/g(T)]

where T is the maturity of an option we may wish to price.

Let us apply this result to explain why Black’s formula is valid. For simplicity we focus on
options whose maturity 7" is also the time the payment is received. (This is true for options
on bonds, not for caplets or swaptions. The justification of Black’s formula for caplets and
swaptions is a little different; see Hull.) The convenient choice of g is then

g(t) = B(t,T).
Since ¢g(T") =1 this choice gives
£(0) = g(O)EL[f(T)] = B0, T)E[f(T)].

We shall apply this twice: once with f equal to the value of the underlying instrument,
what we called V; on page one of these notes; and a second time with f equal to the value
of the option. The first application gives

E.[Vr] =Vo/B(0,T)



and we recognize the right hand side as the forward price of the instrument. For this
reason the probability distribution associated with this F, is called forward risk-neutral.
The second application gives

option value = B(0,T)E,[¢(Vr)]

where ¢(Vr) is the payoff of the option — for example ¢(Vr) = (Vr — K)4 if the option is a
call.

This explains Black’s formula, except for one crucial feature: the hypothesis that Vp is
lognormal with respect to the distribution associated with F, (the forward-risk-neutral
distribution). This is of course only asserted in the continuous-time limit, and only if the
risk-neutral interest rate process is itself lognormal. The assertion is most easily explained
using continuous-time (stochastic differential equation) methods, and we will not attempt
to address it here.
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Interest rate trees and American style interest rate options. Thus far we have
only discussed European-style interest rate options — ones where there is a single option
exercise date. But there are interest rate derivatives which permit multiple exercise dates:
a particularly popular product in the US Dollar interest rate market is the Bermudean
swaption, an option to enter into a particular swap on any of a series of payment dates
for the swap. For example, the underlying swap might be one to pay 6 month LIBOR and
receive a fixed coupon of 6% payable semiannually through Sept. 30, 2017 (the “maturity
date” of the swap). The Bermudean option could be exercisable every 6 months starting
Sept. 30, 2008 and ending Sept. 30, 2013 — the maturity date of the swap stays fixed at
Sept. 30, 2017.

Valuation of American style interest rate options is almost always performed using a bino-
mial or trinomial tree. This is conceptually the same as what we did for American-style
options on forwards. However, there is an important difference. In pricing options on equi-
ties, we specified a tree for market price of a forward, which had to be a martingale under
the risk-neutral measure. (We used this to determine the risk-neutral measure.) For pricing
interest-based instruments, we will specify a tree for the short-term interest rate under the
risk-neutral measure. The short-term interest rate is not the price of an asset, so there is
no reason for it to be a martingale.

[Let’s pause for a brief digression. You might wonder why we don’t build a tree based on
the price of an asset, an interest rate forward or a swap, rather than on an interest rate.
There are basically two reasons: (1) if we made the convenient assumption that the price of
the asset follows a lognormal process, it might become so high on some nodes that it would
imply a negative interest rate and negative interest rates only occur in very extraordinary
circumstances; (2) as a swap gets close to maturity, its price must go towards par (its
duration is getting shorter and shorter) so it certainly can’t be described by a martingale).]



How does an interest rate tree work? The basic idea is shown in the figure: each node of the
tree is assigned a risk-free rate, different from node to node; it is the one-period risk-free
rate for the binomial subtree just to the right of that node.

7(2)yu = 10.8583%

r(1), = 8.3223%

r(0) = 6.1982% 7(2)ua = 7.8583%

r(1)q = 4.9223%

T(2)dd = 4.8583%

What probabilities should we assign to the branches? It might seem natural to start by
figuring out what the subjective probabilities are. But why bother? All we really need for
option pricing are the risk-neutral probabilities. When we discussed equities we used the
volatility and drift of the forward price to establish a tree, then used its nodes to find the
risk-neutral probabilities. But recall that when we considered the continuum limit §t — 0,
the risk-neutral probabilities were very close to 1/2. For an interest rate tree we have the
right to choose the branching probabilities as we please; the usual practice is to make them
exactly 1/2.

