Derivative Securities – Homework 4 – distributed 10/24/00, due 11/7/00.
Corrected version – Problem 1a was wrong before.
Solutions will be distributed 11/14/00

Problems 1-3 address the Black-Scholes pricing formulas and their consequences. In those problems please assume as usual that (a) the risk-free rate \(r \) is constant; (b) the price of the underlying stock is described by a lognormal process with constant drift \(\mu \) and volatility \(\sigma \); (c) the stock pays no dividends. All options under consideration are European.

Problems 4-7 address the Ito calculus and its applications. In those problems \(w(t) \) is a standard Brownian motion with \(w(0) = 0 \).

1. Consider a squared call with strike \(K \) and maturity \(T \), i.e. an option whose payoff at maturity is \((s_T - K)^2 \).

 (a) Evaluate its hedge ratio (its “Delta”) by differentiating under the integral, then evaluating the resulting expression.

 (b) Give a formula for the value of the squared call at time 0, analogous to the standard formula \(s_0 N(d_1) - Ke^{-rT} N(d_2) \) for an ordinary call.

 [Hint: For part (b) use the fact that \((e^x - K)^2 = e^{2x} - 2Ke^x + K^2 \). You could of course differentiate your answer to (b) to find Delta, but that’s the hard way.]

2. Consider a “cash-or-nothing” option with strike price \(K \), i.e. an option whose payoff at maturity is

 \[
 f(s_T) = \begin{cases}
 1 & \text{if } s_T \geq K \\
 0 & \text{if } s_T < K
 \end{cases}
 \]

 It can be interpreted as a bet that the stock will be worth at least \(K \) at time \(T \).

 (a) Give a formula for its value at time \(t \), in terms of the spot price \(s_t \).

 (b) Give a formula for its Delta (i.e. its hedge ratio). How does the Delta behave as \(t \) gets close to \(T \)?

 (c) Why is it difficult, in practice, to hedge such an instrument?

 [Comment: Such options are rarely found “naked” but they often arise in “structured products” calling for a fixed payment to be made if an asset price is above a certain value on a certain date. In view of (c) it is not entirely clear that the Black-Scholes valuation formula is valid for such an option. What do you think?)

3. Suppose \(r \) is 5 percent per annum and \(\sigma \) is 20 percent per annum. Let’s consider standard put and call options with strike price \(K = 50 \). Do this problem using the Black-Scholes formulas (not a binomial tree).

 (a) Suppose the spot price is \(s_0 = 50 \) and the maturity is one year. Find the value, Delta, and Vega of the put. Same request for the call.
(b) Graph the value of a European call as a function of the spot price s_0, for several maturities. Display all the graphs on a single set of axes, and comment on the trends they reveal.

(c) Same as (b) but for a European put.

(d) Your answer to (c) should show that the value of the put is lower than $(K - s_0)_+$ for $s_0 < s_*$ and higher for $s_0 > s_*$. Estimate the critical value s_* when the maturity T is 2 years.

[Comment: Use whatever means (matlab, mathematica, spreadsheet) is most convenient, but say briefly what you used. One point of this problem is to visualize the behavior of the Black-Scholes pricing formulas. Another is to be sure you have a convenient tool for exploring further on your own.]

(4) We showed in class using Ito’s formula that $s(t) = s(0)e^{\mu t + \sigma w(t)}$ solves the stochastic differential equation

$$ds = (\mu + \frac{1}{2}\sigma^2)dt + \sigma dw$$

with initial condition $s(0) = s_0$.

(a) Use this to show that $E[s(t)] - E[s(0)] = (\mu + \frac{1}{2}\sigma^2)\int_0^t E[s(\tau)]d\tau$, where E denotes expected value.

(b) Conclude that $E[s(t)] = s(0)e^{(\mu + \frac{1}{2}\sigma^2)t}$.

[Comment: taking $t = 1$, this gives a new proof of the lemma, stated at the end of the Section 4 notes, that if X is Gaussian with mean μ and standard deviation σ then $E[e^X] = e^{\mu + \sigma^2/2}$.]

(5) This problem should help you understand Ito’s formula. If w is Brownian motion, then Ito’s formula tells us that $z = w^2$ satisfies the stochastic differential equation $dz = 2wdw + dt$. Let’s see this directly:

(a) Suppose $a = t_0 < t_1 < \ldots < t_{N-1} < t_N = b$. Show that $w^2(t_{i+1}) - w^2(t_i) = 2w(t_i)(w(t_{i+1}) - w(t_i)) + (w(t_{i+1}) - w(t_i))^2$, whence

$$w^2(b) - w^2(a) = 2\sum_{i=0}^{N-1} w(t_i)(w(t_{i+1}) - w(t_i)) + \sum_{i=0}^{N-1} (w(t_{i+1}) - w(t_i))^2$$

(b) Let’s assume for simplicity that $t_{i+1} - t_i = (b - a)/N$. Find the mean and variance of $S = \sum_{i=0}^{N-1}(w(t_{i+1}) - w(t_i))^2$.

(c) Conclude by taking $N \to \infty$ that

$$w^2(b) - w^2(a) = 2\int_a^b wdw + (b - a).$$
[Comment: we did parts of this calculation in the notes and in class, but because it’s so enlightening I’m asking you to go through it carefully here.]

(6) Here’s another cute application of the Ito calculus. Let

$$\beta_k(t) = E[w^k(t)]$$

where $w(t)$ is Brownian motion (with $w(0) = 0$). Show using Ito’s formula that for $k = 2, 3, \ldots$,

$$\beta_k(t) = \frac{1}{2} k(k - 1) \int_0^t \beta_{k-2}(s) \, ds.$$

Deduce that $E[w^4(t)] = 3t^2$. What is $E[w^6(t)]$?

[Comment: the moments of w can also be calculated from its distribution function, since $w(t)$ is Gaussian with mean 0 and variance t. But the method in this problem is easier, and good practice with Ito’s lemma.)

(7) You should have learned in calculus that the deterministic ODE $dy/dt + Ay = f$ can be solved explicitly when A is constant: just multiply by e^{At} to see that $d(e^{At}y)/dt = e^{At}f$ then integrate in time. Let’s use a similar trick to solve the stochastic differential equation

$$dy = -cy \, dt + \sigma \, dw, \quad y(0) = y_0,$$

which is known as the Ornstein-Uhlenbeck equation. (Note: this is not the lognormal process, since there is no coefficient of y in the dw term.)

(a) Show using Ito’s lemma applied to the function $f(y, z) = yz$ that in general $d(yz) = ydz + zd\ y + dydz$ but when z is deterministic this reduces to $d(yz) = ydz + zd\ y$.

(b) Apply this with $z = e^{ct}$ to see that

$$d(e^{ct}y) = ce^{ct}y \, dt + e^{ct} \, dy = e^{ct} \sigma \, dw.$$

(c) Conclude that

$$y(t) = e^{-ct}y_0 + \sigma \int_0^t e^{-c(t-\tau)} \, dw(\tau).$$

(d) What is the mean $E[(y(t)]$?