But we don’t have complete freedom. The discount rates B(0,7") are known at time 0 for
all maturities T. To be useful, our interest rate tree must agree with this market data.
In other words, it must be calibrated to the present term structure in the marketplace. In
summary: for interest rate trees we

e restrict attention to the risk-neutral interest rate process.

e assume the risk-neutral probability is ¢ = 1/2 at each branch, and

e choose the interest rates at the various nodes so that the long-term interest rates
associated with the tree match those observed in the marketplace.

The last bullet — calibration of the tree to market information — is the most subtle one.
We'll discuss it only briefly (this is a major focus of the class Interest and Credit Models).

But first let’s just be sure we understand how such a tree determines long-term interest
rates. As an example let’s determine B(0,3), the value at time 0 of a dollar received at
time 3, for the tree shown in the figure. (Put differently: B(0,3) is the price at time 0
of a zero-coupon bond which matures at time 3.) We take the convention that dt = 1 for
simplicity.

Consider first time period 2. The value at time 2 of a dollar received at time 3 is B(2, 3);
it has a different value at each time-2 node. These values are computed from the fact that

B(2,3) = e "' [1B(3,3)up + 1 B(3,3)down] = ¢ "
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since B(3,3) =1 in every state, by definition. Thus

e "@uu — 897104 at node uu
B(2,3) = e "(®ud = 924425 at node ud
e "(@ad = 952578 at node dd.

Now we have the information needed to compute B(1,3), the value at time 1 of a dollar
received at time 3. Applying the rule

B(1,3) = ¢ " [5B(2,3)up + 3B(2,3)aown]
at each node gives

e—r(l)u

B(1,3) = { e=r(Va

Finally we compute B(0,3) by applying the same rule:

+.897104 + 3 - .924425) = .838036 at node u
+.924425 + £ - 952578) = .893424 at node d.

—
NN

B(0.3) = ¢ "[3B(13)up + 3B(1,3)down]
= e "1 . 838036 + 1 - .893424] = .8137.

Valuing an option using an interest rate tree is easy: just work backward (the option is a
tradeable). Hedging is easy too: each binomial submarket is complete, so a risky instrument
can be hedged using any pair of interest-based insruments (for example, two distinct zero-
coupon bonds).

Here is a toy (two-period) example to communicate the idea of calibration. Recall that
if A(t) is the balance of a money-market fund with value 1 at time 0, then the value of
a European option with maturity T is Ern[payoff/A(T)]. For a zero-coupon bond with
maturity 7', the payoff is 1, so the value of the option is Ej1/A(T)]. Suppose that the
present marketplace yields are y(0,1) = 5% and y(0,2) = 6%, so B(0,1) = =% = 9512
and B(0,2) = e—%*2 = 8869. Suppose you have guessed that the interest rate tree (with
branching probabilities 1/2) has nodal yields 5% initially, branching to 4% and 6% after one
year as shown in the left side of the next figure. Such a tree gives the price of the discount
bound as

_1 1 L 1

= 1(.8985 + .9158) = .9071

B(0,2)=1 _1
0,2) =3 1.06*1.05+1.04*1.05 2

which is far off from the observed value .8869. There is a systematic algorithm for correcting
this (see e.g. sections 8.1-8.4 of Clelow and Strickland). The output of such an algorithm
might for example be the tree shown on the right hand side of the figure. In fact, it gives
the proper value for B(0,2), since its prediction is

1 1
B(0,2) =1 = 1(.874 + .8992) = .88609.
0,2) =3 1.088 % 1.05 + 1.0592 % 1.05 2 + )
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6% 8.88%

4% 5.92%

You may be disturbed by this example — how could a 5% interest rate evolve to either 8.88%
or 5.92%7? Not only is the average of these rates 7.40%, not equal to 5%, but even the lower
of the two rates is greater than 5%. Don’t we have an arbitrage? No we don’t, because an
interest rate is not the price of a tradable asset.

In fact, the rates in a tree are not related to one another by any theory. The 5% rate was the
rate that applied to the first year; the 8.88% and 5.92% rates where the ones that applied
in the second year. The observable quantity that’s most closely related to 8.88% and 5.92%
to is the current 1 year forward rate, which is 7% since e 062 = =052 —07%2,

A key issue in building interest rate trees is how much mean reversion to build into the tree.
Mean reversion refers to a negative correlation between rate levels in one period and rate
levels in the immediately succeeding period. When you have mean reversion, the expected
rate for the following period will be lower than the current rate for higher rate nodes and
higher than the current rate for lower rate nodes. Mean reversion is an issue that does
not arise for trees that are being used to model tradable assets; tradable asset prices are
martingales (more precisely: their present-valued prices are martingales), so that every node
must have the current price equal to the expectation of the price at the following period.
This is inconsistent with mean reversion. But interest rates are not tradable assets. One
reason mean reversion is an economically reasonable assumption for interest rates is that
the central bank tends to act as a counterbalancing force in the economy and pull rates
back towards target levels. The reasonableness of mean reversion assumptions can be seen
from historical data, by noting that the volatility of forward rates with later starting dates
is lower than those with shorter starting dates.

Any interest-based instrument can be priced on a tree. To price a swap, you’ll need access
to more than a single year’s worth of forward prices. But you can easily access this by
calculations on the tree. For example, let’s say you are at a node where you need to calculate
the price of an annual pay swap with 3 years remaining that pays a fixed coupon of 6%.
Let’s say the 1 year rates at your node and its immediate branches look like the following
figure: The one year discount factor is e =072 = .9301. The two year discount factor is the
average of e 0725089 — 8504 and e~ 72%¢~065 = 8715, which is .8610. The three year
discount factor is the average of e~ 072908950925 — 7753 = 0725,—.0895,—.0775 — 7870,
e 0725 =-065,=0775 — 8065, and e 0720~ 005¢=0525 — 8970, which is .8464. So the value
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9.25%

8.95%

7.75%

6.50%

5.52%

of the swap is 100 * .8464 + 6(.9301 + .8610 + .8464) — 100 = .4650.

You may have noticed that we are implicitly assuming perfect correlation between move-
ments in different segments of the rate curve by valuing the American-style swaptions on
a tree. Most people in the financial industry believe that this method provides sufficient
accuracy for valuing American-style swaptions, since mean reversion can be used to produce
the same sort of relationship between European swaptions prices and American swaptions
prices as is produced by assuming less-than-perfect correlation.

skokokok ok ok sk ok ok stk ok ok ok ok

Convexity. Options models may be required for interest rate products that do not at first
glance seem to be structured as options. Consider the following example: let.s say that a
conventional forward rate agreement to receive the 3 month LIBOR resetting on April 30,
2010 is currently 4.50%. So a conventional FRA with a coupon rate of 4.50% will be priced
at 0. What about an unconventional FRA with a 4.50% coupon rate to receive the 3 month
LIBOR resetting on April 30, 2010 that , instead of making its settlement payment on July
30, 2010 (April 30 4+ 3 months), makes its settlement payment on April 30, 2010. At first it
might seem that it too should be priced at 0, since it just represents the discounted value of
a set of payments whose expected value is 0. But the rate at which this discounting will be
done is directly tied to the rate at which the contract settles. If the 3 month LIBOR on April
30, 2010 turns out to be 6.50%, the discounted value the LIBOR receiver is owed will be
2.00%/(146.50%/4) = 1.96802, while if this LIBOR turns out to be 2.50%, the discounted
value the LIBOR receiver owes will be 2.0%/(14+2.50%/4) = 1.98758. This asymmetry,
known as convezxity, will always disadvantage the LIBOR receiver and will be larger the
greater the change in LIBOR away from 4.50%, so it has the same economic effect as an
option on the forward LIBOR sold by the LIBOR receiver to the LIBOR payer. Since the
unconventional FRA eliminates this asymmetry, it needs to have a higher coupon rate than
the conventional FRA, to compensate the LIBOR payer for having lost this advantage.

Some other examples of convexity:

e A LIBOR futures contract. When forward prices and interest rates are uncorrelated,
futures contracts and forward contracts for the same terms should have equal prices
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(the argument is very similar to the one from the Appendix to Hull’s Chapter 5 that
we discussed at the beginning of the semester). But for a futures contract based on an
interest rate, there will be a correlation between price and interest rates. When rate
levels rise, the receiver of LIBOR will get a cash payment reflecting the higher value
of the future, which can then be reinvested till the settlement date at the now higher
interest rates. When rate levels fall, the receiver of LIBOR will make a cash payment
reflecting the lower value of the future, which can be borrowed till the settlement
date at the now lower interest rates. So the futures rate needs to be higher than the
forward rate to compensate the payer of LIBOR for this asymmetry that favors the
LIBOR receiver.

o A swap that pays a fixed amount times the change in swap rate. We know from Section
9 that the value of a conventional swap is

c— sta
LY %B(o,tj)

So any change in the swap rate is being multiplied by the sum of a set of discount
factors, which will be higher when rate levels are lower; this is favorable to the fixed
rate receiver. If an unconventional swap pays based on the change in swap rates
multiplied by a fixed amount, it will be more favorable to the floating rate receiver
than the conventional swap, so the break-even coupon rate for an unconventional swap
must be set higher than the break-even coupon rate for a conventional swap.

e The cheapest-to-deliver option on a Treasury bond future. See below.

Treasure bond futures and the cheapest-to-deliver option. As we.ve noted, most
interest rate products are tied to deposit index rates rather than government rates. There
are exceptions, almost all of which can be handled using the exact same models as we.ve
discussed for LIBOR rates (just use the current par coupon rate on governments in place
of Rewap and use discount factors based on the government bond market rather than the
LIBOR market).

One product that is quite popular and has some special characteristics are futures based
on government bond prices. We.ll focus on one of the most popular of these products, the
future on long US Treasury bonds, but futures on government bonds for other maturities
and countries have similar characteristics.

In designing a futures product for long US Treasury bonds, the desire was to have settlement
based on actual delivery of a bond, rather than cash settlement based on a published price.
Partly, this might have been due to the fact that methodology for deriving par coupon rates
from observed prices were not as well developed at the time this contract was introduced as
they are now. Partly, there is always a bias in favor of settlement through actual delivery,
since it avoids issues of possible manipulation in quoted prices or questions about how large
a transaction the quoted price applies to. At the same time, it was clearly necessary to allow
several different Treasury bond issues to be deliverable in settlement of the futures contract,
since designating only a single bond would increase the likelihood that idiosyncratic factors
applying to that one bond (e.g., shortage of bonds available for borrowing due to technical
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factors or manipulation) could distort the settlement. The decision was made to allow any
Treasury bond with remaining maturity greater than 15 years eligible for delivery. This also
had the desirable effect of reducing the degree of idiosyncratic differences between different
Treasury issues, since the ability to hedge different issues with a single contract served to
help unify pricing.

But different longer term bonds clearly trade at very different prices (for example, they could
have very different coupon rates). To allow all of them to be deliverable against a single
futures contract, there has to be some formula that determines the relative prices between
them. You could just look at market price quotes, but that would return us to the same
issues about applicability of quoted prices that created the desire for physical settlement
rather than cash settlement. The solution was to create a table of fixed conversion factors
between bonds that apply to the futures contract settlement. The fixed conversion factors
were chosen based on a simple algorithm . discounting all cash flows at a permanently fixed
rate of 6.00%. But when real market rates are currently higher than 6%, this rule will tend
to overvalue longer duration bonds relative to shorter duration bonds, since longer cash
flows are being overvalued by discounting at only 6%. When real market rates are below
6%, this rule has the opposite effect, overvaluing shorter duration bonds relative to longer
duration bonds.

The party that is short the future must be given the choice of which bond to deliver (oth-
erwise having a wide range of bonds to deliver does not get around the problems associated
with a single bond eligible for delivery). This party will take advantage of this by choosing
to deliver the bond that is currently most overvalued by the fixed conversion factors. This
is known as exercising the cheapest-to-deliver option. It should be fairly obvious that the
further market rates move away from 6% (either up or down), the more this option will be
worth. So prices of Treasury bond futures need to adjust for this convexity cost by selling
at lower prices than they would without the option, and the degree of adjustment will be
higher in higher volatility environments. Note that this effect will be present despite the
fact that very few contracting parties actually hold their futures contracts all the way to
settlement. Any variance in pricing from what is implied by this reasoning will be taken
advantage of by enough arbitrage traders to bring relationships back into theoretical line.
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